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Abstract

Background: Simple and effective cryopreservation of human oocytes would have
an enormous impact on the financial and ethical constraints of human assisted
reproduction. Recently, studies have demonstrated the potential for cryopreservation
in an ice-free glassy state by equilibrating oocytes with high concentrations of
cryoprotectants (CPAs) and rapidly cooling to liquid nitrogen temperatures. A major
difficulty with this approach is that the high concentrations required for the
avoidance of crystal formation (vitrification) also increase the risk of osmotic and toxic
damage. We recently described a mathematical optimization approach for designing
CPA equilibration procedures that avoid osmotic damage and minimize toxicity, and
we presented optimized procedures for human oocytes involving continuous
changes in solution composition.

Methods: Here we adapt and refine our previous algorithm to predict
piecewise-constant changes in extracellular solution concentrations in order to
make the predicted procedures easier to implement. Importantly, we investigate
the effects of using alternate equilibration endpoints on predicted protocol toxicity.
Finally, we compare the resulting procedures to previously described experimental
methods, as well as mathematically optimized procedures involving continuous
changes in solution composition.

Results: For equilibration with CPA, our algorithm predicts an optimal first step
consisting of exposure to a solution containing only water and CPA. This is predicted
to cause the cells to initially shrink and then swell to the maximum cell volume
limit. To reach the target intracellular CPA concentration, the cells are then induced
to shrink to the minimum cell volume limit by exposure to a high CPA concentration.
For post-thaw equilibration to remove CPA, the optimal procedures involve exposure
to CPA-free solutions that are predicted to cause swelling to the maximum volume
limit. The toxicity associated with these procedures is predicted to be much less than
that of conventional procedures and comparable to that of the corresponding
procedures with continuous changes in solution composition.

Conclusions: The piecewise-constant procedures described in this study are
experimentally facile and are predicted to be less toxic than conventional procedures
for human oocyte cryopreservation. Moreover, the mathematical optimization approach
described here will facilitate the design of cryopreservation procedures for other cell
types.
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Introduction
Cryopreservation theoretically allows nearly indefinite storage of viable biological ma-

terial [1]. Conventional cryopreservation techniques are usually thought of as slow-

cooling methods (~1°C/min) that utilize relatively low (1 to 2 mol/L) concentrations of

cryoprotectants (CPAs) such as glycerol, ethylene glycol, or dimethyl sulfoxide. Al-

though these conventional techniques are sufficient for many cell types, this approach

is less successful for cells that have a reduced tolerance to sub-physiologic temperatures

(e.g. oocytes [2,3]) or are easily damaged by extracellular ice formation (e.g., three di-

mensional tissues [4,5]). For these sensitive cell types, an alternative cryopreservation

technique widely known as vitrification may be used that preserves cells in a glassy

state devoid of ice crystals.

In order to completely avoid the liquid to crystal phase transition, these vitrification

techniques require combinations of very high cooling and warming rates (typically

>>100°C/min) with cryopreservation solutions that contain very high concentrations of

CPA (typically > 5 mol/L). In addition to avoiding damage associated with ice forma-

tion, vitrification techniques are appealing because they require much less precise cool-

ing rates compared to conventional methods, and as such can be implemented without

costly or complicated controlled rate freezing devices.

However, there is a high cost associated with these techniques: the equilibration of

cells with and from high CPA concentrations (CPA addition and removal, respectively)

dramatically increases the risk of damage due to osmotically driven cell volume changes

and CPA induced cytotoxicity. Volumetric damage can be caused by rapid exposure to

anisosmotic media, during which the differential permeability of water and CPA drives

a biphasic volume response. This damage occurs when the cell either rapidly loses and

then slowly regains its intracellular water in traditional CPA addition schemes, or vice

versa with traditional removal schemes. These responses, if large enough, may drive the

cell beyond critical volumes known as osmotic tolerance limits, outside of which irre-

versible cell damage occurs [6,7]. Additionally, high CPA concentrations also increase

the risk of cell damage or death due to chemical toxicity; it has been claimed that pre-

venting toxicity is the biggest challenge in achieving successful vitrification [8].

Rational design approaches combine mathematical models and cell biophysical pa-

rameters to predict optimized CPA addition and removal procedures. Because the dam-

age due to extending cell volumes beyond osmotic tolerance limits is relatively well

understood, the most common rational design method has been to use membrane

transport equations and osmotic tolerance limits to predict multi-step procedures that

prevent osmotic damage [9-11]. With an argument that cytotoxicity due to CPA expos-

ure is time-sensitive, rational design strategies have also been extended to reduce toxic

damage by minimizing the duration of the CPA addition and removal procedures while

still maintaining cell volumes between osmotic tolerance limits [12,13].

While CPA cytotoxicity is time sensitive, it is also concentration sensitive [8,14,15].

Therefore, in order to account for this time and concentration dependence, we recently

described mathematical methods that predict optimal procedures based on the

minimization of a toxicity cost function, a term that describes the accrual of toxic dam-

age [16]. However, our previous mathematical algorithm predicted procedures with

continuous concentration changes for CPA and non-permeating solutes. These proce-

dures are difficult to implement and would require specialized fluidic systems and
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computerized control. Moreover, because most previous rationally designed procedures

used an isosmotic volume as the final state for CPA addition and removal [9,10], our

previous study used an isosmotic volume to define the target final cellular state. This

final state may be less optimal than one where the cell is dehydrated to its osmotic tol-

erance limit at the end of CPA loading. In fact there has been discussion in the litera-

ture about the advantages of cooling in a pre-dehydrated state (see, e.g., [17]).

