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Abstract

Background: This study uses dimensional analysis to derive the general second-order
differential equation that underlies numerous physical and natural phenomena
described by common mathematical functions. It eschews assumptions about empirical
constants and mechanisms. It relies only on the data plot’s mathematical properties to
provide the conditions and constraints needed to specify a second-order differential
equation that is free of empirical constants for each phenomenon.

Results: A practical example of each function is analyzed using the general form of the
underlying differential equation and the observable unique mathematical properties of
each data plot, including boundary conditions. This yields a differential equation that
describes the relationship among the physical variables governing the phenomenon’s
behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic
Growth Function, and Hill Ligand binding, which are characterized by data plots of
distinctly different sigmoidal character, are readily analyzed by this approach.

Conclusions: It provides an alternative, simple, unifying basis for analyzing each of these
varied phenomena from a common perspective that ties them together and offers new
insights into the appropriate empirical constants for describing each phenomenon.
Background
What is the nature of the mathematical commonality that underlies each of the following

empirically established equations that describe, collectively, numerous and diverse phe-

nomena: a⋅ebt ; a⋅t = bþ tð Þ; a⋅tb:; aþ b⋅t2; aþ b⋅ lnt; a⋅eb⋅t
2=2 and others, such as

the Hill equation for multi-site ligand binding? Each of these functions contains two non-

zero empirical constants with physical units, excepting (a · tb) with one empirical constant

and one numerical coefficient as exponent. A second-order differential equation (D.E.) free

of these parameters can describe each, using only the variables [t, y, dy / dt, d2y / dt2].

It is essential that any D.E. describing a natural phenomenon reconcile the units of

the terms on both sides of the D.E. The restriction places stringent requirements on

the form of the D.E. This is particularly so when the D.E. is also required to be free of
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empirical constants. Thus, it focuses on the functional relationship of the variables that

govern the phenomenon’s behavior, free of empirical constants.

The analysis uses the general underlying D.E., based on a dimensional analysis of the

physical variables, together with the directly observable mathematical properties of the

experimental data plot unique to the phenomenon. This yields a specific second-order

D.E. that underlies the mathematical function describing each phenomenon’s data

plot.

The approach is new, unifying, and simple (Occam’s razor). Its restrictive features reflect

the essential requirements of dimensional analysis. Integrating yields the true empirical

constants for the mathematical function as defined by the boundary conditions that

uniquely describe the data plot. Practical examples of natural phenomena are analyzed to

derive a specific D.E. and the unique solution function that describes the phenomenon’s

behavior for the given boundary conditions.

This analysis technique departs significantly from others that may start with assumptions

about the phenomenon’s mechanism, its variables, and empirical constants. Typically, these

lead to either an algebraic function with its two empirical constants already assumed or a

first-order D.E. with its one assumed empirical constant. Suppose there was a phenomenon

of interest but no obvious mechanism on which to base a derivation of the function describ-

ing the data plot. How then would it be analyzed mathematically? This can be done in a sys-

tematic way using only the general D.E. and the data plot’s mathematical properties. Thus, a

mechanism is not an a priori condition for undertaking the analysis or for describing math-

ematically the data plot generated by Nature. It is irrelevant to this mathematical analysis.

In studying a mechanism per se, a necessary requirement is that it be able to derive the

mathematical function describing the data plot, which has previously been derived in some

independent manner. This still does not establish definitively the proposed mechanism as

the correct one, nor the correctness of its assumed empirical constants. The empirical con-

stants that emerge in such an approach may not be the same as those that emerge from in-

tegrating the second-order D.E. with its specified boundary conditions. This is

demonstrated in some of the examples presented here.

Each approach provides different information about the phenomenon. The D.E. ap-

proach is only concerned with the fact of the data plot and its role in specifying a D.E.

that leads to the algebraic function, with its empirical constants, that describes the

data plot. The other approach assumes a mechanism and tests it against the already ac-

cepted algebraic function for the data plot. They are not incompatible. It is not an a

priori requirement that the only interesting analysis of a phenomenon’s data plot must

start with a proposed mechanism. The D.E. approach presents new challenges to think

about mechanism in a different way in order to derive the D.E. This paper does not

also attempt to do this for every example presented.

Mathematical method
The analysis requires the following:

– the experimental data plot for a given natural phenomenon.

– the assumption that a function with two non-zero parameters, such as empirical

constants having physical units or numerical exponents, describes a particular phe-

nomenon’s data plot.
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Seek a general second-order D.E. based on physically reasonable assumptions about the

properties of the four variables [t, y, dy / dt, d2y / dt2] and the rational restrictions they

place on this D.E. Apply the principles of dimensional analysis, which mandate that the

units on each side (LHS, RHS) of the D.E. be identical. This restriction sorts out the units

requirement for each possible term involving some combination of the physical variables

that could fit into the D.E., on the RHS — the LHS is always the second derivative of

the independent variable. Establishing the relationship of d2y / dt2 to the other vari-

ables [t, y, dy / dt] yields the second-order D.E. that regulates acceleration. This regu-

latory process resides in the specific interplay of the terms containing these variables.

Seek to derive the form taken by the function of the variables as linear combinations of

terms containing those variables, which meet the assumptions to produce the general

D.E. Then choose examples of well-known natural phenomena. Use the general D.E. and

the mathematical properties of the phenomenon’s experimental data plot to derive a D.E.

that integrates to give the function describing the data plot. Evaluate the empirical con-

stants arising from the integrations using the boundary conditions on the data plot.

Results
Deriving general D.E.

