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Abstract

Background: The optimal marker for cyclosporine (CsA) monitoring in transplantation
patients remains controversial. However, there is a growing interest in the use of the
area under the concentration-time curve (AUC), particularly for cyclosporine dose
adjustment in pediatric hematopoietic stem cell transplantation. In this paper, we
develop Bayesian limited sampling strategies (B-LSS) for cyclosporine AUC estimation
using population pharmacokinetic (Pop-PK) models and investigate related issues, with
the aim to improve B-LSS prediction performance.

Methods: Twenty five pediatric hematopoietic stem cell transplantation patients
receiving intravenous and oral cyclosporine were investigated. Pop-PK analyses were
carried out and the predictive performance of B-LSS was evaluated using the final
Pop-PK model and several related ones. The performance of B-LSS when targeting
different versions of AUC was also discussed.

Results: A two-compartment structure model with a lag time and a combined additive
and proportional error is retained. The final covariate model does not improve the B-LSS
prediction performance. The best performing models for intravenous and oral cyclosporine
are the structure ones with combined and additive error, respectively. Twelve B-LSS,
consisting of 4 or less sampling points obtained within 4 hours post-dose, predict
AUC with 95th percentile of the absolute values of relative prediction errors of 20%
or less. Moreover, B-LSS perform better for the prediction of the ‘underlying’ AUC
derived from the Pop-PK model estimated concentrations that exclude the residual
errors, in comparison to their prediction of the observed AUC directly calculated
using measured concentrations.

Conclusions: B-LSS can adequately estimate cyclosporine AUC. However, B-LSS
performance is not perfectly in line with the standard Pop-PK model selection
criteria; hence the final model might not be ideal for AUC prediction purpose.
Therefore, for B-LSS application, Pop-PK model diagnostic criteria should additionally
account for AUC prediction errors.

Keywords: Bayesian approach, Population pharmacokinetics (Pop-PK), Cyclosporine (CsA),
Area under the curve (AUC), Limited sampling strategy (LSS)
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Background
Therapeutic drug monitoring is a common practice for the use of immunosuppressant

drugs, which generally exhibit considerable inter- or intra- pharmacokinetic (PK) vari-

ability and narrow therapeutic window [1]. A non-monitored dosing can increase the

risk for therapeutic failure or induce serious undesirable effects. Currently, therapeutic

drug monitoring approach, which involves the measurement of drug concentrations

and their interpretation, has become a standard of care in immunosuppressant therapy

for dose optimization, with the aim of maximizing therapeutic benefits and minimizing

adverse effects [1,2]. In clinical practice, the pre-dose concentration (C0) is widely used

as a PK marker for the therapeutic drug monitoring due to its accessibility. Nonetheless,

treatment failure, adverse effects, and toxicity can still arise even in situations where C0 is

within the recognized therapeutic range [3,4]. These risks call for the implication of other

PK based surrogates, such as the area under the concentration-time curve (AUC) which is

generally known as the best indicator of drug systemic exposure. While its use as an opti-

mal marker for immunosuppressant agents monitoring remains controversial its correl-

ation with clinical outcomes is increasingly being investigated [5-7].

When estimating AUC, we generally refer to the observed AUC, usually denoted

AUCobs, which is obtained using the trapezoidal method. This method can be cumber-

some for patients and their care providers since it requires a frequent sampling over a

time interval long enough to fully represent the drug disposition. As an alternative, lim-

ited sampling strategies (LSS) have been proposed to predict AUC with an adequate

precision, using a reduced number of sampling points drawn within a short time inter-

val. LSS have been applied with two main approaches, namely, the multiple linear

regression-based LSS (R-LSS) and Bayesian-based LSS (B-LSS).

The regression approach aims to establish a linear relationship between one or more

concentration-time points (independent variables) and AUC (dependent variable) in

the form of the following equation:

AUCpred ¼ F0 þ F1 � Ct1 þ…þ Fk � Ctk

where Ct1, Ct2, …, Ctk are the concentrations sampled at times t1, t2, …, tk, respectively;

and F0, F1, …, Fk are regression coefficients. For its simplicity, the use of regression LSS

is widely spread as a bedside application. However, its use is highly restrictive since

samples are assumed to be taken on nominal sampling times, excluding thus any pos-

sible deviation.

The B-LSS approach requires the use of several drug concentrations in addition to a

well-established population pharmacokinetic (Pop-PK) model for the estimation of

AUC. This model, considered as the acquired prior knowledge of drug characteristics,

helps to improve the estimation, otherwise solely based on the observed drug concen-

trations. With the B-LSS method, the estimated individual PK parameters are obtained

using the empirical Bayesian approach; these parameters are then used for the predic-

tion of drug concentrations and, consequently, the estimation of AUC. One advantage

of the Bayesian approach over the regression LSS is its flexibility in terms of sampling

time deviations which are readily considered when building the associated Pop-PK

model and predicting the individual PK parameters; since the real sampling times can

be used in case of sampling deviations from the nominal times. Nevertheless, the use of

B-LSS can be hampered by the need for trained professionals and specialized software.
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This situation is however changing progressively since many PK software packages with

user-friendly interfaces are now made available.