In the current study, we describe adaptations to our previous algorithm in order to

make the predicted procedures easier to implement. The minimization of a toxicity cost

function remains the basis of our algorithm. However, instead of predicting procedures

with continuous concentration changes, the new algorithm predicts multi-step proce-

dures with piecewise constant changes in the CPA and non-permeating solute concen-

trations. Also, rather than specifying an isotonic final cell volume, the new algorithm

uses the intracellular CPA concentration to define the target final state, which allows

exploration of alternate final cell volumes. We predict procedures for the addition and

removal of vitrification solutions for human oocytes; a valuable, clinically relevant, and

challenging to cryopreserve cell type. Our results demonstrate the potential to signifi-

cantly reduce the toxicity of vitrification procedures with an experimentally and clinic-

ally facile CPA equilibration protocol.

Methods
Our approach for optimizing CPA addition and removal procedures involves minimization

of a toxicity cost function subject to cell membrane transport equations and cell volume

state constraints. To achieve this minimization, we used cell membrane transport predic-

tions to both evaluate the state dependent toxicity cost function and to ensure that cell vol-

umes did not violate the osmotic tolerance constraints. To model the cellular state, we

used the nondimensional form of the two parameter membrane transport model [16,18]:

dw
dτ

¼ −m1−m2 þ 1þ s
w

;

ds
dτ

¼ b m2−
s
w

� �
;

ð1Þ

where w is the intracellular water volume normalized to the water volume under iso-

tonic conditions, s is the moles of intracellular CPA normalized to the moles of intra-

cellular solute under isotonic conditions, τ is a dimensionless temporal variable, b is a

dimensionless relative permeability constant, and m1 and m2 are the extracellular con-

centrations (in molal units) of non-permeating solute and CPA, respectively, normal-

ized to the isotonic solute concentration (0.3 Osm/kg).

For human oocytes exposed to ethylene glycol (EG) at 22°C, published membrane

permeability values yield a relative permeability constant of b = 1.62 [19]. These perme-

ability values also result in a dimensional time (in minutes) that is 4.33 times larger

than the nondimensional time. Osmotic tolerance data for human oocytes [7,20] were

used to define constraints on the cell volume, yielding

0:47 ≤wþ γs ≤ 1:67; ð2Þ

where γ is the product of the isotonic solute concentration and the partial molar vol-

ume of CPA. In the case of EG, γ = 0.0168.
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As in our previous study, we used a toxicity cost function based on published toxicity

data for exposure of cartilage [14] and fibroblasts [15] to dimethyl sulfoxide. The cost

function can be expressed as

Jα ¼
Z τ f

0

sα

wα
dτ; ð3Þ

where α = 1.6 is a constant describing the concentration dependence of the toxicity

rate, and τf is the total duration of the procedure [16].

In the previous implementation of our optimization approach [16], we defined the

goal state (i.e., the desired final state at the end of the procedure) as a specific set of

state variable values, wf and sf. In particular, for addition of EG, we used the values wf =

0.67 and sf = 19.9, which correspond to an intracellular EG concentration of 6 mol/L

(sf/wf = 30) and a cell volume equivalent to the isotonic cell volume (wf + γsf = 1). To en-

sure that the optimization algorithm terminated at the goal state, we minimized a cost

function equal to

Jα;ε ¼ Jα þ J ε; ð4Þ

where Jε is a cost associated with the proximity of the final state to the goal state, and

is defined as

J ε ¼ 1
ε

w τf
� �

−wf
� �2 þ s τf

� �
−sf

� �2� �
: ð5Þ

In the present study, we investigated an alternative definition of the goal state. Rather
than uniquely specifying the values of both wf and sf, we chose a specific intracellular

EG concentration as the goal state. This goal state definition is consistent with the pur-

pose of CPA loading for vitrification methods: to achieve an intracellular CPA concen-

tration that enables vitrification of the intracellular solution at practicable cooling and

warming rates. For example, if we wish to achieve an intracellular EG concentration of

6 mol/L, then our goal state is sf/wf = 30, defining a line in the s, w state space. For

CPA removal, we define the goal state as sf/wf = 0, again not limiting our goal state to

an isotonic volume. With the goal state defined in this way, we redefined the proximity

cost as

J ε ¼ 1
ε

s τf
� �
w τfð Þ−

sf

wf

� �2

: ð6Þ

We used ε = 10−3 for CPA addition and ε = 10−1 for CPA removal, which was found to

result in convergence near the goal state.

In order to identify optimal CPA addition and removal procedures it is first necessary

to parameterize the procedural details. We assumed a constant temperature and only

considered the solute concentrations m1(τ) and m2(τ) in the optimization scheme. In

our previous study, we parameterized m1(τ) and m2(τ) using a piecewise linear ap-

proach [16]. The temporal domain between τ = 0 and τf was divided into 49 equally

spaced segments and the concentrations m1 and m2 were assumed to vary linearly with

time in each segment. This corresponds with 50 parameters for m1, 50 parameters for

m2 and one additional temporal parameter τf, resulting in a total of 101 parameters to

be optimized.
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One of the goals of the present study was to modify the optimization approach to

yield procedures that are easier to implement experimentally. Thus we examined proce-

dures consisting of piecewise constant concentration profiles for m1(τ) and m2(τ). We

considered both two-step and three-step procedures—procedures with either two or

three step-changes in the extracellular concentration. In the case of two-step proce-

dures, the parameters to be optimized consist of the duration of the first step, the con-

centrations m1 and m2 in the first step, the duration of second step and the

concentrations m1 and m2 in the second step, resulting in a total of 6 parameters. A

total of 9 parameters are required for parameterization of three-step procedures. Unless

otherwise noted, the concentration parameters to be optimized were bounded between

a lower limit of m = 0 and an upper limit of m = 80. This corresponds with a maximal

EG concentration of 60% w/w, or about 10.3 mol/L.