Assume the second derivative, d2y / dt2 (the acceleration), depends on the variables (t, y)

and the velocity (dy / dt). Assume the D.E. has the restricted general form

d2y
dt2

¼ f t; y;
dy
dt

� �� �
ðIaÞ

where f [] meets the following conditions:

1. excludes empirical constants.

2. excludes non-algebraic terms.

3. excludes d2y / dt2 identically zero.

Assume f [] is a linear combination of variables taking the form, tp · yq · (dy / dt)r.

Consider the integer values (+2, +1, 0, -1, -2) for the powers (p, q, r) on these variables.

This gives three variables, tp · yq · (dy / dt)r, call these n = 3. Each can exist in five differ-

ent states (+2, +1, 0, -1, -2), call these m = 5. Thus, when taken three at a time, there

are mn = 53 = 125 possible combinations, called terms.

These natural phenomena must have variables with measurable units. Apply dimen-

sional analysis to both sides of the D.E. Thus, the LHS units are (Y / T2), which means

that f [t, y, dy / dt] must have units of (Y / T2). This requirement reduces the 125 possi-

bilities to just three: (1 / t) · (dy / dt), (1/ y) · (dy / dt)2, and y / t2 that meet the units re-

quirement for the RHS. Non-algebraic terms such as (sin t) or (ln y) are excluded from

this general second-order D.E. because of the units requirements (no non-zero empir-

ical constants with physical units, such as in sin ßt or ln kt). The general expression for

the terms that satisfy the units requirement is

mr⋅
dy
dt

� �r

⋅
t r−2ð Þ

y r−1ð Þ ¼ m0⋅
dy
dt

� �0

⋅
y
t2
þm1⋅

dy
dt

� �1

⋅
1
t
þm2⋅

dy
dt

� �2

⋅
1
y

ðIbÞ

where mr ≥ 0 is the integer numerical coefficient for the rth term.
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Experience and physical intuition support the assumption that y / t2, either alone or

in combination with other terms does not lead to a function describing common nat-

ural phenomena. When integrated, none of these 16 combinations gives a D.E. with

recognizable solution applicable to any common natural phenomenon that is described

by two parameters. So, it is excluded. Therefore, m0 = 0 here. As the results will show,

none of the common phenomena analyzed here require the y / t2 term.

Thus, this analysis focuses initially on m1 and m2 equal to 0 or 1. The other two

terms can be combined to give linear combinations. This yields eight distinct cases for

the RHS, where each case can integrate to a variety of different functions, depending

on the values of mr and the boundary conditions.

Thus, for m1 = 1 =m2.

a. (dy / dt) · [(1 /t) + (1 /y) · (dy / dt)] = [(1 /t) · (dy / dt)1] + [(1 /y) · (dy / dt)2]

b. (dy / dt) · [(−1 /t) – (1 /y) · (dy / dt)]

c. (dy / dt) · [(1 /t) – (1 /y) · (dy / dt)]

d. (dy / dt) · [(−1 /t) + (1 /y) · (dy / dt)]

For m1 = 1, and m2 = 0.

e. (dy / dt) · [(1 /t)]

f. (dy / dt) · [(−1 /t)]

For m1 = 0, and m2 = 1.

g. (dy / dt) · [(1 /y) · (dy / dt)]

h. (dy / dt) · [(−1 /y) · (dy / dt)]

Allowing other values for mr greatly increases the number of possible linear com-

binations. Some examples will be presented. In theory, mr could take a fractional

value.

Consider one example of a linear combination for the second-order D.E., case a.

d2y
dt2

¼ dy
dt

⋅
1
t
þ 1

y

� �
⋅

dy
dt

� �� �
ðIcÞ

which can be rearranged to

d2y
dt2

� �
⋅dt ¼ d

dy
dt

� �
¼ dy

y

� �
⋅

y
t

� �
þ dy

dt

� �� �
ðIdÞ

This reveals the key relationship between the slope, (dy / dt), and the coordinates
slope, (y / t). The relationship is evaluated directly from the data plot. It is characteris-

tic for each phenomenon and modulates the behavior of the fractional change in the

dependent variable, (dy / y). It governs the LHS, the acceleration/deceleration.

The task is to establish the specific linear combination that underlies the data plot

of a particular natural phenomenon with its boundary conditions. For the same values

of mr, any of these D.E.s can describe more than one phenomenon’s data plot when
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there are different boundary conditions present. Then each function is a unique solu-

tion of the D.E. plus boundary conditions.

Each data plot exhibits mathematical properties and boundary conditions that, taken

together with these established cases for f [], leads to an f [] that mathematically de-

scribes the specific data plot. These properties include:

1. The sign of d2y / dt2 is obtained directly from the tangent to the experimental data

plot of y versus t for each phenomenon. The sign of dy / dt is also obtainable from

direct observation of the plot.

2. The behavior and boundedness of d2y / dt2 when t goes to zero or to infinity.

3. The behavior and boundedness of dy / dt when t goes to zero or to infinity.

4. The relative magnitudes of the slope, dy / dt, and coordinates slope, y / t.

The terms inside the [] of equation (Ic) can be compared to determine if: (y / t) <

(dy / dt) or > (dy / dt). Given (y / t), the coordinates slope for a line drawn from the

origin to a point on the data plot, and (dy / dt), the slope at that point, it is possible

to establish whether (dy / y) is > or < (dt / t). For example, if (dy / dt) < (y / t), then

(dy / y) < (dt / t).