In both LSS approaches, the estimation of AUC aims to approximate the real area

under the curve that could be reachable in ideal conditions of frequent blood samplings

associated with perfect measurements that reflect precisely drug concentrations. How-

ever, only few samples are usually available. In addition, these samples are generally af-

fected by different sources of errors, emanating from sample collection, measurement

method, and data processing. These limitations can potentially be inherited by the ob-

served AUC, and consequently raising the question of its reliability. It would be thus

interesting to alternatively consider the AUC calculated directly from the estimated in-

dividual concentrations using the Pop-PK model, assuming the exclusion of the residual

errors. These estimated concentrations are denoted IPRED in the usual notation of

NONMEM®, the mostly used software in Pop-PK analyses. We refer to this AUC as

‘underlying’ AUC. The difference between observed AUC and ‘underlying’ AUC is illus-

trated in Figure 1. Although ‘underlying’ AUC cannot be directly measured in practice,

we believe that it represents the intrinsic property of a patient’s PK profile as it is not

altered by residual errors and hence can be a better predictor for drug effects, com-

pared to the observed AUC where the residual errors are always present.

Cyclosporine (CsA) is a typical example of immunosuppressive agents where LSS are

widely used. Therapeutic drug monitoring is recommended for CsA dose adjustment

because of its large PK variability and small therapeutic index [2,8]. CsA is used mainly

in hematopoietic stem cell transplantation for the prophylaxis of graft-versus-host dis-

ease. In this context, there is a growing interest in the use of AUC as a therapeutic drug

monitoring marker [6,7]. However, prospective trials are still needed to evaluate the ef-

ficacy of AUC guided dose adjustment.
Figure 1 Underlying AUC (7448 ng.h/ml) Vs. Observed AUC (7017 ng.h/ml).
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In hematopoietic stem cell transplantation, graft-versus-host disease can result in dif-

fuse inflammation that affects intestinal integrity, thus causing reduction and delay in

CsA absorption, while the clearance is reported higher in comparison to solid organ

transplantation [9,10]. Recently, LSS have been applied by several research groups to

predict AUC for hematopoietic stem cell transplantation in adults [11-14]. However,

their results cannot be directly transferred to pediatric patients who generally require

higher doses, as they have faster systemic clearance and lower CsA exposure [9,10,15,16].

Therefore, particular B-LSS in pediatric patients need to be developed and validated.

To our knowledge, only three LSS studies for the prediction of CsA AUC in pediatric

hematopoietic stem cell transplantation have been published. Willemze et al. found a good

performance using B-LSS for intravenous (IV) and oral (PO) CsA; however, they were tested

on a small number of combinations of sampling points, with no validation reported [17].

Based on a population of 24 pediatric patients receiving 2 hours BID infusion, Sibbald et al.

reported regression LSS [18]. These LSS are developed only for PK profiles obtained after the

first CsA IV dose and their application is restricted to this particular condition. Recently,

Dupuis et al. validated these LSS and reported new regression LSS for the prediction of AUC

at the steady state [19]. The latter LSS showed a good performance but required samples to

be drawn within 8 hours post-dose and were developed and validated only for IV CsA.

In this paper, we will develop practical B-LSS for the prediction of AUC in pediatric

hematopoietic stem cell transplantation patients after IV and PO CsA administrations.

In this context and based on available PK data of our pediatric population, we devel-

oped Pop-PK models of CsA following the general Pop-PK modeling steps, but with a

particular care for its intended use in AUC prediction by B-LSS. Furthermore, to insure

the LSS applicability in clinical settings, the number of concentration-time points and

sampling duration were restricted to 4 points or less drawn within 4 hours post-dose.

Performance of these LSS is evaluated using well established error indices.

Materials and methods
Patients

Pediatric patients receiving IV (2 hours infusion) or PO CsA twice daily for graft-versus-host

disease prophylaxis after undergoing hematopoietic stem cell transplantation from a sibling or

unrelated donor, at the Centre Hospitalier Universitaire Sainte-Justine, were considered for in-

clusion in this retrospective study. Patients who were 19 years old or more were excluded.

The study was approved by the institutional research ethics committee at the Centre Hospita-

lier Universitaire Sainte-Justine. Twenty five pediatric patients were eligible for inclusion in

this study over a period from August 2009 to August 2010. Eighteen of these patients have IV

and PO pharmacokinetic profiles. Patients’ characteristics are summarized in Table 1.