A convenient outcome of assuming piecewise constant concentration profiles for

m1(τ) and m2(τ) is that an analytical solution to system (1) is available when m1 and m2

are constant [21]. The use of the analytical solution dramatically improves the conver-

gence speed and the stability of the calculation in comparison to the use of numerical

methods for solving the differential equations. As described in Benson et al. [21], the

basic approach for finding the analytical solution is to define a grouped variable that in-

cludes both the time and the cell water volume in order to convert the membrane

transport model into a set of linear differential equations that can be solved using

standard methods (see, e.g., [22]). In terms of the nondimensional variables in system

(1), the new time-like variable x is defined by the relationship

dx ¼ 1
w
dτ: ð7Þ

The time variable transformation alters the cost function (Eq. 3) that now may be re-

written equivalently in terms of x,

Jα ¼
Z xf

0

sα

wα−1 dx; ð8Þ

allowing the calculation and optimization to occur completely in the time transform

space with the attendant exact solutions. The analytical solutions for w and s in terms

of the variable x are provided in the Appendix.

To mathematically optimize piecewise constant procedures, the built-in constrained

minimizer “fmincon” was used in MATLAB (MathWorks, Inc., Natick, MA) to imple-

ment the interior point algorithm [23-25]. This algorithm was used to minimize the

value of the cost function (Eq. 4) subject to the constraints in Eq. 2, and a grid search

approach was used with a wide range of initial parameter guesses to increase the poten-

tial for finding a global minimum. In practice, we found that several parameter combi-

nations yielded nearly identical cost function values, an observation that is consistent

with previous attempts to optimize piecewise constant CPA addition and removal pro-

cedures [12]. Consequently the “optimal” procedures reported here probably do not

represent true global optimums, but rather procedures in the vicinity of the global

optimum. Finally, to compare our new approach to non-piecewise constant controls,

we solved the continuous control problem as before [16] but without the wf + γsf = 1
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condition; i.e., we simply replaced the previous end point penalty cost function Jε
(Eq. 5) with its new expression (Eq. 6).
Results
To allow storage of oocytes in an ice-free glassy state it is first necessary to equilibrate

the cells in a sufficiently concentrated CPA solution so that the sample vitrifies during

cooling and does not devitrify (crystallize) during warming. We initially considered

6 mol/L EG to be a “vitrifiable” concentration, and used an intracellular EG concentra-

tion of 6 mol/L as the target state at the end of CPA loading. Figure 1 compares two
Figure 1 Comparison of mathematically optimized protocols for equilibration of human oocytes
with EG. All of the procedures terminated at a goal state with sf/wf = 30, which is equivalent to an
intracellular EG molality of 9 Osm/kg, or a molar concentration of about 6 mol/L. The red line shows results
from our previous study [16], which involved piecewise linear parameterization of m1(τ) and m2(τ) and a
goal state fixed at the isotonic cell volume. The orange line shows results for the same piecewise linear
parameterization of m1(τ) and m2(τ), but with a goal state that was not fixed at a specified final volume. The
green and blue lines show two-step and three-step piecewise constant procedures, which also had goal
states that were not fixed at a specific final volume. The horizontal dotted lines in the top figure show the
osmotic tolerance limits. Note that the nondimensional EG concentration m2 can be converted to molal
units by multiplying by 0.3 Osm/kg.
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different strategies for defining the target final state (i.e., the goal state) in the

optimization algorithm. The first strategy was that of our previous study where the goal

state satisfied the following two conditions: (1) an intracellular EG concentration of

6 mol/L (sf/wf = 30), and (2) a final cell volume equal to the isotonic cell volume (wf +

γsf = 1). For the second strategy, the goal state still consisted of an intracellular EG con-

centration of 6 mol/L (sf/wf = 30), but the final cell volume was not specified. To com-

pare these goal state definitions, EG loading procedures were designed using a

piecewise linear parameterization of the extracellular concentrations m1 and m2 (i.e.,

the concentrations were allowed to vary continuously with time); the resulting proce-

dures are shown with red and orange lines, respectively. In both cases, the mathematic-

ally optimized procedures called for a non-permeating solute concentration m1 that

was zero throughout the EG addition process. Thus, all EG loading solutions contained

only EG and water. Also, for both approaches the cells were initially induced to swell

to the maximum cell volume limit (as defined in Eq. 2) by exposure to hypotonic solu-

tion. In this swelling phase of the procedure, very little EG was loaded into the cells,

because the extracellular solution contained a very low EG concentration. Once the

upper volume limit was reached, the EG concentration was increased and maintained

near osmotic equilibrium at a concentration that resulted in a volumetric influx of EG

that was exactly balanced by efflux of water. The resulting constant-volume period can

be thought of as the EG loading phase of the procedure. At the end of the EG loading

phase, the extracellular EG concentration was abruptly increased, causing the cells to

shrink rapidly due to water efflux. This shrinkage concentrated the intracellular EG that

had been introduced during the loading phase. When the goal state consisted of an

intracellular EG concentration of 6 mol/L and a final cell volume that was equal to the

isotonic volume, cell shrinkage at the end of EG loading terminated at the isotonic cell

volume, as expected. However, when the goal state was defined as 6 mol/L EG without

specifying the final cell volume, shrinkage terminated at the minimum volume limit.

Because of this additional shrinkage a relatively short EG loading phase was required to

achieve the goal concentration. This shorter EG loading phase corresponded with a

tenfold reduction in the toxicity cost (Jα) associated with the CPA addition process, as

shown in the bottom panel of Figure 1.