This is applied in another useful form of the D.E., which is directly integrable, the

fractional change form, shown below.

d2y
dt2 ⋅dt

dy
dt

 !
¼ dt

t
þ dy

y
ðIeÞ

Specific useful tests to rule out the incorrect combinations include:
1. At a limit, such as when t goes to zero, is dy / dt or d2y / dt2 bounded or not? Does

the RHS of the D.E. give a bounded or unbounded value?

2. Eliminate each case where the sign of the RHS, (dy / dt) · f [], is not the same as the

LHS, d2y / dt2.

3. Compare the slope (dy / dt) to the coordinates slope (y / t) at a point on the plot,

to determine the relative magnitudes of (dt / t) and (dy / y) — see equation (Id) —

or (y / t) and (dy / dt) — see equation (Ic).

4. Each example provides a D.E. that has a unique solution that describes the

particular natural phenomenon’s data plot and its boundary conditions.

5. As examples accrue, so the number of possible cases (a. through h.) that might

apply to the next example must diminish, under the assumption that no two of

these eight cases give the same function for the same boundary conditions.

6. All the examples are real phenomena with physical variables. It is assumed that as t

goes to zero, the d2y / dt2 does not go to infinity, therefore bounded.

Physically, equation (Ic) defines the way acceleration (deceleration) depends on vel-

ocity—modified by a linear combination of [1 / t] and [(1 / y) · (dy / dt)]. Only these

two modifying factors need to be taken into account. This places restrictions on what

needs to be considered for any proposed physical relationship or mechanism.
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Examples

Radioactive decay

Let N / N0 be the fraction of radioactive atoms remaining at time t. The N versus t plot

(Figure 1) has its tangent below the curve, so the LHS of the D.E. must be positive and

therefore the RHS also.

The slope, dN / dt, is negative and decreasing in magnitude as t increases. As N has

a definite value at the origin, N0, it is not zero. It is expected that (d2N / dt2) and dN /

dt stay bounded as t goes to zero (as does 1 / N), whereas the term (1 / t) goes to infin-

ity. The coordinates slope, N / t, is greater than the slope, dN / dt.

Cases a., c., e. and h. give a negative RHS, incorrect. Cases b., d. and f. give a RHS

that goes to infinity as t goes to zero, whereas the LHS is bounded. Thus, case g., which

is bounded on the RHS, gives

d2N
dt2

¼ dN
dt

⋅
1
N

� �
⋅

dN
dt

� �� �
ð1aÞ

Therefore, after rearranging, the second-order D.E., free of empirical constants, is
d2N
dt2 ⋅dt

dN
dt

¼ dN
N

ð1bÞ

so
ln
dN
dt

����
���� ¼ lnN þ C ð1cÞ

and

dN
dt

¼ �eC⋅N ¼ C1⋅N ð1dÞ

giving
Figure 1 Radioactive decay. The red dashed line gives the coordinates slope (N / t). The black dashed line
gives the slope at this point (dN / dt).
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N ¼ C2⋅eC1⋅t ð1eÞ
The empirical constants, C1 and C2, evaluated for this case, are C2 = N0 and C1 = - k,
which is the decay constant for the radioactive atom. The natures of C1 and C2 are par-

ticular to each phenomenon. For the phenomenon of unrestrained exponential popula-

tion growth, C1 = + k, the growth rate, and C2 is the starting population.

The LHS of equation (1a), deceleration, is the differential change in dN / dt. The RHS is

the velocity of decay modulated by [(1 / N) · (dN / dt)]. The assumption of the inherent

random nature of radioactive decay means the fractional change in N, (dN / dN), per in-

crement, dt, at a given t is the same. Thus, [(dN / N) / dt]t is a constant.

Probability distribution

Numerous phenomena involving random processes generate a classic bell-shaped

curve, the standard normal distribution (SND), Figure 2.

Let P be the probability density of a random event of magnitude n. As n increases from

the origin to the inflection point, the tangent to the curve remains above the line, so d2P /

dn2 and dP / dn are negative and also increasing in magnitude. However, from the inflec-

tion point to infinity, the tangent is below the curve so d2P / dn2 is positive and decreasing

in magnitude, while dP / dn is negative and decreasing in magnitude. From zero to the in-

flection point, (dP / dn) · (1 / P) gives the correct sign (negative) for the RHS, but not from

the inflection point to infinity where the LHS is now positive. Conversely, from the origin

to the inflection point, (dP / dn) · [(1 / P) · (dP / dn)] is positive, which gives the wrong sign.

From the inflection point to infinity it gives the correct sign (positive)—because the tangent

is below the curve and so LHS is positive, see Figure 2.

Consider the RHS of each of the following linear combinations.

c. (dP / dn) · [(1/ n) – (dP / dn) · (1 /P)], fails because it is always negative and so

cannot accommodate the change in sign of d2P / dn2 as it passes through the

inflection point.

d. [(dP / dn) · [(− 1/ n) + (dP / dn) · (1 /P)], fails because it is always positive.
Figure 2 Probability distribution. The red dashed line gives the coordinates slope (P1 / n1). The black
dashed line gives the slope at this point (dP / dn)1.
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b. (dP / dn) · [− (1/ n) – (dP / dn) · (1 /P)] = (dP / dn) · P · [− (P / n) – (dP / dn)].

As n approaches zero, (P / n)0 > magnitude of (dP / dn)0 because (dP / dn)0
approaches zero, while (P0 / n)0 goes to infinity. Therefore, (dP / dn) · (- P / n) is

positive and the larger term. Thus, case b. fails because the RHS has to be negative

here (tangent above the curve).

a. (dP / dn) · [(1/ n) + (dP / dn) · (1 /P)] = (dP / dn) · P · [(P / n) + (dP / dn)].

