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Abstract

Background: Spinal pattern generators (SPG) are neural networks in the spinal cord
that do not require a central input from the brain to generate a motor output. We
wanted to determine whether SPG can adapt to the changing motor demands from
walking at different speeds, and performing silly walks.

Methods: An SPG model consisting of an oscillator made up of two neurons was
utilised in this study; one neuron activates the soleus and the other activates the tibialis
anterior. The outputs of the SPG model therefore represent the electromyographic
measurements from each muscle. Seven healthy subjects were requested to perform
silly walks, normal walking at self-selected speed (4.8 ± 0.5 km/h), 3.5 km/h, 4.0 km/h
and 4.5 km/h on a treadmill. Loading and hip angles were used as inputs into the
model.

Results: No significant differences in the model parameters were found between
normal walking at self-selected speed and other walking speeds. Only the adaptation
time constant for the ankle flexor during silly walks was significantly different from the
other normal walking trials.

Conclusion: We showed that SPG in the spinal cord can interpret and respond
accordingly to velocity-dependent afferent information. Changes in walking speed do
not require a different motor control mechanism provided there is no disruption to the
alternating muscular activations generated at the ankle.

Keywords: Locomotion, Walking speed, Silly walks, EMG, Spinal pattern generator,
Neural network, Sensory afferents, Motor control
Background
Afferents interact continuously with different parts of the nervous system so as to

enable a smooth and efficient gait. As the human nervous system should coordinate

efficiently, responding and adapting to the immediate environment, it is important that

the plethora of signals coming from the central, sensory and peripheral systems be

selected and modulated, so that the motor output fulfils the demands of the locomotor

task.

Different control networks at different levels of the nervous system contribute to

human motor control. The lowest level of neural control, which is responsible for

generating the basic patterns of locomotion, is believed to come from spinal pattern
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generators (SPG) located in the spinal cord [1-3]. Brown [4] showed that decerebrate

cats can produce locomotor-like electromyographic (EMG) patterns while walking on a

treadmill. Similar results were also obtained from other vertebrates and invertebrates

[1,5]. A study by Maegele et al. in 2002 [6] showed that clinically incompletely and

completely spinal cord-injured patients can activate lower limb muscles after treadmill

therapy. While these studies successfully showed the ability of the SPG to produce a

motor output with no interference from the brain, they also demonstrated that the

interactions between SPG and sensory inputs are important in generating a dynamic

movement [7]. Taga [8] had shown that a real-time dynamic interaction between the

neural and mechanical system, together with sensory information from the environ-

ment, could influence the motor output of the lower limbs.

Walking at a slower or faster pace creates different motor demands on the neural

system. A number of gait components such as stance and swing phase intervals and

muscle activations change with increasing speed. However, in healthy humans, it is not

known whether these changes result from sensory cues to the neural network in the

spinal cord, since higher commands from the brain can intervene. The aim of our study

was to determine whether neural networks in the spinal cord can adapt to changing

sensory afferents, and directly influence muscular activity to meet the motor demands

of walking at different speeds. We therefore studied the response of the SPG model in

situations where gait components in a gait cycle will be different from normal walking:

change in walking speed and in performing “silly walks”. Our study used an SPG model

that is triggered only by sensory afferents with no interference from a cortical signal.
Methodology
Seven healthy male subjects (28.0 ± 4.4 years, 1.8 ± 0.1 m, 76.4 ± 9.5 kg) volunteered to

participate in this study. They were thoroughly informed of the procedures and gave

their consent. Each subject was requested to walk at his normal self-selected speed

(4.8 ± 0.5 km/h), at 3.5 km/h, 4.0 km/h and 4.5 km/h on a treadmill (Kinetics s3,

Kettler, Germany). In addition, they were asked to perform movements unlike their

normal walking, i.e. “silly walks”, at a speed of their own choice (3.8 ± 0.4 km/h). Data

from six consecutive strides were collected during steady-state walking. Three trials

were recorded for each subject for each walking speed and silly walks, i.e. a total of

210 trials (for both right and left limbs). Trials were ignored if there were missing data

in any one stride. Therefore, a total of only 176 trials was analysed in this study.