Cyclosporine dose adjustment

Since 2010, the medical team at the Centre Hospitalier Universitaire Sainte-Justine caring

for hematopoietic stem cell transplantation patients moved from C0- to AUC-based moni-

toring in light of controversy regarding the usefulness of dose adjustments based on CsA

C0 [20]. Hence, CsA dose adjustments were made by the treating physician in accordance

with institutional target AUC0-12h values, which were defined based on published data from

renal transplantation studies [21,22] and one adult hematopoietic stem cell transplantation

study [23]. These were adapted by the team according to the patient’s underlying diseases.



Table 1 Patients’ information summary

Parameter (unit) Number or median (range)

IV PO

Patients 19 20

Sex: male/female 10/9 12/8

Age at transplantation (year) 10.5 (1–18) 11.1 (0.5–18.2)

Transplantation type: Sibling/Unrelated 10/9 13/7

Included PK profiles 23 39

Formulation 23 (IV) 19 (Susp)/20 (Cap)

Time post transplantation (month) 0.13 (0.1–1.7) 1.28 (0.7–9.1)

Age at PK profile (year) 10.4 (1–17.9) 11.9 (1.2–18.3)

Weight (kg) 33 (10–81) 38 (8–83)

Cyclosporine dose (mg/kg/day) 2.5 (1–3.2) 4.2 (1–8.3)

Concomitant corticosteroid 13 26†

Albumin (g/L) 32 (19–48) 32 (22–41)‡

Creatinine (mmol/L) 33 (12–358) 50 (13–117)‡

Bilirubin (μmol/L) 11 (5–64) 10 (3–596)‡

AST (U/L) 20 (9–42) 24 (13–125)‡

ALT (U/L) 24 (9–85) 31 (19–69)‡

GGT (U/L) 35 (8–94) 32 (9–217)‡

AP (U/L) 87 (1.9–203) 110 (53–302)‡

Hb (g/dL) 93 (64–143) 87 (64–122)‡

Hct (%) 25 (18–44) 26 (19–36)‡

ALT: alanine aminotransferase; AP: alkaline phosphatase; AST: aspartate aminotransferase; Hb: hemoglobin; Hct:
hematocrit; IV: intravenous administration; GGT: γ- glutamyltranspeptidase; PK: pharmacokinetic; PO: oral administration;
Susp: suspension; Cap: capsule.
†Data available for 37 profiles.
‡Data available for 38 profiles.
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PK data

All available steady state PK profiles that contained at least 7 concentration-time points

were incorporated in this study for a total of 23 IV and 39 PO profiles. Blood samples were

drawn before and at 2, 3, 4, 6, 8, 10, and 12 hours after CsA administration for IV profiles

and at 0.5, 1, 1.5, 2, 3, 4, 8 and 12 hours after CsA administration for PO profiles. Concen-

trations were measured using ARCHITECTi2000SR® (Abbott Laboratories, Abbott Park,

Illinois, USA). The lower and upper limits of detection were 30 and 1500 ng/mL, respect-

ively. The between-run coefficients of variation were 9.95% at 87 ng/mL, 8.64% at 340 ng/

mL, and 9.25% at 850 ng/mL. Blood samples with CsA concentrations > 1500 ng/mL were

diluted with blank blood. The associated observed AUC were calculated using the trapez-

oidal method. Individual CsA concentration-time profiles are reported in Figure 2.

Development of Pop-PK model

Population PK analyses were performed using the nonlinear mixed effect approach as

implemented in NONMEM® software (Version VII). The first order conditional estima-

tion with interaction (FOCE-I) method was used to determine PK parameters and the

associated variability. To define the structural model, one, two and three compartment

models with first-order absorption and elimination were used to analyze available CsA

data. The lag time in absorption was also tested for each model. The exponential model



Figure 2 Concentration-time courses for the available full profiles.
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was used to describe inter-individual variability for PK parameters as expressed in

Eq. 1:

θij ¼ θj � EXP ηij

� �
ð1Þ

where θij is the jth PK parameter for the ith individual, θj is the typical value of the

population parameter; ɳij is a random variable characterizing the between subject vari-

ability. A combined version of additive and proportional models was used to test for re-

sidual variability (Eq. 2):

Cobs ¼ Cpred � 1þ ε1ð Þ þ ε2 ð2Þ

where Cobs and Cpred are the observed and predicted CsA blood concentrations, respect-

ively; ɛ1 and ɛ2 are random variables describing the unexplained residual variability.

The structural model was developed based on statistical significance in the reduction

of the objective function value (OFV) using likelihood ratio (LT) test, as well as other

standard indicators such as the model stability and the improvement in model fitting.

