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Abstract

Background: Classical mechanical dilators for cervical dilation are associated with
various complications, such as uterine perforation, cervical laceration, infections and
intraperitoneal hemorrhage. A new medical device called continuous controllable
balloon dilator (CCBD) was constructed to make a significant reduction in all of the
side effects of traditional mechanical dilation.

Method: In this study we investigated numerically the cervical canal tissue response
for Hegar and CCBD using our poroelastic finite element model and in-house
software development. Boundary conditions for pressure loading on the tissue for
both dilators in vivo were measured experimentally. Material properties of the
cervical tissue were fitted with experimental in vivo data of pressure and fluid
volume or balloon size.

Results: Obtained results for effective stresses inside the cervical tissue clearly
showed higher stresses for Hegar dilator during dilation in comparison with our
CCBD.

Conclusion: This study opens a new avenue for the implementation of CCBD device
instead of mechanical dilators to prevent cervical injury during cervical dilation.

Keywords: Cervix dilation, Hydraulic balloon dilator, Finite element simulation
Introduction
Cervical dilation is used not only for childbirth but also for diagnostic and therapeutic

procedures [1,2]. Mechanical dilation is characterized by an increase of the cervical

diameter until dilation procedure in completed. The use of mechanical dilator induces

significant forces, which could damage cervical tissue and affect the fertility [3,4] or

cause complications [2]. Several attempts have been made to reduce the force for cer-

vical dilation by using pharmacological agents, which, however, can cause bleeding

and cramping prior to the surgical procedure [5]. In order to avoid damage of cervical

tissue, it is important to understand the structure and biomechanical behavior of this

complex tissue.

Cervical tissue consists of less than 15% of smooth muscle cells and an extracellular

matrix (ECM) rich in collagen [6]. The biomechanical strength of connective tissue is deter-

mined by the collagen concentration of collagen types (predominantly types I and III, IV)

[7,8], the proteoglycans decorin and biglycan which affect collagen fibrillogenesis
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[9,10], the amount and types of collagen cross-links [11,12], the orientation of colla-

gen fibers [13] and the concentration of elastin and water [14].

While the anatomy of cervical tissue is known, it is important to note that biomechanical

models are not widely examined. A nonlinear response of cervical tissue in vivo conditions

is observed but not quantified. Ex vivo analysis was used to quantify mechanical properties

of the cervix [15]. Several finite element studies with anisotropic visco-hyperelastic of female

pelvic modeling were described in [16-18]. To our knowledge, there is no literature data for

finite element studies on cervical dilation.

In our previous pilot study [19] we introduced a continuous controllable balloon dila-

tor (CCBD) [20] in order to achieve a smoother mechanical cervical dilation, as well as

a significant reduction of the side effects observed when traditional mechanical dilation

is applied [21]. Also, we presented a unique system of in vivo measurement which can

determine the pressure which acts directly on cervical tissue.

In this study we analysed numerically effective wall stress response from cervical

tissue and compared the results from traditional Hegar and hydraulic CCBD where

boundary conditions for pressure are measured from in vivo patient data. We ana-

lysed the cervix as a porous hydrated soft tissue with a simplified geometrical tube

deformable model. The innovative part of this study is the comparison of traditional

Hegar and hydraulic CCBD using a computational porous model for cervical tissue

which we developed.
Methods
CCBD

The CCBD is a fully controllable device for cervical dilation. It uses a specially constructed

balloon dilator that consists of three layers: an inner silicone layer, a central layer made from

high-strength fabric, and an outer silicone layer. The outer silicone layer is in contact

with cervical tissues during dilation. The maximum pressure of 25 bars was detected

with no risk for breakage. The practical reliability of the CCBD was confirmed in vitro

and in vivo [19]. The study (ISRCTN54007498) was conducted at the Gynecology &

Obstetrics Clinics at Kragujevac Clinical Center, Serbia, and Podgorica Clinical Center,

Montenegro. The data were collected by the coordinators of the study at the partici-

pating centers. The protocol was approved by each participating center’s institutional

review board. In Figure 1 the CCBD and the main constituents of human extracellu-

lar matrix are presented. In particular, according to the literature data, approximately

80-85% of the cervix consists of an extracellular matrix (ECM) [22]. ECM of cervical

stroma is composed of thick collagen fibers responsible for the tensile strength, very

small amounts of elastin imparts elasticity and amorphous ground substance com-

posed principally of glycosaminoglycans, proteoglycans and water which contributes

to the integrity of the tissue [15,22].
Numerical procedure

Cervical tissue is considered to be a porous deformable media [23]. We implemented

finite a element formulation where the nodal variables are: displacements of solid, u;

fluid pressure, p; Darcy’s velocity, q; A standard procedure of integration over the element

volume is performed and the Gauss theorem is employed. An implicit time integration



Figure 1 CCBD and main constituens of human cervical extracellular matrix.
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scheme is implemented and the balance equations are satisfied at the end of each time

step. The system of differential equations which is solved for each finite element is:
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where terms with m denote the mass matrix, terms with c denote damping, terms with k

denote stiffness matrix, terms with f denote force vector for full dynamics system of



Filipovic et al. Theoretical Biology and Medical Modelling 2013, 10:64 Page 4 of 9
http://www.tbiomed.com/content/10/1/64
displacements, pressures and fluid velocities equations. More details about all variables in

eq. (1) are given in [23].