Vertical force data were collected at 200Hz and calculated from in-shoe pressure

sensors (Gesellschaft für Biomechanik Münster, Germany) as a summation of the pressure

acting on the entire area of the insole. Hip angles were acquired from an Oqus 3D motion

analysis system (Qualisys, Sweden) at 100 Hz. This system used six infra-red cameras,

which tracked a total of fifteen retro-reflective markers attached to the following body

landmarks: lateral and medial knee, and four tracking markers on the thigh of each leg,

sacrum, and left and right anterior superior iliac spine. Segment definitions and kinematic

data were processed using Visual3D (C-Motion Inc, Maryland, USA). Muscle activation

from the m. soleus (SOL) and m. tibialis anterior (TA) were captured using bipolar surface

electrodes (5–700 Hz, Biovision, Wehrheim, Germany) at 2000 Hz. The SOL and TA

muscles were chosen because they are the principal monoarticular plantarflexor and
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dorsiflexor muscles, respectively. Electrodes were placed according to recommendations

by Hermens et al., 1999 [9]. The electromyographic (EMG) signals were centred, rectified

and filtered using a fifth-order low-pass Butterworth filter with a cut-off frequency of

40Hz.

A simple Matsuoka oscillator [10,11] consisting of two neurons was used (Figure 1);

one neuron activated the SOL and the other activated the TA. Thus, the outputs from

the oscillator represented the corresponding activation of each muscle. The neurons

were mutually inhibited, i.e. when one neuron was activated, the other was suppressed.

The oscillator was governed by the following equations (adapted from Matsuoka,

1985 [10]):

_xi þ xi ¼
Xj

i
aijyj þ si � bif ð1Þ

Ti
_f i þ fi ¼ yi ð2Þ

yi ¼ max 0; xið Þ ð3Þ

where f is the adaptation in the neuron, and T and b are the parameters that determine

the time course of the adaptation. When b = 0 there is no adaptation and the output

will increase and then remain at a constant value (Refer to Figure 1 in Matsuoka [10]).

x is the inner state of the neuron, y is the generated output of the neuron, s is the input

signal, and a is the strength of the connection between the two neurons; aij <0 for i ≠ j

(mutual inhibition) and >0 for i = j (self-excitation). We assume a symmetrical arrange-

ment of neurons, i.e. aij = aji, aii = ajj.
Figure 1 SPG model consisting of two neurons. Dark triangles represent excitatory connections, dark
spheres represent inhibitory connections. Note that subscript 1 refers to SOL and subscript 2 to TA.
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The model is triggered by both the magnitude and the change in magnitude of

loading and hip angles. Vertical force calculated from the insoles was first normalised

to the subject’s weight. Normalised force F and hip flexion/extension angles HA of the

ipsilateral limb (in radians) were used to determine the signal input si in equation (1):

si ¼ mi:pþ ni: _pþ wi:q þ vi: _q ð4Þ

with

_p ¼ r1 F � pð Þ ð5Þ

_q ¼ r2 HA� qð Þ ð6Þ

where m, n, w and v represent the weights of each excitation p, _p, q, _q respectively.

The parameters a, b, m, n, r, T, v, w from the above equations determined the pattern

and frequency of the output. A nonlinear least-squares fitting algorithm was used to

determine a set of parameters that would fit the output to experimental data i.e. the

output produced by the neuron representing the SOL would be fitted to measured

EMG data of the SOL. This was done simultaneously for the TA. Initial values for each

neuron were taken from the first value of the measured EMG data so as to solve the

differential equations numerically. The fitting algorithm terminated once the relative

deviation between two iterations fell below 0.001. A correlation coefficient R between

the model output and experimental EMG data was calculated in each trial.

The following gait components were analysed; Maximum normalised force and

maximum range of hip flexion-extension angles were calculated for each stride. Stance

and swing phases determined from force profiles of each stride were also calculated.

For these gait components, analysis of variance (ANOVA) and Tukey’s post-hoc test

were performed to determine the significant differences between all the different

walking types. In analysing the rectified EMG signals for different speeds, we adopted

the method by Murray et al., 1984 [12]. Cumulative numerical integration (IEMG) for

each EMG signal in each stride was calculated for all speeds. The maximum of the

mean IEMG values was designated as 1.00, regardless of speed. The other mean values

were normalised with respect to this maximum value [12]. To determine significant

differences in the model parameters (p < 0.05), multivariate analysis of variance

(MANOVA) along with analysis of variance (ANOVA) and Tukey’s post-hoc test were

performed.