Figure 1 also compares two different approaches for parameterizing the solution

composition for use in the optimization algorithm. In our previous study, we parame-

terized m1(τ) and m2(τ) using 49 equally spaced time segments with linear con-

centration changes in each segment [16]. Figure 1 compares this piecewise linear

parameterization approach with two-step and three-step piecewise constant proce-

dures, which are comparatively easy to implement experimentally. The piecewise con-

stant procedures were optimized using a goal state of 6 mol/L intracellular EG, without

specifying the final cell volume. Both the two-step and three-step piecewise constant

procedures (green and blue lines, respectively) involved exposure to EG solutions lack-

ing non-permeating solute in the first step, which caused the cells to shrink and then

swell to the maximum volume limit. In addition, both procedures had a final step in

which the cells were induced to shrink to the minimum volume limit by exposure to a

hypertonic EG solution. These piecewise constant procedures were both shorter than

the corresponding piecewise linear procedure with the same goal state (orange line).

However, the piecewise constant procedures yielded a toxicity cost that was slightly
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larger than that obtained using the corresponding piecewise linear procedure. Table 1

summarizes the toxicity costs associated with each of the four different EG loading pro-

cedures described above.

Figure 2 examines the effect of the mathematical optimization approach on proce-

dures for removal of 6 mol/L EG from human oocytes. In all cases, the initial state for

EG removal was assumed to be the corresponding final state after EG addition shown

in Figure 1. All of the optimized EG removal procedures consisted of exposure to solu-

tions containing non-permeating solutes, but lacking EG. In addition, all of the proce-

dures resulted in swelling to the maximum volume limit. The red line shows the results

of our previous study, which assumed a piecewise linear concentration profile and a

goal state fixed at the isotonic cell volume. For comparison, the orange line shows the

piecewise linear procedure that is obtained when the final cell volume is not fixed. As

shown in the bottom panel of Figure 2, the predicted toxicity cost Jα was substantially

higher in our previous study. This is primarily a result of differences in the cell volume

before initiating the EG removal process. In our previous study, the cells were at their

isotonic volume at the end of EG addition and hence started at the isotonic volume for

EG removal. In contrast, the procedure designed without specifying the final cell vol-

ume started with the cell volume at the minimum volume limit. Consequently, swelling

to the maximum volume limit resulted in greater dilution of the intracellular EG, lead-

ing to a lower toxicity cost. Two-step and three-step piecewise constant procedures are

shown with green and blue lines, respectively. Both procedures were designed using a

goal state that was not fixed at the isotonic cell volume. The toxicity cost associated

with the two-step and three-step procedures was nearly identical to that obtained using

the corresponding piecewise linear procedure, but much lower than the piecewise lin-

ear procedure with an isotonic final cell volume. In general, EG removal is predicted to

be less toxic than EG addition, as can be seen by comparing the toxicity costs shown in

Figures 1 and 2. These results are summarized in Table 1.

Although we nominally considered 6 mol/L EG to be a vitrifiable concentration to

design the CPA addition and removal procedures shown in Figures 1 and 2, the actual

concentration needed to vitrify depends on the cooling and warming rates. Therefore,

in Figure 3 we examine the effect of increasing the goal state concentration on two-

step and three-step piecewise constant EG addition procedures. In general, the final

step of the EG addition procedure was short and consisted of rapid shrinkage to the

minimum volume limit. However, as can be seen in Figure 3A, two-step procedures
Table 1 Comparison of mathematically optimized methods for equilibration of human
oocytes with 6 mol/L EG

Procedure Concentration parameterization Goal cell volume Goal EG Conc. (sf/wf) Toxicity (Jα)

Addition Piecewise linear Isotonic 30 396

Addition Piecewise linear Not specified 30 32.3

Addition 2-step piecewise constant Not specified 30 49.5

Addition 3-step piecewise constant Not specified 30 42.7

Removal Piecewise linear Isotonic 0 38.4

Removal Piecewise linear Not specified 0 12.1

Removal 2-step piecewise constant Not specified 0 12.8

Removal 3-step piecewise constant Not specified 0 12.4



Figure 2 Comparison of mathematically optimized protocols for removal of 6 mol/L EG from
human oocytes. The red line shows results from our previous study [16], which involved piecewise linear
parameterization of m1(τ) and m2(τ) and a goal state fixed at the isotonic cell volume. The orange line
shows results for the same piecewise linear parameterization of m1(τ) and m2(τ), but with a goal state that
was not fixed at a specified final volume. The green and blue lines show two-step and three-step piecewise
constant procedures, which had goal states that were not fixed at a specific final volume. The horizontal
dotted lines in the top figure show the osmotic tolerance limits. Note that the nondimensional non-
permeating solute concentration m1 can be converted to molal units by multiplying by 0.3 Osm/kg.
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underwent a transition between goal state concentrations of 6.6 mol/L (sf/wf = 35) and

and 6.9 mol/L (sf/wf = 37) in which the duration of the second step increased dramatic-

ally. This transition corresponded with the point at which the maximum amount of EG

was loaded into the cells during the first step of the procedure. Maximum EG loading

occurs when the cells are exposed to the EG concentration that causes shrinkage to the

minimum volume limit and then equilibrated in this solution until the cell volume

reaches the maximum volume limit. Beyond the transition point, maximal EG loading

in the first step was not sufficient to allow the cells to achieve the goal EG concentra-

tion in the second step by shrinkage alone. Thus, further loading of EG had to be

achieved by allowing the cells to partially equilibrate with a high EG concentration in



Figure 3 Effect of increasing the goal concentration sf/wf on oocyte volume response during EG
addition using two-step (A) and three-step (B) piecewise constant procedures. The horizontal dotted
lines show the osmotic tolerance limits. Goal concentration values sf/wf = 30, 35, 37, 50 and 70 correspond
with intracellular EG concentrations of 9, 10.5, 11.1, 15, and 21 Osm/kg (in molal units), or approximately 6,
6.6, 6.9, 8.2 and 9.7 mol/L (in molar units).
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the second step. For three-step procedures, this type of transition was not observed for

goal concentrations up to 10.3 mol/L (sf/wf = 80).