This gives a negative RHS as required, because (P / n) is greater than the magnitude

of (dP / dn).

Further, (P / n) continues to decrease as n increases to infinity, whereas the magnitude of

(dP / dn) increases until it reaches a maximum at the inflection point and then steadily de-

creases. The sign of d2P / dn2 changes from negative to positive at the inflection point, be-

cause the tangent is below the curve past the inflection point. After that the magnitude of

the negative dP / dn becomes greater than (P / n), so (dP / dn) · P · [+ (P / n) + (dP / dn)]

then goes positive once the tangent is below the curve. It follows that (P / n)infl = (dP / dn)

infl in order for this transition in sign to occur. Thus, case a. gives,

d2P
dn2

� �
⋅dn

dP
dn

	 
 ¼ dP
P

þ dn
n

ð2aÞ

and

dP
dn

¼ C1⋅ P⋅nð Þ ð2bÞ

giving
P ¼ C2⋅eC1⋅n2=2 ð2cÞ

For C1 = -1, with units of (1 / n2), and C2 = P0 = 1/√2π = 0.399, with units of probabil-
ity density, this becomes the probability density function for the (SND), with mean = 0,

and standard deviation = 1. The RHS of equation (2a) is thus the unique linear combin-

ation of the variables that yields the P versus n plot for the (SND).

One intuitive approach to deriving the SND, based on the fractional change concept,

looks at the relationship between n and the fractional change in the probability velocity,

where p = ∫ P · dn. Define Δf (dp / dn) = [(d2p / dn2) · dn] / (dp / dn).

It seems reasonable, initially and for simplicity, to assume that neither the velocity

nor deceleration of the probability depends on the dependent variable, p. Therefore, Δf

(dp / dn) depends only on the independent variable, n.

Using P = (dp / dn) and dP / dn = d2p / dn2 allows determination of the sign of Δf

(dp / dn) from the slope of the P versus n data plot in Figure 2 and the relation

d2p
dn2

dp
dn

¼ dP=dnð Þ
P

ð2dÞ

where (dP / dn) is always negative, so Δf (dp / dn) is negative.

The possibility that Δf (dp / dn) might depend on [- (1 / n)] can be excluded by con-

sidering the behavior of [(1 / P) · (dP / dn)] at small values of n. There, (1 / P) is at its

smallest and (dP / dn) is also small, so their product is even smaller. Whereas, (1 / n) is
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at its largest at small n. The behavior of [(1 / P) · (dP / dn)] mirrors the behavior of n,

as n increases.

Let Δf (dp / dn) depend directly on n, giving

Δf
dp
dn

� �
¼ α⋅nð Þ⋅dn ¼ −n⋅dn ð2eÞ

For the SND, α = -σ = -1, with units of (1 / n2), then

p ¼
Z

dp ¼
Z

C2⋅e‐n
2=2⋅dn ¼

Z
P⋅dn ð2fÞ

This yields

d2p
dn2

¼ dP
dn

¼ −n⋅P ð2gÞ

So, at any point on the P versus n plot, the probability’s deceleration equals the probabi-
lity density’s slope and that equals the area (- n · P), see Figure 2. A plot of (- n · P) versus n

reveals the behavior of the probability’s deceleration and the probability density’s velocity.

They steadily decrease to reach a minimum at n = 1, then increase passing through an in-

flection point at n = √3 and approach zero as n goes to infinity.

The fractional change in the probability density slope, Δf (dP / dn) = [(1 / n) – n] · dn.

Together with Δf (dp / dn) = - n · dn, these second-order D.E.s define the essential

mathematical constraints that govern the continuous SND.

Laminar flow in blood vessel

Consider the commonly used description of the velocity of laminar blood flow through

the uniform length of a cylindrical blood vessel, where Rc = cylinder radius [1]. The vel-

ocity, v, is a function of the distance from the center of the vessel, r. Experimental data

show (Figure 3) that v is a parabolic function of r, in this simple case, with maximum

velocity at the vessel’s center where r = 0.
Figure 3 Laminar flow in blood vessel. The red dashed line gives the coordinates slope (v / r). The black
dashed line gives the slope at this point (dv / dr).
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This analysis uses the standard assumptions to simplify the problem, as others have

done, and treat it as simple laminar flow in a cylindrical vessel. The value of v decreases

as r increases to r = Rc at the vessel wall, where v = 0, the non-slip condition, and dv /

dr =0 because of axial symmetry. The tangent is above the curve so d2v / dr2 is negative

as is dv / dr, and both are bounded as r goes to zero. Both are increasing in magnitude

as r increases to Rc. The velocity, v, is steadily decreasing in magnitude as r approaches

the vessel wall at radius Rc.

Cases b., d., f. and g. give a positive RHS, incorrect. Of the remaining cases, a., c.

and h. contain (1 / v) · (dv / dr)2. When v goes to zero, this goes to infinity so the

RHS ≠ LHS, which is bounded. The case e. does not go to infinity. Additionally, when r

goes to zero then (dv / dr) / r goes to (0 ·∞). Applying l’Hopital’s Rule gives (d2v / dr2)0 /

1 = LHS.

