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demonstrate how and when limits on medicine risks can be computed from
collections of individual case reports.

Methods: We propose a model where drug exposures in the real world may be
followed by adverse episodes, each containing one or several adverse effects. Any
adverse episode can be reported at most once, and each report corresponds to a
single adverse episode. Based on this model, we derive upper and lower limits for the
per-exposure risk of an adverse effect for a given drug.

Results: An upper limit for the per-exposure risk of the adverse effect Y for a given
drug X is provided by the reporting ratio of X together with Y relative to all reports on X,
under two assumptions: (i) the average number of adverse episodes following
exposure to X is one or less; and (ii) adverse episodes that follow X and contain Y are
more frequently reported than adverse episodes in general that follow X. Further, a
lower risk limit is provided by dividing the number of reports on X together with Y by
the total number of exposures to X, under the assumption that exposures to X that are
followed by Y generate on average at most one report on X together with Y. Using real
data, limits for the narcolepsy risk following Pandemrix vaccination and the risk of
coeliac disease following antihypertensive treatment were computed and found to
conform to reference risk values from epidemiological studies.

Conclusions: Our framework enables quantification of medicine risks in situations
where this is otherwise difficult or impossible. It has wide applicability, but should be
particularly useful in structured benefit-risk assessments that include rare adverse
effects.
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Background

Hardly any medicine is risk-free. Some undesirable effects are identified during pre-
clinical and clinical testing, for regulatory benefit-risk assessments to decide whether or
not the medicine should be granted market access. However, because pre-marketing tri-
als are too small, too short, and too homogeneous with respect to included patients, many
adverse effects remain undetected at the time of marketing [1]. Unless one is willing to
rely on subjective expert guesswork, any quantitative evaluation of adverse effects from
drugs requires data to inform risk estimation. This applies to analyses of single harm-
ful effects and full-scale benefit-risk assessments alike. However, in reality rare adverse
effects are very difficult to quantify [2]. Contrary to common belief, not only controlled
clinical trials but also epidemiological studies in very large populations are likely to be
underpowered for many important adverse effects [3]. Also, the standard epidemiolog-
ical approach in situations of rare outcomes, the case-control study, can only estimate
relative risk, which is of limited value in the decision-oriented context of benefit-risk
assessment [4].

Pharmacovigilance is the over-arching scientific and regulatory discipline working to
uncover possible new risks with medicines. In this process, the collection and analysis
of individual case reports of suspected harm from medicines is a crucial component [5].
These reports are collected continuously in most countries worldwide, cover all types of
drugs, and often contain detailed information to assist in the assessment of a possible
causal link between drugs and adverse effects. It has also been argued that they can pro-
vide some quantitative risk information: because the number of reports on a particular
drug-adverse event pair is lower than the actual number of affected patients due to under-
reporting, dividing the report count by the number of exposed patients yields a lower
limit on the true risk in these patients [6].

Following a recent update of regulatory post-marketing guidelines, companies are
expected to complement the detection of a previously unknown and significant adverse
effect with a complete benefit-risk assessment [7]. The academic community has con-
tributed with a multifaceted development of quantitative approaches, which are expected
to increase the transparency and consistency of benefit-risk assessment [8]. Regula-
tors now express a clear interest in such methods, while companies remain more
sceptical [9].

The aim of this work is to explore the boundaries for individual case reports as a source
of information on the risk of adverse events under exposure to drugs. We present a con-
ceptual model for the link between reported adverse events, real-world occurrences of
adverse events, and exposed patients. We show how this model can be used to incorpo-
rate and formalise the above idea on a lower risk limit, and — most significantly — we
derive from it an upper risk limit that is not dependent on external exposure data.

A model for linking individual case reporting to the real world

To be able to explain how collections of individual case reports can provide quantitative
risk information, we need to define a model that relates events reported as suspected
adverse drug reactions to all such adverse events occurring in the real world. We start by
a very brief description of individual case reports as such, followed by definitions of the
core concepts necessary to understand the model, and then preceed to the actual model
itself.
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Individual case reports
The origin of individual case reporting is so called spontaneous reporting of adverse drug
reactions, with an explicit suspicion of drug attribution [10]. Today regulatory require-
ments are stricter and solicited reporting occurs in parallel to spontaneous reporting.
Another recent phenomenon is that not only healthcare professionals but also patients
themselves can report.

A majority of countries have national databases of individual case reports. One example
is the Food and Drug Administration in the USA. There are also a few databases that cover
several countries, e.g. the WHO global database of individual case safety reports, VigiBase
[11]. In addition, all pharmaceutical companies have internal databases that cover their
specific products.

All individual case reports must list one or several drugs as suspected, by themselves
or in interaction, of having caused one or more adverse events; in addition, concomitant
drugs may be listed. Drugs and events are typically coded in dedicated terminologies.

Much more information can be provided on the reports, including indication for use
and start and stop dates for drugs, and dates for onset and abatament of events. Other
important report fields include the reason for being classified as serious (if any); the dose
and route of administration for drugs; and outcome for events.

The results of dechallenge, i.e. withdrawal of a drug, as well as rechallenge, i.e. re-
exposure to the same drug, can be specified. Characteristics of the patient, such as age,
gender, and medical history should also be provided. Finally, whereas all of the above is
coded in structured format, one always has the opportunity to give a free-text description
of the case.

Exposure

Here, an exposure is to be understood as an episode of treatment with a given drug in an
individual patient. Drugs, in turn, could refer to either substances or medical products,
including or excluding vaccines and medical devices. It follows that disparate treatment
episodes of the same patient with the same drug are considered as distinct and non-
overlapping exposures. Also, the duration of an exposure can range from close to zero (e.g.
a single bolus injection) to many years (e.g. life-long maintenance therapy for an incurable
disease).

This definition is motivated by the nature of individual case reports, where one typically
reports only those drugs that are currently being used or that were recently used by the
patient, i.e. the currently relevant exposures. More flexible definitions of exposure are
difficult, since patients are not followed continuously over time. For example, different

treatment episodes within the same patient are not linked.

Adverse episodes

An adverse episode is here defined as a set of clinical signs and symptoms that occur in
an individual patient after exposure to one (or several) drugs. The signs and symptoms
are clustered temporally and clinically so that they form an entity that corresponds to
a single individual case report, if at all reported. It is therefore implied that an adverse
episode can consist of one or several adverse events, which conforms with the appearance

of individual case reports in reality.
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This definition is very general and not restricted with respect to the time from start
of exposure to onset of the adverse episode, nor with respect to the nature of the signs
and symptoms contained in the episode. However, such restrictions can be reasonable or
even necessary (see Sections ‘Low adverse episode density’ and ‘Using a restricted time to
event onset’).