Figure 4 shows a more detailed comparison of the optimal procedures obtained for

goal state concentrations ranging from sf/wf = 30 to sf/wf = 80. For two-step procedures,

we can see that when the goal state is greater than sf/wf = 36, the duration of the second
Figure 4 Two-step (left) and three step (right) piecewise constant EG addition procedures as a
function of the goal state concentration sf/wf. The toxicity cost Jα at the end of the procedure, the EG
concentration in each step of the procedure and the duration of each step are shown. Symbols show
predicted values and the lines are provided to guide the eye. The colors blue, green and red represent
steps 1, 2 and 3 respectively.
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step dramatically increases, leading to a substantial increase in the toxicity cost Jα. For

three step procedures, a similar abrupt increase in toxicity cost was not observed. In

general, as the goal EG concentration increased, so did the predicted toxicity cost.

While the two-step and three-step procedures illustrated in Figures 1, 2, 3 and 4 are

much easier to implement than the piecewise linear procedures, there are some prac-

tical issues that will need to be considered before such procedures are adopted clinic-

ally. Thus, to improve the optimized procedures, we examined the effects of including

additional practical constraints in the optimization algorithm (see Table 2). The EG

loading procedures presented above call for an extremely short final step. However,

physical limits exist to how quickly the final addition step can be performed before

cooling can be initiated. Therefore, we limited the step duration to the unitless equiva-

lent of one minute in the optimization algorithm. In addition, the final step in the load-

ing methods described above consists of exposure to a highly concentrated EG solution

(i.e., m2 = 80, or about 10.3 mol/L), whereas it is more common to expose the cells to

the minimum concentration necessary to achieve vitrification in the final step. There-

fore, we constrained the EG concentration m2 using an upper limit equal to the goal

concentration. Finally, the EG loading solutions described above only contain EG and
Table 2 Effects of parameter constraints on optimized piecewise constant procedures for
equilibration of human oocytes with EG

Procedure Step Non-permeating
solute, M1 (Osm/kg)

EG, M2 (Osm/kg) Time, t (min) Toxicity (Jα)

Constraints: 0 ≤M1 ≤ 24 0 ≤M2 ≤ 24 t ≥ 0

Addition 1 0 1.4 20 130

2 0 2.4 16

3 0 24 0.094

Removal 1 1.8 0 3.6 22

2 0.66 0 15

Constraints: 0 ≤M1 ≤ 24 0 ≤M2 ≤ 24 t ≥ 1

Addition 1 0 1.3 19 240

2 0 2.4 16

3 0 17 1.0

Removal 1 2.0 0 3.6 25

2 0.65 0 15

Constraints: 0 ≤M1 ≤ 24 0 ≤M2 ≤ 16 t ≥ 1

Addition 1 0 1.4 20 250

2 0 2.5 16

3 1.2 16 1.0

Removal 1 1.8 0 3.5 22

2 0.68 0 13

Constraints: 0.05 ≤M1 ≤ 24 0 ≤M2 ≤ 16 t ≥ 1

Addition* 1 0.050 1.4 24

2 0.050 2.4 20 280

3 1.2 16 1.0

Removal* 1 1.8 0 3.6 23

2 0.66 0 14

The goal state for EG addition was sf/wf = 53.7, which is equivalent to an intracellular concentration of 8.5 mol/L, or 16 Osm/kg.
*These procedures are illustrated in Figure 5.
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water; the lack of ions and buffering salts in these loading solutions may cause damage

that is not accounted for in the toxicity cost function. Therefore, we also imposed a

constraint on the concentration of non-permeating solutes, limiting the concentration

to at least 0.05 osmoles/kg (i.e., m1 > 0.167).

Table 2 shows the effects of these practical constraints on procedures for addition

and removal of EG. We designed procedures using a goal concentration of 8.5 mol/L

because this EG concentration is expected to allow vitrification of the sample at the

cooling and warming rates that are achievable using 1/4 mL freezing straws. When the

step duration was limited to a minimum of 1 min, the only essential difference was an

increase in the duration of the final addition step and a corresponding increase in the

predicted toxicity cost by nearly two-fold. On the other hand, constraining the EG con-

centration to a maximum of 8.5 mol/L (i.e., m2 = 53.7) had very little effect on the tox-

icity cost. The main difference is that the resulting procedure calls for a non-zero

concentration of non-permeating solute in the final addition step. Limiting the non-

permeating solute concentration to a minimum of 0.05 Osm/kg resulted in longer

equilibration times in steps one and two, and a corresponding modest (< 15%) increase

in the toxicity cost. All of the parameter constraints considered in Table 2 resulted in

nearly identical procedures for EG removal.