Therefore,

d2v
dr2

¼ dv
dr

⋅
1
r

� �
ð3aÞ

so
dv
dr

¼ C1⋅r ð3bÞ

and

v ¼ C1⋅
r2

2
þ C2 ð3cÞ

When r = 0, then v = vmax = C2. When v = 0, then r = Rc and so C1 = -2 · vmax / (Rc)
2.
This gives

v ¼ vmax

R2
c

⋅ R2
c−r

2
� � ð3dÞ

Standard formulations for the velocity of flow have assumed a constant containing

three factors: the pressure drop, ΔP; the fluid viscosity, μ; and the vessel length, L; re-

lated by K = ΔP / (4 · μ · L). Therefore, [vmax / (Rc)
2] =ΔP / 4 · μ L. The approach devel-

oped here to derive equation (3d) relied on the relationship between the variables,

independent of assumptions about empirical constants. It also showed that a complete

description of the data plot is obtainable from vmax and Rc, well-defined and directly

measurable quantities.

The D.E. also emerges from the assumption that the jolt (rate of change of dv / dr = d2v /

dr2) is directly dependent on the acceleration, dv / dr, and is independent of velocity, v. It

depends only on the geometry as defined by r. Therefore, the RHS must have units of v / r2

and so it must take the form (dv / dr) · (1 / r), revealing the inverse dependence on r as

expected.

Response to sound intensity

The subjective response of humans to sound intensity can be described mathematically

[1]. Let the intensity of sound equal I, and the perceived loudness equal L. The experi-

mental data plot (Figure 4) has the initial value I0 at L = 0, and rises steadily with de-

creasing slope as I increases.



Figure 4 Response to sound intensity. The red dashed line gives the coordinates slope (L / I). The black
dashed line gives the slope at this point (dL / dI).
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The slope, dL / dI, is positive and d2L / dI2 is negative because the tangent is above

the curve. Therefore, both the LHS and RHS must be negative. The LHS, (d2L / dI2), is

bounded when L goes to zero, where I = I0.

Cases a., c., e. and g. give a positive RHS, incorrect. Cases b., d. and g. go to infinity

on the RHS when L goes to zero. Case f. gives a finite RHS, thus

d2L
dI2

� �
⋅dI

dL
dI

	 
 ¼ −
dI
I

ð4aÞ

and
ln
dL
dI

� �
¼ − lnI þ ln C1 ð4bÞ

thus

L ¼ C2 þ C1⋅ lnI ð4cÞ

The lowest intensity that can be heard, the threshold of audibility, is defined as I0.
When L = 0, then I = I0, giving

L ¼ C1⋅ ln
I
I0

� �
ð4dÞ

The value of C1 is determined experimentally and is referenced to a tone of 1000 Hz
for humans, for this relationship.

Many phenomena that involve detecting differences in human sensation in response

to stimuli have been studied, leading to a general law (Weber’s law) that is a reasonable

approximation to reality, within limits on the range of the stimuli [1]. For the example

here, assume that detection depends on the increase in a stimulus being a constant per-

centage of the stimulus. Thus, Δf (dL / dI) depends on Δf (I). Thus, for a negative LHS,
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Δf
dL
dI

� �
¼

d2L
dI2

⋅dI
dL
dI

¼ −Δf Ið Þ ¼ −
dI
I

ð4eÞ

as in equation (4a).

Power law examples

Consider the iris of the eye with radius, r. A small change in its diameter alters the in-

tensity, I, of entering light [1]. The data plot (Figure 5a) has a tangent below the curve,

so the second derivative is positive. Therefore, the RHS of the D.E. must be positive.

This eliminates cases that give a negative RHS: b., c., f. and h. Case c. is negative be-

cause from the data plot, (dI / dr) > I / r.

The cases that give a positive RHS are:

a. (dI / dr) · [(1 /r) + (1 /I) · (dI / dr)].

d. (dI / dr) · [(− 1 /r) + (1 /I) · (dI / dr)].
a

b

Figure 5 Two power law functions. a. Light intensity as a function of iris radius. The red dashed line
gives the coordinates slope (I / r). The black dashed line gives the slope at this point (dI / dr). b. Basal
metabolic rate versus organism mass. The red dashed line gives the coordinates slope (B / M). The black
dashed line gives the slope at this point (dB / dM).
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e. (dI / dr) · (1/ r).

g. (dI / dr) · [(1 /I) · (dI / dr)].

Three cases (a., e., g.) have been employed for the first three examples. This leaves

case d. for this example with its boundary conditions. Additionally, only d. satisfies the

condition that the RHS equals the bounded LHS as r goes to zero, for any bounded

value on the LHS (zero or nonzero). Thus,

d2I
dr2

¼ dI
dr

⋅
−1
r
þ 1

I

� �
⋅

dI
dr

� �� �
ð5aÞ

so

C1 ¼ dI=I
dr=r

ð5bÞ

where C1 is the dimensionless numerical scaling factor defined by the ratio of the frac-
tional changes in the variables. It is not an empirical constant, but a numerical coeffi-

cient without units. Therefore it is redefined here to C1 = n, giving

I ¼ C2⋅rn ð5cÞ

One typical approach to analyzing the parameter, n, has been to use a log-log plot of

the data, where the slope gives the scaling factor, n. A plot of ln I versus ln r, when lin-

ear, yields n. The plot in Figure 5a applies when n > 1. Intuitively, it is reasonable to as-

sume that Δf (dI / dr) is directly dependent on I and inversely dependent on r. Thus,

Δf
dI
dr

� �
¼

d2I
dr2 ⋅dr

dI
dr

¼ Δf
I
r

� �
¼ dI

I
−
dr
r

ð5dÞ

as in equation (5a).
Many important natural phenomena can be described when 0 < n < 1. These include

a broad class of allometric phenomena that describe how basic and complex natural

phenomena scale with size, typically following a power law. The value of n is generally

thought to be a multiple of (1 / 4), [2]. The example presented in Figure 5b represents

the relation between basal metabolic rate, B, and organism mass, M. Again, assume Δf

(dB / dM) =Δf (B / M) to obtain equation (5a).