Risk

The concept of risk as used here is the probability of experiencing a certain adverse event
Y of interest after exposure to a certain drug X of interest, i.e. Pr(Y'|X). This probability is
given by the incidence of Y after exposure to X: in its most general form, the risk ryy is the
fraction of all exposures to X that are followed by at least one occurrence of Y. If there is a
requirement that Y occur within a certain time period ¢ from start of exposure to X, this
is indicated as rfcy. Unless otherwise specified, the risk applies to the entire population at

issue.

Model description
Table 1 defines the basic components of our model. Generally, the superscripts R, A, and
E are used for reports, adverse episodes, and exposures, respectively. Two fundamental
assumptions are that each adverse episode is reported at most once, and that each report
describes an adverse episode that actually has occurred. These assumptions would be
violated in the presence of report duplication, drug miscoding, or adverse event misdi-
agnosis. All are real but generally manageable threats in practice; for elaboration see the
Section ‘General validity of the model’.

The quantity of main interest is the population risk 7y, defined above as the proportion
among all exposures to X, NZ, that is made up by exposures to X that are followed by Y,
Nf;,:

E
Ny,

NE (1)

Fxy =

Our aim is to relate this unknown risk to the known reporting ratio p., between Nf;,, the

number of reports on X together with ¥, and N¥, the total number of reports on X:

NR
Pxy = Nijg . (2)
x

Table 1 Components of our linking model between individual case reporting and the

real world

Variable Type of entities being counted Context
NE Reports on X Database
/\/fy Reports on X together with Y Database
I\If Adverse episodes that follow exposure to X Real world
I\/ﬁ‘y Adverse episodes that follow exposure to X and that include Y Real world
NE Exposures to X Real world
I\/§y Exposures to X followed by at least one adverse episode that includes Y Real world

X and Y are the drug and adverse event of interest, respectively.
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To be able to do so, we introduce the variables f; and f,,. They measure, respectively,
the fraction of all adverse episodes following X that are actually reported, and the fraction
of adverse episodes following X and containing Y that are actually reported:

fi = %
(3)

xy
fxy: A

We shall refer to f; and fy, as reporting coverages. (The commonly used quantity under-
reporting is simply 1 — f.) All of the introduced concepts and their interrelations are
outlined with a fictional example in Figure 1.

Reports
Adverse
episodes
Exposures [ . J NE X -

Figure 1 Inter-component relations in our linking model between individual case reporting and the
real world. Note: All variables in the figure denote the numbers of elements of their respective sets, not the
names of the sets themselves. Here, let the drug of interest X be 'analgesic’, and the adverse event of interest
Y be gastrointestinal haemorrhage. The ellipses at the top represent the database of individual case reports:
let /\lf, the total number of reports on ‘analgesic’, be 16,000, and assume that 400 of those reports concern
gastrointestinal haemorrhage, i.e. ny = 400. Thus, the reporting ratio for gastrointestinal haemorrhage with
‘analgesic’is o, = 400/16,000 = 2.5%. Further, shapes with edges correspond to the real world: The
rectangles represent the universe of exposures to ‘analgesic’, and the diamonds represent the universe of
adverse episodes that have followed those exposures. In this example, the total number of adverse episodes
N2 is 800,000, of which 5,000 contain gastrointestinal haemorrhage, i.e. ny = 5,000. Each report maps to a
single adverse episode, and each adverse episode is reported at most once: here the general reporting
coverage for ‘analgesic’is f, = N /N2 = 16,000/800,000 = 2%. The reporting coverage specifically for
gastrointestinal haemorrhage with ‘analgesic’is f,, = I\/fy//\/fy = 400/5,000 = 8%. Those exposures that are
followed by adverse episodes all reside within the dashed rectangle. Logically each of those exposures is
mapped by at least one adverse episode, and each adverse episode maps to a unique exposure in the
dashed rectangle. Of particluar interest are those exposures that are followed by at least one adverse episode
containing gastrointestinal haemorrhage, i.e. the turquoise rectangle within the dashed rectangle. Here there
are Nﬁy = 4,900 such exposures, out of I\/§ = 1,000,000 'analgesic’ exposures in total. Hence, the true risk is

ry = NE, /NS = 4,900/1,000,000 = 049%. All variables are described in Table 1.
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Risk limits and their assumptions

Conditional on this model, we make two claims. First, the reporting ratio p,y is an upper
limit for the risk 7y, if (i) the total number of adverse episodes following exposure to X
is less than or equal to the number of exposures itself; and (ii) the reporting coverage for
adverse episodes that follow exposure to X and that include Y (fy,) is higher than or equal
to the reporting coverage in general for adverse episodes following X (f;). These assump-
tions are clearly fulfilled for the example in Figure 1: (i) N4 = 800,000 < 1,000,000 =
Nf; and (ii) foy = 8% > 2% = f;. As claimed, then, px, = 2.5% > 0.49% = ry,. We shall
refer to (i) as the assumption of low adverse episode density, and (ii) as the assumption of
relative over-reporting of Y for X.

In general, the latter assumption should hold if Y is serious in nature, particularly if the
link between X and Y is generally recognised or suspected. The former assumption should
be more likely to hold the shorter the duration of treatment with X, and the healthier
the population treated with X. However, there are possible countermeasures to apply in
situations where this assumption is less likely to be valid. More elaboration is provided in
the Section ‘Validity of the underlying assumptions’.

While a mathematical proof is provided below, py,’s validity as an upper limit for
rxy under these assumptions can be heuristically explained by considering the limit-
ing case where each exposure is followed by precisely one adverse episode, so that
N2 = NE. Each adverse episode can then be considered an ‘observation’ of an expo-
sure to X, and if those adverse episodes that contain Y are more likely to be reported
than adverse episodes containing any adverse events, a greater proportion of ‘obser-
vations’ of XY end up in the database than ‘observations’ of X in general. If instead
Nf > Nf, it could happen that p,y fell below ry, even if f;, > f;; for example, ¥ may
occur only once per exposure in those exposures where it does occur, whereas there could
be multiple adverse episodes per exposure in general, each with a possibility of being
reported.