The above equations are further assembled and the resulting FE system of equations

is integrated incrementally, with time step Δt, transforming this system into a system of al-

gebraic equations. A Newmark integration method is implemented for the time integration.

We analyzed the dynamic response of cervical canal. An imposed loading pressure on

cervical tissue elicits an effective stress. Our model assumes formulation of a small de-

formation. The corresponding material constants in finite element model are modulus of

elasticity E and permeability coefficient k. These material constants were fitted by stand-

ard least square method and the obtained values are E = 0.15 MPa , k = 3 ●10-15 m4/Ns

[15]. Geometry model represents a simple cervical canal as a porous tube which is

inflated. Boundary conditions are prescribed uniform pressures along the cervical

canal tissue for both dilators in the zone of dilator-tissue contact. Time step used for

simulation was Δt = 0.1 s which is enough to track dynamical changes during dilation

process over 1 minute [23].

Results
The change in the ballon shape during the dilation process of cervical canal in vivo using

the CCBD is shown in Figure 2 for different time points. The pressure and volume of fluid

inside the CCBD are indicated in three different time steps: 20 sec, 40 sec, 60 sec. Volume

of the balloon is used to fit the finite element poroelastic model with the total radial open-

ing of the cervix canal.

The CCBD dilation procedure involves inserting ballon dilator in its initial form into

the cervical canal, which results in a very low resistance to penetration. The dilation

was performed synchronously along the entire length of the cervical canal, where the

relative movement between the tissue/balloon dilator contact pair was reduced to al-

most zero [19]. If we subtract the pressure measurement from in vitro (Pa) and

in vivo (Pb) during CCBD procedure, the total pressure loading on the cervical canal

can be calculated, which is illustrated in Figure 3 with solid line (Pa-Pb).

The basic difference between classical Hegar and CCBD is that the CCBD was initially

positioned along the entire length of the cervical canal, while Hegar mechanically opened

the canal with high resistance of the tissue (Figure 4a,b). The part which is zoomed in

Figure 4a,b represents the cervical canal having a cylindrical shape. Plane symmetry

has been considered and only half of the model has been calculated.
Figure 2 Ballon shape during dilation process of cervix canal in-vivo for different time. Pressure and
volume of dilation for CCBD in time.



Figure 3 Pressure measurement in-vitro (Pa), in vivo (Pb) and total pressure from dilator to the
cervical canal tissue (Pa-Pb).
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We compared the displacement radial distribution of cervical canal for CCBD and

Hegar dilator in time; 5 sec, 20 sec, 35 sec and 45 sec. Obviously Hegar dilator produces a

higher radial displacement in the cervical tissue because it has a constant diameter of

8 mm and CCBD was continually opened with hydraulic pump until the final position

at 45 sec (Figure 5).
Figure 4 Computational model of cervical canal. The part which is zoomed presents the tissue in
cylindrical shape where the boundary condition is the pressure loading from dilator; a) Case with CCBD;
b) Case with Hegar dilator.



Figure 5 Displacement radial distribution of cervical tissue canal for CCBD (left panel) and Hegar
dilator (right panel) in time; a) Displacement after 5 sec; b) Displacement after 20 sec; c) Displacement
after 35 sec; d) Displacement after 45 sec.
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Effective stress distribution for cervical tissue canal for CCBD and Hegar dilator in

time is presented in Figure 6. It can be observed that CCBD induces smaller effective

stress in cervical tissue. For example, after 35 sec Hegar dilator produces 8.7 kPa while



Figure 6 Effective stress distribution for cervical tissue canal for CCBD (left panel) and Hegar dilator
(right panel) in time. a) Effective stress after 5 sec; b) Effective stress after 20 sec; c) Effective stress after
35 sec; d) Effective stress after 45 sec.
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CCBD produces 1.0 kPa which is almost nine times lower. At the end of the dilation

process within time frame of 45 sec the effective stress becomes similar in both dilators,

which is reasonable because of the similar diameter at that time point.
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Basic difference between Hegar and CCBD is a total flexibility for CCBD during the

opening of the cervical canal. Displacement results clearly show a different radial open-

ing of the cervical canal for Hegar and CCBDs. A very low resistance to penetration for

CCBD could reduce damage of cervical tissue. Measurement of the pressure during

CCBD process with precise pressure control on the cervical canal gives far more oppor-

tunities for future dilation procedure.
Conclusions
Effective stress inside cervical tissue during the dilation procedure in vivo is not possible to

be measured. There are some in vitro measurements which investigate separately the cer-

vical tissue sample. Obviously, CCBD induces a continuous radial displacement position

with reduced effective stress during the dilation process. Computational simulations can

give insight into this complex dilation procedures and open new avenues for implementing

the CCBD device in the current medical practice.
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