Analyzing the four cases that give a negative RHS (b., d., f. and h.) as was done in

the previous example leads, as expected, to case d., giving

d2B

dM2 ¼
dB
dM

⋅
−1
M

þ 1
B
⋅
dB
dM

� �
ð5eÞ

so

B ¼ C2⋅Mn ð5fÞ

where 0 < n < 1. The slope of the log-log plot gives n, when linear. Commonly, the value
found in such experiments is n ≈ (3 / 4). It has been suggested that C2 has biological

significance [3]. It is usually treated as a normalization factor. There is an ongoing

search for a mechanism to explain this function [2,4]. “The belief that metabolic rate

and other physiologic variables are related to body mass by a two-variable power law is
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assumed a priori in FNT (Fractal Network Theory). Yet it is not deducible from any

principles of physics, geometry or biology, so it must be considered an unacknowledged

ad hoc assumption.” [4], see also [5]. Thus, as pointed out in the Background, when no

mechanism exists then the D.E. and the data plot’s properties provide the mathematical

basis for the function that serves as the benchmark test for the relevance of any pro-

posed mechanism and the appropriate empirical constants.

The question of the awkward units for C2 and M(3/4), (grams)3/4, seems not to arise.

Suppose a different value of M was used, say Mc that gave a more precise estimate of

the actually metabolizing cellular mass. This could yield a relation where Bc = Kc · (Mc)
n,

where n could be an integer. For example, correcting for factors such as fluid in the blad-

der, waste in the bowel, blood plasma volume, and extracellular fluid would produce a

smaller Mc that might lead to an integer value of n. This could yield a more realistic set of

units. If n = 1, then Kc = (cal / hr) / g. Thus, Kc gives the basal metabolic rate per gram of

the presumed metabolizing cellular mass, Mc.

This approach to identifying the metabolizing cell mass could aid the search for a

mechanism. The D.E. with its factors modifying the dB / dM — (1 / B) and (1 / M) ·

(dB / dM) — offers another approach to developing a mechanism based on the metab-

olizing cell mass. Such data analysis could produce a value of m > 1, so the plot would

take the form of Figure 5a.
Multiple ligand binding

[The subsequent equations (6a and 7a) will illustrate the effect of allowing mr to have

values greater than one, as well as when m1 does not equal m2. As will be shown, equa-

tion (6a) has m1 = 5 and m2 = 2; and equation (7a) has m1 = 2 =m2].

Consider an allosteric oligomer with multiple identical subunits, each with one bind-

ing site for the identical ligands, as in O2 binding to Hb [6]. The first stage of the data

plot (Figure 6) is the binding of a ligand to one of the four unbound subunit sites on

the Hb oligomer, each with a low affinity for O2 in the unbound T-state (the T-sites).
Figure 6 Multiple ligand binding. The red dashed line gives the coordinates slope (B / L). The black
dashed line gives the slope at this point (dB / dL).
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The three remaining unbound sites were assumed to transform (equivalently and simul-

taneously) into the R-state (the R-sites), due to the conformational change in Hb structure

induced by the initial ligand binding to one of the T-sites [7]. These three, newly created,

R-sites then exhibited an increased affinity for binding additional O2. The total number of

binding sites on the oligomer was nS = 4 = nT + nR = 1 + 3. Thus, nT = 1 for whichever of

the four, initially unbound, T-sites on the Hb oligomer bound the ligand in first-stage

binding. Then nR = 3 for the R-sites engaged in second-stage binding.

The experimentally observed sigmoidal curve of multi-site ligand binding, where B is the

amount of bound sites and L is the ligand concentration, gives the classic Hill equation. At

L = 0, then B = 0, and as L goes to infinity then B goes to Blim. The first derivative, (dB / dL),

is always positive. The second derivative, d2B / dL2, is positive below the inflection point

and negative above it. Thus, as previously

d2B

dL2
¼ f L;B;

dB
dL

� �� �

where d2B / dL2 depends on L, B, and dB / dL, and f [] contains terms of the form Lp ·

Bq · (dB / dL)r and the units on f [] must be (B / L2). This gives as before the two possi-

bilities, (1 / L) and (1 / B) · (dB / dL). Regardless of the sign, neither alone can account

for the changes in sign of the second derivative as it passes through the inflection point.

The four linear combinations are then:

a. (1 /L) + (1 /B) · (dB/dL), always positive, so incorrect.

b. (− 1 /L) + (− 1 /B) · (dB/dL), always negative, so incorrect.

c. (1 /L) – (1 /B) · (dB/dL) = [(dL / L) – (dB / B)].

d. (− 1 /L) + (1 /B) · (dB/dL) = [− (dL / L) + (dB / B)].

Compare the coordinates slope, B / L, with the slope, dB / dL. Below the inflection

point, [(B / L) < (dB / dL), and so (dL / L) < (dB / B). So case c. gives a negative RHS,

incorrect. Then case d. gives the correct positive sign for the RHS, because the LHS is

positive below the inflection point (tangent below the curve).