Secondly we claim that Nf;,/Nf is a lower limit for the risk ryy if the total number of
reports on X with Y is fewer than or equal to the number of exposures to X that are
followed by Y. This proviso, which will be referred to as exposure-level under-reporting of
XY, is fulfilled for the example in Figure 1: ny =400 < 4,900 = ny. Here, the proposed
lower limit is Nf;,/Nf = 400/1, 000,000 = 0.04%, which is below ry, = 0.49%. The lower
limit requires knowledge about N which is external to the database of individual case
reports. Clearly, if N¥ is unknown, one can always report zero as the natural lower limit
for ryy.

The assumption of exposure-level under-reporting should generally be valid. It basi-
cally serves to assure that the under-reporting of Y following X at the level of adverse
episodes still holds at the level of exposures. This assumption would only ever be vio-
lated if Y recurred — and was reported — several times for individual exposures to X.
However, it seems unlikely in practice that a recurring adverse event would be reported
more than once in relation to the same exposure. Again, more details can be found in the
Section ‘Validity of the underlying assumptions’.

Proofs
For the upper limit, first note that the assumptions (i) and (ii) can be combined into
N4/NE < 1 < f,)/fi. This, in turn, is a special case of the more general condition
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N2/NE < f.,/f, which is sufficient to guarantee that py, provides an upper limit

for ryy:

E
NS _fy | NENE
NE~ f, ~ NANE ~ f

x
E A
ny < fxnyy

NE = fNG 4)
NE  NR

& <
Nx Nx

< Txy < Pxy

The implication on the top row holds because both N4 /N£ and Jxy/fx are positive, while
by necessity 0 < ny /N;fy < 1 due to the nature of the mapping from adverse episodes to
exposures explained in Figure 1. It is significant that this implication does not necessarily
hold from right to left, which explains why p.;, cannot easily be used as a lower limit for
rxy. The equivalence on the third row follows directly from Equation 3, and that on the
fourth row from Equations 1 and 2.

The validity of our claim regarding the lower limit for 7y, can be trivially proven in the

following way:

NR  NE
) xy
NS,Sny@ﬁSF
X X

. 5

Ng ®
& — <r
NE =

Real-world examples

Pandemrix and narcolepsy

The A/HINI influenza pandemic in 2009 was met by variable immunisation strate-
gies. The two Nordic countries Sweden and Finland both launched mass-immunisation
programmes with the specific vaccine Pandemrix. Suspicions arose in those countries
regarding a causal relationship in children and adolescents between Pandemrix and the
rare sleep disorder narcolepsy, a relationship with increasing support and acceptance
[12-16].

The purpose of this example is to illustrate our framework. It was chosen on the basis
that the exposure N has been publicly reported in both Finland and Sweden, and that the
immunisation coverage was substantive enough to enable epidemiological quantification
of the risk 7y, in these countries. Because of this quantification there is no apparent added
value with our framework, which is most useful in situations where there is no other
quantitative information available regarding the risk of interest. This was the case for

Pandemrix and narcolepsy in August 2010.

At-risk patient population

In this post-hoc setting, we will consider only those individual case reports that concern
patients from the specific at-risk age groups that have been investigated epidemiologically
in Finland in Sweden. This is to enable comparison between our derived risk limits and the
reference values from the epidemiological studies, and need not reflect recommendable
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use of our approach in other settings. In Finland, the investigated cohort ranged from 4
to 19 years of age [12], while Swedish authorities noted an increased risk in patients aged
20 years or below [14].

Exposure
In Finland, the number of Pandemrix vaccinees in the concerned age group has been
reported to be precisely 688,566 [12]. The Swedish study was based on about 61% of the
population, and in the age group 0-19 years the vaccination coverage was 69.5% [14].
Assuming that 69.5% of all Swedish 0- to 20-year-olds were vaccinated, and using demo-
graphic statistics from Statistics Sweden for the year 2009, N for Sweden is estimated at
1.6 million.

In this case we have considered each vaccinee to have been exposed to a single treat-
ment episode of Pandemrix regardless whether (s)he was given a single dose or two doses
separated by a few weeks.

Time frame

Both the Swedish and the Finnish Pandemrix immunisations were started in October
2009, with the former ending in March 2010 and the latter in August 2010 [12,14]. The
initial suspicion of a potentially vaccine-induced life-long disability in previously healthy
children and adolescents naturally triggered a lot of media attention. Because such atten-
tion can cause a dramatic increase of awareness and therefore reporting, we chose here
to consider only reports submitted between 1% October 2009 and 15™ August 2010, with
narcolepsy coded. This end date was used also in the Finnish epidemiological study [12].

Risk limits and reference values

The number of individual case reports on Pandemrix in total - NX — and with narcolepsy
in specific — ny — were obtained directly from the Finnish and Swedish authorities?. All
data used to compute the risk limits and the reference values are given in Table 2. The
results are displayed in Figure 2.

In this example the upper and lower limits form intervals that contain the reference
values obtained from the epidemiological studies, as intended. The intervals are wide for
both countries, with the lower endpoints residing much more closely to the reference
values than the upper endpoints, when viewed on an absolute scale. On a logarithmic
scale, however, the reference values are located approximately on the intervals’ midpoints.
This implies that the relative differences between the upper limits and the reference values
are of the same magnitude as the relative differences between the reference values and the
lower limits.

Table 2 Data used to compute limits and reference values for the narcolepsy risk following
Pandemrix vaccination

Country Age group N,’fy* NR NE Reference risk
Finland 4-19 years 1 177 688,566 46 cases in 688,566 vaccinees
Sweden 0-20 years 6f 834 1.6 million* 126 cases in 1.0 million¥ vaccinees

“Reports with MedDRA preferred term ‘Narcolepsy’.

This excludes two cases reported before 15t August 2010 but initially misdiagnosed.

This is an estimate based on 69.5% vaccination coverage [14].

The reference risk values for Finland and Sweden were computed from the studies by Nohynek et al. [12] and Persson et al.
[14], respectively.
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Figure 2 Computed limits and reference values for the narcolepsy risk following Pandemrix
vaccination. The horizontal orange lines indicate the intervals computed as [ny//\lf; Py, and the black
vertical lines indicate the reference values. Panel (@) shows the values untransformed, whereas panel (b) uses
a logarithmic scale. All underlying data is presented in Table 2.

It should be noted that the higher Swedish reference value does not in itself imply a
higher Pandemrix-attributable narcolepsy risk in Sweden compared to Finland. Because
risk is defined as per-exposure incidence, one possible explanation to the higher value for
Sweden is the substantially longer follow-up period used in the Swedish study compared
to the Finnish.