Results
No significant differences in R were found between normal walking at self-selected

speeds and walking at other speeds. However, R calculated for silly walks (mean corre-

lation Rmean = 0.70 ± 0.08) was significantly lower than for the other walking types

(Figure 2). The quality of the fitting for silly walks is therefore not as good as for the

other walking types (examples of three trials of one subject are presented in Figures 3,

4, 5). It was found that the output became oscillatory only after the first stride, so the

results in Figures 3, 4, 5 are only from stride two onwards. It is also possible that the

sensory inputs used in the model were insufficient to account for the muscular

activations measured. Here, it is unknown whether additional sensory inputs or a cor-

tical signal would give a better correlation.



Figure 2 Correlation coefficients (R) at different speeds and silly walks. The tops and bottoms of the
boxes are the 25th and 75th percentiles of R respectively. Red lines indicate the median values. (*) denotes
significant difference.

Figure 3 Raverage(ave) = 0.88. Muscle activation of the soleus (RSOL = 0.90) and the tibialis anterior
(RTA = 0.87) of subject #1 walking at 4.5km/h with insole forces and hip angles as inputs (bold lines
represent the output from the SPG model and thin lines the experimental EMG data).
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Figure 4 Rave = 0.80. Muscle activation of the soleus (RSOL = 0.90) and the tibialis anterior (RTA = 0.71) of
subject #1 walking at 4.0km/h with insole forces and hip angles as inputs (bold lines represent the output
from the SPG model and thin lines the experimental EMG data).
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Significant differences were found in the gait components calculated (Table 1). As

expected, an increase in walking speed is accompanied by a decrease in the relative

stance phase duration, an increase in the relative swing phase duration, an increased

range of hip flexion-extension angles, and increased peak activation values of the SOL

and TA [12]. Since loading and hip angles were significantly different, this meant that

inputs to the SPG model differed significantly for all walking types.

MANOVA revealed significant differences between the model parameters. To continue

with the analysis, ANOVA followed by Tukey’s post-hoc test revealed no significant

differences between the model parameters for normal walking at self-selected speeds and
Figure 5 Rave = 0.63. Muscle activation of the soleus (RSOL = 0.79) and the tibialis anterior (RTA = 0.46) of
subject #1 performing silly walks with insole forces and hip angles as inputs (bold lines represent the
output from the SPG model and thin lines the experimental EMG data).
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other speeds (Figure 6). Only T2, the constant describing the time lag of the adaptation

effect in the TA, showed significant differences between the silly walks and the normal

walking trials.
Discussion
The results of this study showed that neural networks in the spinal cord can activate

muscles at the ankle to generate stepping motion during steady-state walking. In humans,

it is difficult to determine whether the elevated EMG patterns during walking result from

supraspinal control, activations from sensory inputs, or an interaction between

supraspinal and spinal control. However, the outputs generated by our model, consisting

only of spinal neurons, suggest that muscle activations can be generated by sensory inputs

from loading and hip angles at the spinal level [13].

While there were significant differences in both the inputs (loading and hip angles) and

outputs (IEMG) between the different walking speeds and silly walks (Table 1), significant

differences were only found in T2 between silly walks and the other walking tests

(Figure 6). For normal walking at different speeds, this might imply that an insignificant

change in a parameter is sufficient to cause a significant change in the output. Since the

control of these parameters, which determine the neuronal properties of the SPG, could

come from interneurons, presynaptic inhibition [11], or through descending pathways

from supraspinal structures, the insignificant changes might imply that no regulation by

the brain or inter-spinal circuitry is required to modulate the activation patterns during

walking. Comparing our study to split-belt treadmill locomotion, Morton and Bastian

(2006) found that subjects with cerebellar damage were able to perform rapid reactive

adjustments to stride length and stance time when their legs were operating at different

speeds [14]. Our study corroborates their findings that higher control is not needed to

alter the motor output of moving limbs, but the corrections could instead be performed

predominantly by spinal structures using available sensory information. It has also been

suggested that the same neural circuitry is responsible for gait transitions between walking

and running [15]. Thus, while an input from the cerebral cortex is required to initiate a

movement, higher command centres need not be recruited to regulate motor output dur-

ing locomotion regardless of speed.

Grasso et al. [16] suggested that the nervous system attempts to meet motor

demands by controlling posture or limb joint motion rather than regulating muscle

activations. We agree with their arguments, since we successfully used loading and

hip angles as inputs to the SPG model to generate muscle activations. In addition,

provided the gait patterns do not result in changes to equilibrium, the same neural

network will be utilised [17]. Since the data were captured during steady-state

walking, it might also be important that the alternating activations of the flexor and

extensor are not disrupted. Perhaps, changes to gait components are secondary, and

could result from changes in stride length rather than a different motor control

mechanism.