Introducing the integer coefficients, N = nT + 1 and M= nR + nT + 1 = nS + 1, for ligand

binding to multiple sites on the same molecule, such as O2 binding to the four sites on a

Hemoglobin molecule, gives for nS total sites, with nT = 1,

d2B
dL2

dB
dL

⋅dL ¼ nT þ 1ð Þ⋅ dB
B

− nS þ 1ð Þ⋅ dL
L

ð6aÞ

Thus, m1 = nS + 1 = 5, and m2 = nT + 1 = 2. This is the same basic D.E. for the relationship

of the variables as equation (5a), only with different values for m1 and m2, as well as differ-

ent boundary conditions. After rearranging into the fractional change form and integrating,

dB
dL

¼ C1⋅
B2

L nSþ1ð Þ ð6bÞ

and
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B ¼ 1=C2ð Þ⋅LnS
1
nS
⋅ C1

C2

� �
þ LnS

ð6cÞ

As L went to infinity, the limiting value went to
Blim ¼ 1=C2ð Þ= 0þ 1ð Þ ¼ 1=C2 ð6dÞ

Rewriting equation (6c) gave
B ¼ Blim⋅LnS

C1⋅ Blim
nS

� �
þ LnS

ð6eÞ

Setting (C1 · Blim / nS) = Kn illustrated its dependence on the number of binding sites

present. In this case, Kn must have units of concentration to the power nS. Therefore,

C1 has units of mol=L½ � nS−1ð Þ⋅min−1 ¼ mol=L½ �nR ⋅min−1 . In the single-site case, where

now nS = 1 and nR = 0, this gave C1 =min = 1 / k. Thus, k =min-1 became the initial

binding rate constant, the slope evaluated as L went to zero. For multiple-site binding,

1=C1 ¼ kR ¼ mol=L½ �‐nR ⋅min−1 . Using this gave (Blim / nS · kR) ≡ Kn and equation (6e)

became

B ¼ Blim⋅LnS

Kn þ LnS
ð6fÞ

giving the Hill equation for multiple binding sites [6].
Enzyme catalysis

Numerous natural phenomena exhibit saturation behavior, including enzyme catalysis

and ligand binding. For enzyme catalysis, let v be the catalytic reaction velocity and A

the substrate concentration. Observation of the experimental data plot (Figure 7) for v

versus A reveals the characteristic saturation behavior as A becomes very large.

The LHS of the D.E. is negative because the tangent to the data plot is above the

curve, and the slope is positive. Both d2v / dA2 and dv / dA decrease as A increases.
Figure 7 Enzyme catalysis. The red dashed line gives the coordinates slope (v / A). The black dashed line
gives the slope at this point (dv / dA).
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The Michaelis-Menten (M-M) equation for simple enzyme catalysis requires a second-

order D.E., to be derived here, relating the variables (A, v, dv / dA) that is free of as-

sumptions about mechanism and empirical constants. In general then,

d2v

dA2 ¼ f v;A;
dv
dA

� �� �

The units of the LHS are [v / A2]. As before there are eight distinct cases that satisfy

the units requirement.

Cases a., c., e. and g. give a positive RHS, incorrect. Applying l’Hopital’s Rule to the

RHS of the remaining cases for A goes to zero shows that only case d. will give a RHS =

(d2v / dA2)0 = LHS.

Now introduce (as shown previously for the Hill equation) the integer coefficients N

and M into the linear combination (d.) that define the roles of the binding sites, where

N = nT + 1

and

M ¼ nR þ nT þ 1

This gives
d2v
dA2

� �
⋅dA

dv
dA

	 
 ¼ N⋅
dv
v
−M⋅

dA
A

� �
ð7aÞ

This is the same basic D.E. as equations (5a) and (6a), with different values for m1
and m2, as well as different boundary conditions.

For M-M catalysis this simplifies to N = 1 + 1 = 2 =m2, and M = 0 + 1 + 1 = 2 =m1, be-

cause there is only one binding / catalytic site, see also [8].

dv
dA

¼ C1⋅
v
A

� �2
ð7bÞ

and
v ¼ A
C1 þ C2⋅A

ð7cÞ

The initial slope of the data plot yields C1 = 1 / kbind, which measures the binding
interaction between a specific substrate and specific enzyme. As A increases, the limit-

ing value of v is given by C2 = 1 / kcat, which measures the limiting rate of catalysis

when the enzyme becomes saturated with substrate. Thus

v ¼ 1
1

A⋅kbind
þ 1

kcat

ð7dÞ

expresses the behavior of v solely in terms of the fundamental properties of the enzy-

me's catalytic function, kbind and kcat, and its dependence on A. As expected, increasing

any of these increases v.

The conventional formulation of equation (7d) is the classic M-M version:
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v ¼ V⋅A
Km þ A

ð7eÞ

where V = kcat · (total enzyme present). The Michaelis constant, Km, is actually a derived
quantity, not a fundamental property of the enzyme's catalytic function, because it is

defined by Km = kcat / kbind. It also differs from kcat and kbind because, in the presence

of an inhibitor, neither kcat nor kbind is ever observed to increase, as expected, whereas

in some circumstances Km does increase (e.g., if the inhibitor acts only to decrease

kbind). Thus, the D.E. leads uniquely to equation (7d), which identifies the importance

of kbind and clarifies the meaning of Km, see [8].

Logistic growth

Various equations have been developed to model general biological growth as well as

population growth [9,10]. Typically, a first-order D.E. is postulated using the growth

velocity, dP / dt. The approach developed here is the first to take up the idea presented by

Ginzburg [11] that the second derivative of the population with respect to time (d2P /

dt2), the growth acceleration, might be a useful variable for describing population growth.

This common phenomenon (Figure 8) exhibits sigmoidal behavior differing mathemati-

cally from the sigmoidal Hill equation in having a finite value at zero time, the initial

population P0.