Antihypertensive drugs and coeliac disease

In 2011, the US Food and Drug Administration identified unexpectedly many reports
for the angiotensin receptor blocker olmesartan together with the adverse event coeliac
disease [17]. This discovery was followed by an investigation of the incidence of coeliac
disease following use of olmesartan and several other antihypertensive drugs, as a so
called modular program within the Mini-Sentinel project [18]. In Mini-Sentinel, data
from several different collaborators are pooled together, which enables coverage of a
fair proportion of the US population. In mid 2012 there were about 50 million patients
enrolled with data on both drug usage and medical events [19]. Although this is not com-
plete or near-complete population coverage as in the Pandemrix studies from the Nordic
countries, it should be sufficient to provide reliable reference risk estimates for common
drugs.

This particular example was chosen as the most recently completed modular program
with an objectively identifiable adverse event: ‘Coeliac disease’ is a verbatim term both
in the International Classification of Diseases used in Mini-Sentinel, and in the Medical
Dictionary for Regulatory Activities (MedDRA) used for coding of individual case reports.
As with Pandemrix and narcolepsy, the purpose of this example is to illustrate our frame-
work. In particular, we do not intend to make any claims regarding causality. A potential
benefit with this example is the minimal amount of public attention, especially for drugs
other than olmesartan itself, which leaves little concern for potential reporting biases.

Included drugs

To obtain accurate reference risk estimates, only drugs with at least 100,000 incident users
in the Mini-Sentinel study were included: amlodipine, atenolol, hydrochlorothiazide,
losartan, olmesartan, and valsartan [18].
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Reference risk values

The Mini-Sentinel report provides information on the number of incident users and
incident events between 1% January 2007 and 31% December 2011 [18]. To match the
definition of risk used here, it must be assumed that each user is exposed to a single treat-
ment episode, and that each event belongs to a unique patient and therefore a unique
exposure. These are reasonable assumptions given that antihypertensive drugs are used
on a continuous basis, and that the event is rare.

Exposure

For each included drug, the total number of exposures in USA between 15t January 2007
and 31% December 2011, NZ, was estimated based on the reported number of patients in
the Mini-Sentinel cohort that were eligible for an incident treatment episode. The actual
number of users in the cohort was scaled up to the entire population via the relation
between the number of eligible patients and the total US population as of 30™ June 2009,
according to the US Census Bureau.

Risk limits

The report counts required to compute the upper and lower risk limits for the
six included drugs, NX and Nf;,, were taken from the subset of VigiBase com-
prised by US reports with onset dates between 1% January 2007 and 31%* December
2011. All data used to compute the risk limits and the reference values are
given in Table 3, and the results are shown in Figure 3. The US subset of
VigiBase is not identical to the national US database, and slight deviations in the
results would be expected had the analysis been performed directly in the national
database.

The reference risk estimates for all six drugs, including their 99% confidence inter-
vals, are contained between their corresponding upper and lower risk limits. Com-
pared to the previous example, the reference values generally reside further towards
the upper limits here. This is sensible considering that the Pandemrix example fea-
tures a much shorter duration of treatment and a generally healthier population.
(Cf. Section ‘Risk limits and their assumptions’ above). Olmesartan deviates from the
other drugs by having considerably higher risk limits. This is unsurprising since the
original concern was raised for this drug in particular, based on US individual case
reports.

Table 3 Data used to compute limits and reference values for the risk of coeliac disease
following antihypertensive treatment

Drug NS NR NET Reference risk
Amlodipine 26 23,272 8.1 million 361 events in 991,184 users
Atenolol 12 18,166 3.7 million 181 events in 452,985 users
Hydrochlorothiazide 20 17,786 7.4 million 294 events in 913,563 users
Losartan 9 7232 3.5 million 174 events in 440,583 users
Olmesartan 31 57243 1.2 million 40 eventsin 151,461 users
Valsartan 12 11,603 2.3 million 118 events in 290,305 users

“Reports with MedDRA preferred term ‘Coeliac disease’.

This estimate is the actual number of users in the Mini-Sentinel cohort scaled up according to the number of eligible
patients and the total number of US citizens.

The reference values were obtained from a Mini-Sentinel report [18], and the limits were computed based on US reports in
VigiBase. All risks refer to the US population between 1 January 2007 and 31%* December 2011.
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Figure 3 Computed limits and reference values for the risk of coeliac disease following use of
antihypertensive treatment. The horizontal orange lines indicate the intervals computed as [/\Ify/Nf; L),
and the black vertical lines indicate the reference point estimates with their corresponding 99% confidence
intervals. Panel (a) shows the values untransformed, whereas panel (b) uses a logarithmic scale. All risks refer
to the US population between 1°% January 2007 and 315t December 2011. All underlying data is presented in
Table 3.

Practical issues and possible developments
In this section we present and discuss some significant challenges and possible develop-
ments related to the practical application of our proposed framework.

Validity of the underlying assumptions
A fundamental question in practice is whether the assumptions that predicate the calcu-
lation of the upper and lower limits are in fact valid. The following discussion summarises

our collected view.

General validity of the model

Our model presupposes that each adverse episode is reported at most once, and that each
report describes an actual adverse episode from the real world. The former assumption
would be violated if reports were duplicated, and the latter if adverse episodes were mis-
represented when transferred to individual case reports. Because both phenomena do
occur in practice it is clear that these assumptions are unrealistic; the real question is
whether the nature and extent of their violations are manageable.

Theoretically, report duplication could invalidate our derived risk limits in two ways. It
could artifically elevate NX to such an extent that the upper limit drops below Txy despite
Equation 4 being fulfilled. This is unlikely since it would have to affect differentially
those reports on X that do not include Y, and because the nominal level of duplication
is low, typically below 5% [20]. Duplication could also artifically elevate Ng, to a degree
where the lower limit exceeds r,, despite Equation 5 being fulfilled. This too is unlikely
given that the rate of duplication is likely to be far outweighed by the typical level of
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under-reporting, which is above 50% [21]. In addition, there are effective methods to iden-
tify suspected duplicates [20], which further minimises the practical significance of this
issue.

When an adverse episode is misrepresented on a report, this report effectively has no
corresponding adverse episode in the real world. Misrepresentations relevant for this
framework are primarily miscoding of drugs, e.g. to mistake azathioprine for azacitidine,
or misdiagnosis of adverse events, e.g. to report Stevens-Johnson syndrome for a common
rash. Such errors create artificial reports and therefore pose the same kinds of threats as
report duplication, but they simultaneously prevent actual adverse episodes from being
properly reported, which has other consequences (see Section ‘Relative over-reporting
of Y for X’ below). As with duplication, it is difficult to see how miscoding or misdiag-
nosis could happen on a significant enough scale to practically threaten the upper limit.
However, for the lower limit these issues could be practically relevant, as indicated by the
examples above: a single false report on a rare event like Stevens-Johnson syndrome when
in reality there are no affected patients on the drug in question would invalidate the lower
limit. Therefore, if the analysis is crucial and hinges on a small number of reports, it may
be adviseable to validate the content of the reports with the original rapporteurs, if pos-
sible. This is particularly important if the event is difficult to diagnose, or if the drug is
commonly confused with other drugs.