It has been shown that cats with lesions in the motor cortex encountered no

problems walking on a flat horizontal surface until they were required to cross

obstacles or climb a ladder [18]. In addition, Armstrong and Drew [19] found that

pulses measured in the cat’s cortical neurons were unrelated to speed, though muscle



Figure 6 Values of all parameters at different speeds and silly walks. The tops and bottoms of the
boxes are the 25th and 75th percentiles of the parameters respectively. Red lines indicate the median
values. Parameters m and n are weights related to the normalised force F, while parameters w and v are
weights related to hip angles HA (refer to equations 4–6). SOL: soleus, TA: tibialis anterior. (*) denotes
significant difference.
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activity increased significantly. Therefore, as in humans, no conscious effort is neces-

sary during level walking regardless of walking pace, until an obstacle or a sudden

change in the external environment is encountered, when corrective responses are

required.

We expected differences in the silly walks as the subjects were intentionally requested

to perform a movement unlike normal walking. Since the subjects were consciously

aware that they had to perform ‘something silly’, we postulated that the resulting muscle

activations were due to a command from the brain. However, we found significant

changes only in T2, the adaptation time constant for the TA. Persistent inward currents

(PIC) are known to be essential for the firing of motor neurons [20]. It was speculated

that PIC are expressed in the extensors from birth, but less so in the flexors [21], be-

cause while the extensors are mostly activated during walking, the flexors do not re-

quire long-lasting bursts. It would therefore be more economical to modulate the

flexors rather than the extensors. Nevertheless, it remains uncertain whether the TA

requires more intervention from the brainstem or more neural circuitries than the



Table 1 Mean and standard deviation (std) of gait components at different speeds and during silly walks

3.5 km/h 4.0 km/h 4.5 km/h Self-selected 4.8 ± 0.5 km/h Silly walks 3.8 ± 0.4 km/h p

Mean std Mean std Mean std Mean std Mean std

Stance (%) 66.60 ±4.85 65.59 ±4.34 65.22 ±4.48 64.99 ±1.58 63.33 ±7.34 p < 0.05

Swing (%) 32.97 ±3.01 34.05 ±2.70 34.38 ±2.79 35.01 ±1.58 36.67 ±7.34 p < 0.05

Hip flexion-extension range (rad) 0.67 ±0.21 0.73 ±0.22 0.76 ±0.26 0.77 ±0.07 0.84 ±0.32 p < 0.05

Max F 1.11 ±0.19 1.17 ±0.22 1.23 ±0.25 1.26 ±0.20 1.25 ±0.29 p < 0.05

IEMG_SOL 0.47 ±0.26 0.51 ±0.27 0.53 ±0.31 0.53 ±0.20 0.69 ±0.20 p < 0.05

IEMG_TA 0.42 ±0.26 0.47 ±0.28 0.51 ±0.32 0.53 ±0.21 0.65 ±0.21 p < 0.05
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SOL. The significant difference in T2 could also be due to the SPG model, which

requires a strong adaptation effect in generating stable oscillations (Additional file 1)

(T2, silly walks = 0.12 ± 0.17 compared to T2, self-selected = 0.03 ± 0.04) [10]. The higher T2

value could therefore just be a way for the model to continue generating stable

oscillations.

A limitation in this study was the restricted array of silly walks the subjects could

perform while walking on a treadmill at a constant speed (an example is shown in

‘Additional file 1’). The movements performed by the subjects still involved an on-

going, uninterrupted rhythmic pattern of activation between the antagonistic muscles

at the ankle. Since we now know the same neural network is responsible for normal

walking at different speeds, future studies can give the subjects a freer choice of the

types of silly walks they would like to perform (like those seen in Monty Python’s

sketch, The Ministry of Silly Walks). In such studies, significant differences in more

model parameters might be found.
Conclusion
We proposed that SPG in the spinal cord can interpret and respond accordingly to

velocity-dependent afferent information. Changes in walking speed do not require a dif-

ferent motor control mechanism provided equilibrium is not affected and there is no

disruption of the continuous rhythmic patterns produced at the ankle.

Additional file

Additional file 1: One subject performing a silly walk.
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