The procedures indicated with asterisks in Table 2 represent practical methods for

equilibration of human oocytes with 8.5 mol/L EG. These EG addition and removal

procedures are illustrated in Figure 5. The first two EG loading steps consist of cell

shrinkage due to water efflux followed by swelling to the maximum osmotic tolerance

limit as both water and EG enter the cell. At the end of the second step, the cell is pre-

dicted to reach an intracellular concentration of about 2 mol/L. In the third loading

step, the cell rapidly shrinks due to water efflux and reaches an equilibrium volume at

the lower osmotic tolerance limit; this serves to concentrate the intracellular EG to the

goal concentration of 8.5 mol/L. The first step of EG removal involves exposure to a
Figure 5 Addition and removal of 8.5 mol/L EG using the methods indicated with asterisks in Table 2.
The intracellular EG concentration (in mol/L) and transmembrane fluxes of water and EG are illustrated at
several points in the CPA addition and removal process. During EG addition, the extracellular EG concentration
was equal to 1.3 mol/L, 2.1 mol/L and 8.5 mol/L during steps 1, 2 and 3, respectively. The horizontal dotted
lines show the osmotic tolerance limits.
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relatively hypotonic solution that causes water influx and concomitant swelling to the

maximum osmotic tolerance limit. This swelling, coupled with efflux of EG, rapidly re-

duces the intracellular EG concentration to 1.5 mol/L. Together, these predictions show

that by leveraging shrinking and swelling between the osmotic tolerance limits, addition

and removal of 8.5 mol/L EG can be achieved while maintaining EG at low and rela-

tively non-toxic concentrations throughout the majority of the process.

Discussion
CPA induced cytotoxicity has been identified as a principal impediment to achieving

successful vitrification [8]. However, the conventional approach for rational design of

CPA equilibration procedures focuses only on avoidance of osmotic damage and does

not consider mitigation of toxicity [9-11]. To address this deficiency, rational design ap-

proaches have recently been developed for minimizing protocol duration [12,13]; while

these approaches would be expected to reduce toxicity compared with conventional

methods, they do not account for the concentration dependence of toxicity. In our pre-

vious study [16] we described a new strategy for designing minimally-toxic CPA equili-

bration procedures using a concentration-dependent toxicity cost function. The

resulting procedures are predicted to be less toxic than conventional methods for CPA

equilibration as well as procedures with minimized duration. In this study we address

two drawbacks of our previously reported mathematical optimization approach [16].

Our previous study relied on the concatenation of many linear changes in CPA and

non-permeating solute concentrations which are difficult to achieve experimentally.

Therefore, the primary objective of this study was to develop a method for designing

multi-step CPA addition and removal procedures that are similar to conventional pro-

cedures with abrupt changes in CPA and non-permeating solute concentrations [7]. In

addition, our previously reported optimization algorithm required cells to reach an iso-

tonic final volume, potentially a suboptimal equilibration endpoint. Thus, an additional

objective of this study was to evaluate alternate equilibration endpoints.

The two-step and three-step CPA equilibration procedures described in this study

would be much easier to implement experimentally than the procedures described in

our previous study [16]. Moreover, it is simpler and faster to predict optimal two-step

and three-step procedures because there are fewer parameters to optimize and because

an analytical solution to the membrane transport model is available for piecewise con-

stant changes in solution composition [21]. However, it is important to evaluate the po-

tential increase in toxicity associated with restricting the optimization to two-step and

three-step piecewise constant concentration changes. Compared with the correspond-

ing piecewise linear EG addition procedure, the two-step and three-step procedures

had toxicity costs that were 50% and 30% higher, respectively (Table 1). Thus, it may be

worthwhile to use continuous changes in concentration during CPA addition. However,

CPA removal using two-step and three-step procedures is predicted to yield a toxicity

cost that is nearly identical to that obtained using the corresponding piecewise linear

CPA removal procedure, which indicates that the increased complexity of the piecewise

linear procedure would probably not be worth the effort in this case. To fully evaluate

the tradeoffs between experimental expediency and toxicity, it will be necessary to

more precisely define the relationship between oocyte viability and the predicted tox-

icity cost.
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The goal state defined in our previous study required that cells achieved an isotonic

volume at the end of CPA addition. However, it is a common strategy to intentionally

induce shrinkage in the final CPA addition step and to vitrify the sample while the cells

are in the shrunken state [17,26-28]. For instance, multi-step vitrification procedures

for oocytes commonly involve loading of CPA at relatively low concentrations followed

by exposure to the final vitrification solution for a brief period of time directly before

cooling [29-31]. In other words, with these procedures, the cooling process is initiated

while the cells are in the shrunken state. The rationale behind this strategy is that water

loss concentrates intracellular solutes, allowing a vitrifiable cytoplasm composition to

be reached with a shorter exposure to the final vitrification solution [17]. Another ad-

vantage of vitrification in the shrunken state is that it facilitates removal of intracellular

CPA after warming [17]. This is because the cell contains less total CPA in the

shrunken state, and also has more capacity for swelling during the first removal step.

The mathematically optimized procedures we describe in this study are consistent with

this vitrification strategy in that the final CPA addition step comprises exposure to a

concentrated CPA solution, which induces shrinkage to the minimum tolerable volume.

Thus, our results provide a theoretical basis for the common practice of exposing cells

to the final vitrification solution for a short time, and then initiating cooling while the

cells are in the shrunken state.

The most unique aspect of our optimized procedures is that cells are loaded with

CPA by inducing swelling to the maximum volume limit using a solution lacking non-

permeating solutes (e.g., salts). In comparison, typical CPA loading solutions contain an

isotonic concentration of non-permeating solutes and consequently do not induce

swelling. Swelling is advantageous because it allows a given amount of CPA to be

loaded into the cells using a relatively low CPA concentration. This is because the

amount of intracellular CPA is equal to the product of the intracellular concentration

and the cell volume. To our knowledge, loading CPA intracellularly while forcing cells

to be in a swollen state is a novel result of our toxicity minimization strategy. While

this approach is promising, it may be damaging to expose oocytes to solutions lacking

salts because of potential perturbations in ion homeostasis. Studies with red blood cells

show that complete lack of salts in the extracellular medium causes the cell membrane

to become leaky, resulting in substantial loss of intracellular ions over a period of hours

[32,33]. However, the presence of even a small amount of salt in the extracellular

medium dramatically slows the rate of ion leakage [32,33]. This suggests that it may be

possible avoid problems with ion leakage by including some minimal concentration of

salts in the CPA loading solution. Recently, Karlsson and colleagues showed that mouse

oocytes are not damaged by exposure to a CPA solution containing only 0.05 Osm/kg

salts [34]. Therefore, we also optimized a CPA loading procedure using 0.05 Osm/kg as

a minimum constraint on the non-permeating solute concentration (Table 2 and

Figure 5). The resulting procedure still takes advantage of swelling, and hence would be

expected to be much less toxic than conventional CPA loading methods, and is only

marginally more toxic than our optimized protocols without the minimal salt con-

straint (Table 2).