Exposure-level under-reporting of XY
In the Section ‘Risk limits and their assumptions’ we introduced the assumption of
exposure-level under-reporting of XY to guarantee that Ni} /NE provides a lower limit for
rxy. This formally means that ny/ny < 1, so that the exposures to X that are followed
by Y generate, on average, at most one report on X with Y.

If Y is rare or irreversible, then ny is very close to ny, and the assumption essentially

becomes N /ny = fxy < 1, which is true by definition in our model. However, even if

5
Y is common and can recur several times after a single exposure to X, it should be very
rarely reported more than once for an individual exposure. Therefore, given that under-
reporting generally at the adverse episode level is at least 50%, it is difficult to see how the
assumption of exposure-level under-reporting could be violated in practice.

On the contrary, if there is reason to assume that ny/N;fy ~ 1 and one can determine

a value ;y such that f;,, < éy surely holds, then one can compute an improved lower limit

NR /f!

yIrxy

for ryy as NE
X

Relative over-reporting of Y for X

Two conditions were introduced that together imply the validity of o,y as an upper limit
for ryy. One of these is relative over-reporting of Y for X, which states that f,,, the report-
ing coverage for adverse episodes following X and containing Y, should exceed f;, the
reporting coverage for all adverse episodes following X.

The factors that influence reporting coverage are well studied [21,22]. Many of those
factors relate to general attitudes among health care professionals and therefore have no
impact on the relative values of f,;, and f,. Similarly, factors that are related to the prop-
erties of X in general should not be of any concern, since they should affect f;, and f,
similarly. Rather our focus lies on factors that relate to the adverse event Y, possibly in
relation to X.
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If Y is such that its outcome is always or often serious, it is more likely to be
reported [21]. In fact, it is a common misconception that only serious or severe reac-
tions should be reported [22]. Therefore the assumption of relative over-reporting
should hold generally for adverse effects that are serious in nature. This is fortunate,
since serious and unusual effects are those of most importance after a medicine is
marketed.

Common reasons for not reporting include diffidence and insecurity, i.e. fears of
appearing foolish for proposing a controversial claim or not being able to provide suf-
ficient evidence [22]. Therefore relative over-reporting should be more likely if the link
between X and Y is commonly recognised or at least suspected.

Anomalous massive reporting on X with other events than Y, so called masking, could
pose a threat to the assumption of relative over-reporting of Y, by increasing NX and
therefore f;. Possible reasons include media attention or clustered reporting related to e.g.
law suits. It is therefore adviseable to produce a general overview of the reporting on X to
enable identification of apparent oddities.

Finally, if Y is difficult to diagnose or inconsistently coded, f,y could be differentially
lowered in relation to f, even if adverse episodes with Y are in fact more commonly
reported than adverse episodes in general, after exposure to X. For example, neuroleptic
malignant syndrome can be diagnosed and reported as such, but it is possible to instead
report a subset of its constituent symptoms, either due to failure to recognise the syn-
drome, or failure to use the syndromic term. If one then computes p, based only on the
precise adverse event term ‘neuroleptic malignant syndrome’, lots of reports that actually
describe adverse episodes with this syndrome will be excluded from the numerator. This
effect can be mitigated by carefully defining Y within the adverse event terminology used
in the database at hand.

Low adverse episode density

The other assumption behind the upper limit states that N4 /NZ < 1, which means that
the average number of adverse episodes per exposure — the so called adverse episode
density — should be one or less. In practice, only those adverse events actually reported
with X in the particular database at hand need to be considered when assessing the
validity of this assumption, since none of the quantities involved in the calculation of
the upper and lower limits are affected by exclusion of adverse events never reported
with X.

Mainly two factors should influence the low adverse episode density assumption. The
first is duration of treatment: the longer a drug is used, the more likely that some
adversity occurs, whether related to the drug or not. The second is the nature of the
underlying disease: the more serious the disease, the more likely that some disease-
related symptom occurs in suspect temporality to drug intake. Also, more serious
diseases such as cancer are often treated with drugs that have burdensome adverse
effect profiles, which strengthens this effect. This implies that short-term treatments of
healthy individuals, e.g. immunisations, are almost certain to withstand this assump-
tion, whereas long-term treatments of seriously ill patients, e.g. lengthy chemotherapy
regimens, are certain not to. More experience with this methodology is required to bet-
ter understand how the low adverse episode density assumption works in less clearcut

situations.
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If the low adverse episode density assumption is unlikely to hold, it can be made more
probable by exclusion of adverse events other than Y. Figure 1 provides a heuristic moti-
vation: such an exclusion does not alter ryy, it merely shrinks the yellow diamond (N2,
which in turn causes the dashed yellow rectangle (the subset of N followed by any
adverse episode) and the yellow ellipse (Nf) to shrink. The more extreme the exclu-
sion, the smaller N® becomes, and the larger Pxy becomes. However, this method may
affect other assumptions too. In particular, exclusion of common and non-serious events
is likely to negatively influence the relative over-reporting of Y. Again, therefore, more
practical experience is needed.

Another alternative is to consider only a specific time period ¢ following start of expo-
sure to X. As ¢ is decreased, so is the probability of experiencing an adverse episode, and
thereofore the density assumption is more and more likely to hold. This effect comes at
the cost of calculating an upper limit for rfcy rather than ryy, which may not be informative
or interesting enough for the specific issue at hand.

As demonstrated in Section ‘Proofs] the combination of relative over-reporting and low
adverse episode density is an unnecessarily strong requirement: what matters is really that
Jfry/fx exceeds NZ/NE, which may even be of practical relevance. However, the decom-
position into two separate assumptions is very helpful to understand when and how p,,
serves as an upper limit for ry.

Different types of risk

The total risk ryy considered thus far averages over all possible causes that may lead to
adverse event Y after exposure to drug X. Alternative risks are possible, since if a new
entity Y’ is defined as all occurrences of Y involving a specific cause, our model is still
valid. The challenge in practice is to identify those individual case reports that describe
occurrences of Y/, and it is generally necessary to retreat to conservative rules that treat
ny permissively for the upper limit and restrictively for the lower limit. Two examples
are provided to illustrate this.