Start with a general second-order D.E. relating the acceleration in population growth,

d2P / dt2 to the relevant variables. Population growth depends only on the changes in

the population, not on the time, t, and so the D.E. is autonomous. The acceleration at

any time, t, depends on the population (P) available at t, on the remaining population

growth available in the system, Pa, and on the net production rate of new members (dP /

dt)t = [(population gain rate – loss rate) / time increment]t. So

d2P
dt2

¼ f

�
P; dP=dtð Þ; Pa

�
ð8aÞ
Figure 8 Logistic growth. The red dashed line gives the coordinates slope (P / t). The black dashed line
gives the slope at this point (dP / dt).



Kepner Theoretical Biology and Medical Modelling 2014, 11:38 Page 19 of 21
http://www.tbiomed.com/content/11/1/38
To obtain the (1 / T2) term for the units on the RHS, f [] must include (dP / dt)2,

therefore

d2P
dt2

¼ dP
dt

� �2

⋅g
�
Pq; Pr

a

�
ð8bÞ

Now, P / T2 = (P2/ T2) · (1 / P) is required, and so g [] has units of (1 / P) = P-1.

Consider then the value (-1) for q and r. The sign of d2P / dt2 changes from positive

below the inflection point, to negative above it. The sign of (dP / dt)2 is always positive.

Therefore, the sign of g [(P)q, (Pa)
r] must be positive below and negative above the in-

flection point. Consider linear combinations of (1 / P) — a growth promotion function

that starts out large and decreases as population increases — and 1 / (Pa) = 1 / (Pi) that

acts as a growth inhibitory function, which starts out small and increases in magnitude

as population increases, because there are now fewer resources available for additional

population growth. The question is how do they combine?

a. (1 / P) + (1 / Pi), fails because it is always positive.

b. - (1 / P) – (1 / Pi), fails because it is always negative.

c. - (1 / P) + (1 / Pi), fails because when t is small, the magnitude of (1 / P) is greater

than (1 / Pi). Therefore, the RHS is negative, whereas the LHS, d2P / dt2, is positive

(tangent below the curve).

d. (1 / P) – (1 / Pi) is correct because it is positive below and negative above the

inflection point where (1 / P) < (1 / Pi), as required, giving

d2P
dt2

¼ dP
dt

� �2

⋅
1
P
−
1
Pi

� �
ð8cÞ

As t increases from zero, the first term dominates and reflects growth that is slowing

as P increases towards the inflection point. After the inflection point, as t continues to

increase, the limitations imposed by decreasing resources are reflected in the further

decrease in (1 / P) and the increase in magnitude of (1 / Pi), because Pi is getting

smaller as t increases, giving a slowly increasing and negative RHS, as required. Assume

dP / dt = - dPa / dt, giving after integration,

dP
dt

¼ C1⋅P⋅Pi ð8dÞ

Conservation requires that (Pa + P) = Pi + P = P∞, the limiting size of the population.
Integrating gives

P ¼ P∞
1þ C2⋅e−C1⋅t

ð8eÞ

the logistic function, where C2 = P0, the starting population, and C1 = k, a measure of
the growth rate in the presence of a limiting factor.

Discussion
These results establish the basic principle that the mathematical properties of the ex-

perimental data plot specify a second-order D.E. describing that plot and the natural
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phenomenon that generates it. The derivation of the general D.E. involves only the vari-

ables. It is independent of assumptions about empirical constants and mechanisms.

What makes this possible is the analytic power of the dimensional analysis restriction

on the terms for each side of the D.E. equation.

The D.E. approach is simple, unifying, and revealing of the fundamental relationship

among the variables. This is different from the relationships presented either by the al-

gebraic function with its two empirical constants already specified, or by the first-order

D.E. with its one specified empirical constant. The focus is on the dynamics of the

change in acceleration (d2y / dt2) and its dependence on the velocity (dy / dt) — as

modified by a particular linear combination of (1 / t) and (1 / y) · (dy / dt). It is the ab-

sence of empirical constants that allows this relationship to emerge.

Just two factors are invoked to specify the unique form of each second-order D.E.

considered here, (1 / t) and (1 / y) · (dy / dt). The D.E.s revealed the non-linear depend-

ence of d2y / dt2 on (1 / t) · (dy / dt) and (1 / y) · (dy / dt)2. The integrable fractional

change form for each of these factors is, (dt / t) and (dy / y). A useful analytical concept

is the relation between the coordinates slope (y / t) and the slope (dy / dt). It yields the

relative magnitudes of the fractional changes in the variables for the data plot.

Each D.E. established the basic relationship among the variables describing each

phenomenon. The appropriate empirical constants arise directly from the integrations and

boundary conditions. Of particular interest was the ability of this analytical method to de-

rive the D.E. for three related, but different, complex phenomena with different sigmoidal

data plots — Standard Normal Distribution, Logistic Growth, and Hill Ligand Binding.

This analysis of the mathematical properties of the data plot for a specific natural

phenomenon offers a new, simple, mechanism-independent method of deriving defini-

tively the underlying D.E. for these natural phenomena. Often, different mechanisms

can lead to the same function for describing a natural phenomenon. Even if such a

mechanism derives the function describing the data plot, this does not establish defini-

tively its validity. The Occam’s razor approach developed here avoids these problems.

The approach illustrates the analytical value of dimensional analysis in deriving differ-

ential equations that define the relationships among the variables, free of empirical

constants. It develops the principle that each phenomenon gives unique mathematical

properties to the data plot. The mathematical properties of the data plot are independ-

ent of mechanism, though not the converse. The defining relationships among the vari-

ables for each phenomenon reside in the experimental data plot. Reading the plot tells

the phenomenon’s story.
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