Many studies are available describing the vitrification of human oocytes. In particular,

the study by Kuwayama et al. [29] resulted in 7 healthy babies and 3 ongoing pregnan-

cies at the time of publication. This study was also the first to use the Cryotop cooling
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device, a minimal volume device that offers an alternative to vitrification in freezing

straws by taking advantage of the higher cooling and warming rates achieved with smaller

sample volumes. The procedure for EG loading described by Kuwayama et al. results in a

calculated toxicity of Jα = 60.6. Using the same goal state (an EG concentration of 5 mol/L,

or sf/wf = 23), our toxicity-minimization strategy predicts a procedure with a twofold

lower toxicity of Jα = 29.3. It is important to note that the procedure described by

Kuwayama et al. is predicted to yield oocyte volumes that exceed the osmotic tolerance

limits that we used for designing our mathematically optimized method. Since the proced-

ure reported by Kuwayama et al. has been successful, this may indicate that the osmotic

tolerance limits that we used in this study were too restrictive. Broadening the osmotic

tolerance limits would be expected to lead to even further reductions in the toxicity cost

or increases in maximally achievable CPA concentration at the same cost.

While successful, the disadvantage of the Cryotop method employed by Kuwayama

et al. [29] is that it is a potentially nonsterile system, where cells are directly exposed to

liquid nitrogen. This open system is a requirement due to the ultrahigh cooling rates

needed to avoid crystallization at such low CPA concentrations. However, if we assume

that the calculated toxicity from their protocol, Jα = 60.6, is acceptable, then we can use

our optimization approach to determine the maximal EG concentration that would re-

sult in the same level of toxicity. In this case we would be able to achieve a much in-

creased goal concentration of approximately 6.6 mol/L (sf/wf = 35) using two-step or

three-step toxicity minimized procedures. This approach is useful because with higher

goal concentrations, it is possible to achieve vitrification using less extreme cooling and

warming rates. Thus, the ability to reach higher goal concentrations without significant

cytotoxicity would enable the use of other devices that offer more sterility but have a

greater thermal mass, such as freezing straws, and would offer considerably more mar-

gin for error in cooling and warming rates under the present Cryotop protocol.

Therefore, instead of minimizing toxicity under current cooling regimes such as the

Cryotop method, we may use our optimization approach to calculate the anticipated

added cost of achieving a concentration that would facilitate vitrification under more

sterile conditions. In particular, Baudot and Odagescu [35] determined that a 50% w/w

EG solution required a cooling rate of 11°C/min to achieve vitrification and a warming

rate of 853°C/min to prevent devitrification. Cooling rates up to 2000°C/min can be

achieved by directly immersing 1/4 mL freezing straws into liquid nitrogen, and warm-

ing rates up to 3000°C/min can be achieved by immersing straws into a 25°C water

bath [36]. Thus, 50% w/w EG should conservatively enable vitrification at the cooling

and warming rates achievable using freezing straws. An EG concentration of 50% w/w

corresponds with a goal state of sf/wf = 53.7. Using our toxicity-minimized procedures,

achieving a goal state of sf/wf = 53.7 would result in a toxicity of Jα = 130 (Table 2). This

is larger than the predicted toxicity cost associated with the procedure reported by

Kuwayama et al. [29] which has been proven successful. However, greater toxic damage

may be an acceptable tradeoff for increased sterility and improved stability of the glassy

state during storage. The clinical application of this approach will require a more pre-

cise understanding of the cost function Jα, and the determination of acceptable values

of this cost in the context of reproductive medicine.

Our results show that to minimize toxicity during CPA addition, the final step should

induce shrinkage to the minimum volume limit and last only long enough for this



Davidson et al. Theoretical Biology and Medical Modelling 2014, 11:13 Page 16 of 19
http://www.tbiomed.com/content/11/1/13
minimum volume to be achieved. For instance, the two-step and three-step CPA

addition procedures shown in Figure 1 had final steps with durations of about 5 sec-

onds. However, it may not be practical to perform a 5 second equilibration with suffi-

cient accuracy and repeatability for clinical application. A distinct advantage of our

approach is that it allows the determination of optimal protocols even after the addition

of practical design constraints to the problem. Most previously reported CPA equilibra-

tion procedures for vitrification of human oocytes involve exposure to the final vitrifi-

cation solution for at least 30 seconds [29-31]. Thus, we assumed that a one-minute

final step would be feasible and determined optimal two-step and three-step procedures

with this constraint (see Table 2). Interestingly, when such procedures were designed

using a maximum concentration constraint equal to the goal concentration, the final

addition step called for the presence of non-permeating solute at a concentration of

approximately 1 Osm/kg. This is consistent with the common practice of including

0.5-1 mol/L sucrose in the final vitrification solution for human oocytes [29-31]. The

presence of non-permeating solute in the final vitrification solution is potentially ad-

vantageous because it results in equilibration of the cells in a shrunken state. For ex-

ample, exposure to the final solution compositions shown in Table 2 is predicted to

cause rapid shrinkage and subsequent equilibration at the minimum volume limit in

less than 20 seconds, as shown in Figure 5. These procedures would be expected to be

relatively robust to variations in the exposure time in the final CPA addition step, since

equilibrium is achieved quickly.