Total risk excluding the background related to other drugs

One may be interested in those occurrences of Y that follow X and that are attributable
either to X itself or to the general background, including e.g. the underlying disease but
excluding other drugs. We label those events Y and their corresponding risk Try-

While accurate identification of all reports on X with Y is difficult, the following is a
tentative proposal: For the upper limit of 7y, exclude from ny those reports where X is
listed as concomitant and another drug is implicated as a cause; and for the lower limit,
include only reports where X is sole suspected. The latter rule is clearly conservative, but
so is the former: it selectively excludes reports where Y was caused by other drugs, and
hence retains almost all reports where Y is attributable to X or the general background;
at the same time, it is likely to erroneously retain quite a few reports where Y was caused
by other drugs. Information that could implicate other drugs include positive dechallenge
or rechallenge reactions, or an explicitly reported suspicion of a causal link.

Attributable risk

In other settings, one’s main interest may be solely those occurrences of Y that have X on
their causal pathway. Those events are denoted Y with their corresponding risk 7y, the
so called attributable risk. Clearly, 7, < 7y < rxy.
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Just as for 7y, no method can accurately identify all reports corresponding to Y events.
Experienced pharmacovigilance experts should be able to assess all N,ﬁ, reports at hand
and based on the reported information decide which reports to include for the upper and
lower limit, repsectively. However, to thoroughly outline such a process is well beyond the
scope of this paper [23]. A conservative automated approach might be to select for the
upper limit all reports that have some reported information suggestive of X as a cause,
e.g. a positive rechallenge reaction, a plausible time to onset, absence of co-suspected
drugs, a high degree of reported suspicion for a causal link, or — for some adverse effects — a
positive dechallenge reaction; whereas for the lower limit several of these features are

required simultaneously in order for a report to be selected.

Using a restricted time to event onset

Many adverse effects of interest occur within a relatively limited time from start of drug
exposure. This is typically true for those rare and idiopathic adverse effects that are dif-
ficult to study outside of spontaneous reporting systems, so called type B effects [24]. If
it is possible to assign a time ¢ from start of exposure to X to onset of Y that will capture
more or less all Y events attributable to X, this is generally adviseable to do. This is true
even if one considers total rather than attributable risk, since there is little value in cov-
ering time during which all events are likely due to the general background. Clearly this
general advise can be overruled if the investigated risk is part of a larger analysis with a
set follow-up time.

The main practical issue is that the time to onset may not be calculable from the
information provided on the reports. If this information is missing for a substantial pro-
portion of the Nf;, reports at hand this may threaten the assumption regarding relative
over-reporting, and therefore the validity of the upper limit. A pragmatic solution is to
conservatively include all reports with missing information on time to onset into ny for
the calculation of pyy, thereby not jeopardising its validity as an upper limit.

Probabilistic analysis
In some settings it may not suffice with merely an interval that contains ry,. One example
is probabilistic benefit-risk assessment [25,26].

There is nothing inherent to this framework that predicts where within the interval that
I'xy is more likely to fall, and also there is very limited past experience on which to base an
empirical guess. Therefore probabilistic analyses present a significant challenge, and we
can only reason generally around possible solutions.

The coarsest approach is to completely avoid any probabilistic use of the intervals, and
proceed to a best case/worst case analysis. In a benefit-risk assessment one would then
impute first all lower and then all upper limits computed for X, to be combined with
the other, probabilistic, data. This would then yield two different results, which, if differ-
ent, would preclude any conclusion from the assessment. Indeed, this is the only possible
method in benefit-risk assessment based on point values [27].

A more sophisticated approach is to carry out a sensitivity analysis over different types
of probability distributions. There may be some external information that makes either
end of the interval more likely; for example, based on the number of patients studied in
clinical trials, the adverse effect should have been highly probable to appear in those trials
if the true risk were on the upper half of the interval. If so, one can start from the uniform
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distribution and proceed towards distributions more and more skewed towards the lower
limit. Figure 4 provides a few reasonable examples.

Estimating drug exposure

Within this framework, the calculation of a lower limit for ry, involves an estimate of
NE, i.e. the number of exposures to X. This implies that some data source external to the
database of individual case reports is required.

One alternative is to use sales data for this purpose, which is an old idea in pharma-
covigilance [28]. However, depending on the variability in dose and duration for the drug
of interest, quite strong assumptions may be needed to convert aggregate sales quantities
into numbers of exposures as defined here.

Other alternatives are to use prescription registries or databases of electronic health
records [29,30]. Both these types of data sources follow individual patients over time,
which enables accurate estimation of exposure. Their main drawback in this context is
that they solely cover prescription drugs.
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Figure 4 Examples of probability distributions to use over risk intervals in probabilistic analyses. In
this example the lower limit is 0.03% and the upper limit 1%. The bounded Pareto distribution has a scale
parameter of 0.25 and the exponential distribution has a rate parameter of 5/(Upper limit-Lower limit) before
truncation. The uniform distribution corresponds to equal belief in all risks between the lower and upper
limits. In contrast, the triangular distribution with mode at the lower limit puts more density on lower risks,
but is still fairly likely to yield high values. Both the bounded Pareto and the truncated exponential clearly
favour lower risks. Their main difference is that the former corresponds to stronger belief in risks close to both
the lower and the upper limit. Note that to benefit the clarity of the display, the graph for the bounded
Pareto distribution has been truncated. In reality it extends much higher for risks close to the lower limit.
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Uncertainty related to small counts

The framework presented here differs from most epidemiological methods in that it is not
based on point estimation of some effect parameter of interest combined with hypothesis
tests or uncertainty intervals rooted in statistical theory. Rather, because we make obser-
vations not in the actual population of treated patients but in a connected population of
case reports, point estimation of risk is not feasible.

It may be intuitively difficult to accept intervals based on very low values of ny, asinthe
example with the Finnish data for the Pandemrix-narcolepsy association. As mentioned in
Section ‘General validity of the model’, with small counts one needs to be extra careful in
considering whether each report corresponds to an actual adverse episode. The assump-
tion of relative over-reporting, however, is not per se threatened by small counts. In
particular, if Y is very rare it can be expected to be reported with X only a small number
of times, even if there is a connection between X and Y.

Our intervals provide deterministic limits for the incidence ny/N,fj in the sense that
they follow logically from a set of assumptions. It should be noted that there is no sam-
pling involved with respect to ny and NT even though these are not necessarily known,
and consequently there is no sampling variability for the limits on the risk that applies to
the N exposures that have already occurred. While such uncertainty does apply to future
exposures, we view this as a generally negligible threat to the validity of our limits: N¥ is
typically large, and, as seen in Equation 4, the upper limit has an extra margin of error by
a factor ny /N;?y. The possible exception when this effect may need to be considered for

the risk in future exposures is when X is a very rarely used drug.

Limitations and future directions

A key next step is to complement the modest empirical validation of the suggested
approach provided in this article. Two isolated examples can serve mainly as an indication
that the theoretical reasoning is correct. On the other hand, the derived upper and lower
limits follow logically from a set of assumptions that have been thoroughly discussed. This
should allow any potential user to judge whether or not this approach is suitable for the
particular problem (s)he is facing.

The empirical validations that consequently should follow are indeed challenging. A
major difficulty lies in determining what the true risk is, which is a prerequisite for judging
whether the computed risk limits are satisfactory. This is challenging for several reasons:
one needs to identify a data source that covers the same population as one’s database
of individual case reports; one needs to reasonably transfer the exposure definition to
that setting; and one needs to define the adverse effect of interest within the medical
terminology used in that particular data source. The issue is further complicated by the
fact that no data source is likely to have perfect capture of medical events, and therefore
in a sense the ‘true’ risks are likely to be lower limits as well.

For the combination of prescription drugs and adverse events that require medi-
cal attention, the most useful data source seems to be databases of electronic health
records. Larger controlled trials are another alternative, especially if conducted in het-
erogeneous patient populations that reasonably resemble clinical reality. Naturally only
such adverse effects can be used for validation that are quantifiable in another data
source; these are, however, not of primary interest in practice. It may also be possi-
ble to consult the literature for a collection of true risks against which to compare.
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However, most epidemiological studies report measures of relative rather than absolute
risks.

We believe that a proper validation should not only compare the computed risk lim-
its with some reference value of true risk, but it should also investigate the underlying
assumptions directly. Adding those two aspects together should yield very useful infor-
mation on the circumstances under which this framework could be expected to work,
and on any general tendencies in the relationship between the computed risk limits and
the true risk.

Conclusions

This paper presents a conceptual model that links collections of individual case reports to
drug exposures and occurrences of adverse events in the real world. Based on this model,
necessary assumptions are derived that permit reporting ratios to be used as upper limits
for risks in the real world. It is also shown how and when report counts can be combined
with external estimates of drug exposure to construct lower risk limits, and the entire
framework is applied to data from two real examples with satisfactory results.

Our in-depth discussion of the underlying assumptions shows that the framework is
best suited for serious adverse effects, which will typically be those rare effects for which
quantification by other means is most difficult. While this discussion also shows that short
duration of treatment and a healthy patient population are other factors that favour the
validity of the approach, practical countermeasures are presented for other scenarios.

This work will offer a much needed alternative in any quantitative analysis that involves
drug risks. It will be particularly useful in structured benefit-risk assessments that include
rare adverse effects that cannot be otherwise quantified without retreating to entirely
subjective guesswork. Not only are such assessments right on the path along which phar-
macovigilance and medicines regulation in general are moving, but already today they are
part of regulatory post-marketing guidelines adopted globally.

Endnote

*Both Finland and Sweden belong to the 117 members of the WHO Programme for
International Drug Monitoring, and therefore forward their individual case reports to
VigiBase. However, to avoid the risk of misrepresenting their respective national data on
this sensitive issue, we chose to contact these centres directly and use their locally
recorded information.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

OC developed the model and derived the equations that follow from it, collected and analysed the data on the two
examples, and drafted the manuscript. GNN and IRE critically reviewed the draft manuscript. All authors read and
approved the final manuscript.

Acknowledgements

The authors are indebted to Leena Sommarberg at the Finnish Medicines Agency and Dr Birgitta Grundmark at the
Medical Products Agency in Sweden for sharing data on Pandemrix and consenting to its use in this article. Likewise, the
analysis of the example with antihypertensive drugs and coeliac disease was made possible through the kind
contribution of individual case reports to VigiBase by the US Food and Drug Administration. No one except the authors
are to be held accountable for the opinions and conclusions in this paper.

Author details

'Uppsala Monitoring Centre, Box 1051, SE-751 40, Uppsala, Sweden. 2Department of Computer and Systems Sciences,
Stockholm University, Forum 100, SE-164 40, Kista, Sweden. >Department of Mathematics, Stockholm University, SE-106
91, Stockholm, Sweden.



Caster et al. Theoretical Biology and Medical Modelling 2014, 11:15
http://www.tbiomed.com/content/11/1/15

Received: 22 November 2013 Accepted: 19 March 2014
Published: 24 March 2014

References

1.

2.

o

20.
21.
22.
23.
24.
25.
26.

27.

28.

29.

30.

Stricker BC, Psaty BM: Detection, verification, and quantification of adverse drug reactions. 8r Med J 2004,
329(7456):44-47.

Chou R, Helfand M: Challenges in systematic reviews that assess treatment harms. Ann Intern Med 2005,
142(12 11):1090-1099.

Coloma PM, Trifird G, Schuemie MJ, Gini R, Herings R, Hippisley-Cox J, Mazzaglia G, Picelli G, Corrao G, Pedersen L,
van der Lei J, Sturkenboom M: Electronic healthcare databases for active drug safety surveillance: Is there
enough leverage? Pharmacoepidemiol Drug Saf 2012, 21(6):611-621.

Caster O: Quantitative methods to support drug benefit-risk assessment. PhD thesis. Stockholm University,
Department of Computer and Systems Sciences; 2014.

CIOMS Working Group XIII: Practical Aspects of Signal Detection in Pharmacovigilance. Geneva, Switzerland: CIOMS; 2010.
De Boer A: When to publish measures of disproportionality derived from spontaneous reporting databases?
BrJ Clin Pharmacol 2011, 72(6):909-911.

International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for
Human Use (ICH): ICH harmonised tripartite guideline: Periodic Benefit-Risk Evaluation Report (PBRER). 2012.
[www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E2C/E2C_R2_Step4.pdf]

Guo JJ, Pandey S, Doyle J, Bian B, Lis Y, Raisch DW: A review of quantitative risk-benefit methodologies for
assessing drug safety and efficacy - Report of the ISPOR risk-benefit management working group. Value
Health 2010, 13(5):657-666.

Leong J, Mcauslane N, Walker S, Salek S: Is there a need for a universal benefit-risk assessment framework for
medicines? Regulatory and industry perspectives. Pharmacoepidemiol Drug Saf 2013, 22(9):1004-1012.