The optimized procedures for EG removal presented here call for exposure to solu-

tions containing non-permeating solutes, but lacking EG. However, some residual EG

would be present in practice, regardless of the method for changing the extracellular

composition. To examine the potential effects of residual EG, minimum constraints

can be imposed on the EG concentration during each removal step. If the EG concen-

tration is constrained to a 20-fold dilution in each step, the toxicity cost associated with

the resulting procedure is about 40% higher than that obtained when the EG concen-

tration is zero in each step. A 100-fold dilution in each step is only associated with a

6% increase in toxicity cost. Overall, these increases in toxicity would not be expected

to substantially effect of the outcome of the cryopreservation process, since EG removal

is still be predicted to be much less toxic than EG addition.

Although we used our optimization algorithm for human oocytes in this study, our

approach is applicable to any cell type given the necessary biophysical parameters (i.e.,

the membrane permeability values and osmotic tolerance limits). Moreover, our general

approach of minimizing a toxicity cost function provides a framework for optimizing

other important aspects of the CPA equilibration process. For instance, it is generally

recognized that CPA toxicity is reduced at lower temperatures (e.g., 4°C), but CPA

loading also takes longer at low temperatures because the cell membrane permeability

is lower. Thus, selection of the optimal temperature for CPA loading is not trivial and

arguments have been presented for CPA equilibration at both low temperatures [27]

and high temperatures [37]. Our optimization approach also provides a framework for

rational comparison of different CPA types in terms of their toxicity. To extend our ap-

proach to optimization of factors such as temperature and CPA type will require an im-

proved understanding of the effect of these factors on the rate of damage due to

toxicity, and formulation of a toxicity cost function that accounts for these factors.
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Another advantage of our approach is that the toxicity cost function provides a quantita-

tive indicator of cell damage after cryopreservation, facilitating rational evaluation of feasi-

bility. If the expected cost under the optimal protocol is unacceptable, exceeding a limit

that indicates a significant level of damage, a completely new approach must be tried that

mitigates this cost. For example, it may be possible to reduce toxicity by using a different

combination of CPAs or by carrying out the procedure at a different temperature. Import-

antly, the model results can be used to direct the research focus to the source of damage.

This aspect is unique to our approach and has the potential to save time by identifying

non-feasible approaches without the need for fruitless experiments. To realize these bene-

fits, it will be necessary to clarify the factors affecting the toxicity cost function, as well as

the relationship between the cost function and cell viability for the cell type of interest.

Conclusions
In this study we have presented an adaptation of our toxicity-minimization strategy for

predicting CPA addition and removal procedures. In particular, we have modified our

previous strategy which relied on continuous concentration changes and instead predict

procedures based on piecewise constant concentration changes. These new procedures

are not only similar to conventional procedures but are also much simpler to imple-

ment experimentally. The mathematical algorithm is based on the minimization of a tox-

icity cost function, which describes the effect of CPA concentration on cytotoxicity.

Although these procedures still require experimental validation, we have provided theor-

etical evidence suggesting that our procedures would reduce toxic damage relative to pro-

cedures that are currently in use. The employment of this cost function allows for rational

comparison of potential experimental designs and facilitates the generation of cell damage

hypotheses in the context of cryopreservation protocols. Finally, our strategy also provides

a structure for incorporating other factors into the model-based design of toxicity-

minimized vitrification procedures, including the effects of temperature on CPA toxicity.

Appendix
An analytical solution has previously been published for the two-parameter membrane

transport model [21], but not explicitly for the nondimensional form of transport model

given in system (1). Parameterizing the equation in the time variable using Eq. 7 is equiva-

lent to multiplying the right hand side of each equation by w and yields the linear system

dw
dx

¼ − m1 þm2ð Þwþ sþ 1;

ds
dx

¼ bm2w−bs;
ðA1Þ

which retains the same initial conditions as system (1). This system may be solved

using standard techniques. The analytical solution in terms of the nondimensional vari-

ables w and s is, with m1 ≠ 0

w ¼ 1
m1

þm1wi−1−C1

2m1
exp r1xð Þ þm1wi−1þ C1

2m1
exp r2xð Þ; ðA2Þ

s ¼ m2

m1
þm1si−m2 þ C2

2m1
exp r1xð Þ þm1si−m2−C2

2m1
exp r2xð Þ; ðA3Þ
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where wi and si are the initial values of w and s, respectively, and the constants C1, C2,

r1 and r2 are defined as

C1 ¼ m1−m2 þ 2m1si−m1wi m1 þm2ð Þ þ b m1wi−1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþm1 þm2ð Þ2−4bm1

q ; ðA4Þ

C2 ¼ m1 þm2ð Þ m2−m1sið Þ þ b m2 þm1si−2m1m2wið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþm1 þm2ð Þ2−4bm1

q ; ðA5Þ

r1 ¼ −0:5 bþm1 þm2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþm1 þm2ð Þ2−4bm1

q� �
; ðA6Þ

r2 ¼ −0:5 bþm1 þm2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþm1 þm2ð Þ2−4bm1

q� �
: ðA7Þ

This analytical solution was used in our optimization algorithm to predict changes in

cell volume and intracellular CPA concentration, thus allowing evaluation of the cell

volume constraints as well as the toxicity cost function. We restricted m1 > 10
− 4.

Note that this solution is in the new time space. To recover the original nondimen-

sional time τ from the time-like variable x we must integrate Eq. A2:

τ ¼
Z x

0
w xð Þdx: ðA8Þ
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