Rawlins MD: Spontaneous reporting of adverse drug reactions I: the data. 8rJ Clin Pharmacol 1988, 26(1):1-5.
Lindquist M: VigiBase, the WHO global ICSR database system: basic facts. Drug Inform J 2008, 42(5):409-419.
Nohynek H, Jokinen J, Partinen M, Vaarala O, Kirjavainen T, Sundman J, Himanen S-L, Hublin C, Julkunen |, Olsén P,
Saarenpaa-Heikkild O, Kilpi T: AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the
incidence of childhood narcolepsy in Finland. PLoS ONE 2012, 7(3):e33536.

Miller E, Andrews N, Stellitano L, Stowe J, Winstone AM, Shneerson J, Verity C: Risk of narcolepsy in children and
young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: Retrospective
analysis. BMJ (Online) 2013, 346(7897)794.

Persson |, Granath F, Askling J, Ludvigsson JF, Olsson T, Feltelius N: Risks of neurological and immune-related
diseases, including narcolepsy, after vaccination with pandemrix: A population- and registry-based cohort
study with over 2 years of follow-up. J Int Med 2014, 275(2):172-190.

De La Herran-Arita AK, Kornum BR, Mahlios J, Jiang W, Lin G, Hou T, Macaubas C, Einen M, Plazzi G, Crowe C, Newell
EW, Davis MM, Mellins ED, Mignot E: CD4+ T cell autoimmunity to hypocretin/orexin and cross-reactivity to a
2009 H1NT1 influenza A epitope in narcolepsy. Sci Trans Med 2013, 5:216ra176.

Morris K: Implications of narcolepsy link with swine-influenza vaccine. Lancet Infect Dis 2013, 13(5):396-397.
Toh S, Avorn J, D'Agostino RB, Gurwitz JH, Psaty BM, Rothman KJ, Saag KG, Sturkenboom MCJM, Vandenbroucke JP,
Winterstein AG, Strom BL: Re-using Mini-Sentinel data following rapid assessments of potential safety signals
via modular analytic programs. Pharmacoepidemiol Drug Saf 2013, 22(10):1036-1045.

Mini-Sentinel: Modular program report: Angiotensin Receptor Blockers (ARBs), hydrochlorothiazide,
atenolol, amlodipine use & celiac disease. 2013. [http://www.mini-sentinel.org/work_products/Assessments/
Mini-Sentinel_Modular-Program-Report_MSY3_MPR34_ARBs-HCTZ- Atenolol-Amlodipine-Celiac-Disease.pdf]
Mini-Sentinel: Distributed Database Summary Report - Year 3. 2014:http://www.mini-sentinel.org/
work_products/Data_Activities/Mini-Sentinel_Year-3-Distributed-Database-Summary-Report.pdf.

Norén GN, Orre R, Bate A, Edwards IR: Duplicate detection in adverse drug reaction surveillance. Data Min Know/
Discov 2007, 14(3):305-328.

Hazell L, Shakir SAW: Under-reporting of adverse drug reactions: a systematic review. Drug Saf 2006,
29(5):385-396.

Lopez-Gonzalez E, Herdeiro MT, Figueiras A: Determinants of under-reporting of adverse drug reactions: A
systematic review. Drug Saf 2009, 32(1):19-31.

Edwards IR: Considerations on causality in pharmacovigilance. int J Risk Saf Med 2012, 24(1):41-54.

Meyboom RH, Lindquist M, Egberts AC: An ABC of drug-related problems. Drug Saf 2000, 22(6):415-423.
Tervonen T, van Valkenhoef G, Buskens E, Hillege HL, Postmus D: A stochastic multicriteria model for
evidence-based decision making in drug benefit-risk analysis. Stat Med 2011, 30(12):1419-1428.

Caster O, Norén GN, Ekenberg L, Edwards IR: Quantitative benefit-risk assessment using only qualitative
information on utilities. Med Decis Mak 2012, 32(6):E1-E15.

Mussen F, Salek S, Walker S: A quantitative approach to benefit-risk assessment of medicines - part 1 The
development of a new model using multi-criteria decision analysis. Pharmacoepidemiol Drug Saf 2007,
16(SUPPL. 1):52-S15.

Bergman U, Boman G, Wiholm BE: Epidemiology of adverse drug reactions to phenformin and metformin.
BrMed J 1978, 2(6135):464-466.

Furu K, Wettermark B, Andersen M, Martikainen JE, Almarsdottir AB, Serensen HT: The Nordic countries as a cohort
for pharmacoepidemiological research. Basic Clin Pharmacol Toxicol 2010, 106(2):86-94.

Walley T, Mantgani A: The UK general practice research database. Lancet 1997, 350(9084):1097-1099.

doi:10.1186/1742-4682-11-15
Cite this article as: Caster et al: Computing limits on medicine risks based on collections of individual case reports.
Theoretical Biology and Medical Modelling 2014 11:15.

Page 19 0of 19


www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E2C/E2C_R2_Step4.pdf
http://www.mini-sentinel.org/work_products/Assessments/Mini-Sentinel_Modular-Program-Report_MSY3_MPR34_ARBs-HCTZ-Atenolol-Amlodipine-Celiac-Disease.pdf
http://www.mini-sentinel.org/work_products/Assessments/Mini-Sentinel_Modular-Program-Report_MSY3_MPR34_ARBs-HCTZ-Atenolol-Amlodipine-Celiac-Disease.pdf
http://www.mini-sentinel.org/work_products/Data_Activities/Mini-Sentinel_Year-3-Distributed-Database-Summary-Report.pdf
http://www.mini-sentinel.org/work_products/Data_Activities/Mini-Sentinel_Year-3-Distributed-Database-Summary-Report.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	A model for linking individual case reporting to the real world
	Individual case reports
	Exposure
	Adverse episodes
	Risk
	Model description

	Risk limits and their assumptions
	Proofs

	Real-world examples
	Pandemrix and narcolepsy
	At-risk patient population
	Exposure
	Time frame
	Risk limits and reference values

	Antihypertensive drugs and coeliac disease
	Included drugs
	Reference risk values
	Exposure
	Risk limits


	Practical issues and possible developments
	Validity of the underlying assumptions
	General validity of the model
	Exposure-level under-reporting of XY
	Relative over-reporting of Y for X
	Low adverse episode density

	Different types of risk
	Total risk excluding the background related to other drugs
	Attributable risk

	Using a restricted time to event onset
	Probabilistic analysis
	Estimating drug exposure
	Uncertainty related to small counts

	Limitations and future directions
	Conclusions
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