As usually done in pediatric Pop-PK modeling, weight had been initially integrated as

an allometric scaling factor for the clearance and the volume of distribution [24]. The

covariate model was then established by the forward inclusion backward elimination

strategy, using Perl speaks NONMEM (PsN) script [25], in which a change of OFV

greater than 6.63 and 7.87, associated with a p-value of 0.01 and 0.005, was used as se-

lection criteria for statistical significance, respectively. A total number of 19 covariates

were included in the plan. With a careful checking of graphical relationship and consid-

eration of their clinical meaning, potentially meaningful covariates were tested (see model

development details in Appendix).
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B-LSS development and validation

Using the nine available sampling points of each PK profile included in this study, we

evaluated the performance of all possible combinations that contain one, two, three, or

four concentration-time points, which gives rise to a total number of 255 LSS to be

tested. These LSS were divided into four subgroups according to the number of

concentration-time points included in the LSS plan. To allow validation despite the

small number of available data, we used the leave-one-out-cross-validation approach [26].

We briefly recall that, when using the leave-one-out-cross-validation approach, each

PK profile is left out in turn from the analysis, which gives rise to a partial dataset

noted as Y(−i), i = 1, …, N, where i stands for the temporary excluded ith PK profile.

Using the available Pop-PK model of CsA, we estimate the PK parameters associated

with the partial data set Y(−i). Then to estimate PK parameters of the excluded profile,

the standard empirical Bayesian approach, as implemented in NONMEM®, is per-

formed using, as initial values, the Pop-PK parameters previously obtained for Y(−i).

This estimation involves the LSS associated concentrations of the excluded profile.

These PK parameters obtained for the ith profile are then used to predict its full

concentration-time course that includes the 9 concentration-time points of the sam-

pling protocol. Finally, the predicted AUC for the ith profile is calculated using the trap-

ezoidal method.

Performance of the 255 LSS is evaluated using error indices [27]. For each LSS, relative

error (E%), the 95th percentile of the absolute values of relative prediction errors (95th

PAE%), mean relative prediction error (ME%) and root mean squared relative prediction

error (RMSE%) were calculated. These estimates were based on the following formulations:

Ei% ¼ AUCpred
ið Þ−AUCobs

ið Þ

AUCobs
ið Þ � 100 ð3Þ

ME% ¼ 1
N

XN
i

AUCpred
ið Þ−AUCobs

ið Þ

AUCobs
ið Þ � 100 ð4Þ

RMSE% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i

AUCpred
ið Þ−AUCobs

ið Þ

AUCobs
ið Þ

 !2
vuut � 100 ð5Þ

95th PAE% = 95th percentile of the increasingly order set:

Eij j%f gNi ð6Þ

Moreover, since relative errors can induce bias when applied to highly asymmetrical

data, the symmetry of the distribution and the range of estimated relative errors were

also verified [28].

For each LSS subgroup defined above, four representative B-LSS were chosen to rep-

resent the overall performance. In each subgroup, the first chosen B-LSS corresponds

to the one that has the highest predictive performance according to 95th PAE%. In

addition to this criterion, the following three B-LSS were selected according to two

clinically oriented restrictions, namely the inclusion of C0 and the limitation of sam-

pling to an interval of 4 hours post-dose. As reported in the Results Section, 28 B-LSS

(14 for IV and 14 for PO CsA) are obtained for each evaluated Pop-PK model.

Figure 3 depicts the above procedure of B-LSS development and validation.



Figure 3 B-LSS development procedure; Y is the group of all profiles; Y(−i) is the subgroup of all
profiles except the ith one, where i = 1,2…,N.

Sarem et al. Theoretical Biology and Medical Modelling 2014, 11:39 Page 8 of 22
http://www.tbiomed.com/content/11/1/39



Sarem et al. Theoretical Biology and Medical Modelling 2014, 11:39 Page 9 of 22
http://www.tbiomed.com/content/11/1/39
Analysis of B-LSS performance

When investigating B-LSS performance using the structural model as well as the final

model developed following the standard Pop-PK procedure, we noticed that the final

model was not associated with the best performance. This non anticipated result raised

the concern about the appropriateness of the final Pop-PK model, with regard to B-LSS

application. Indeed, the decision for the final model is mainly determined through ob-

jective function value (OFV), a criterion which may not be adequate to optimize a

model for B-LSS application. Hence, we decided to investigate the B-LSS performance

using intermediate Pop-PK models that differ from the final one in terms of error

models and included covariates. To report their B-LSS performance, we chose to use

the 95th PAE% for its simplicity and clinical relevance [8]. The results for other per-

formance indices, not reported here for space restriction, were consistent with those of

the 95th PAE%.

As mentioned above, we also estimated the ‘underlying’ AUC and used it as a

reference for AUC predicted through B-LSS. Then the performance of B-LSS in

this context is compared to their performance for the prediction of observed AUC.

The commercial software package MATLAB® (2008b, The Math Works Inc,

Natick, Massachusetts, U.S.A.) and NONMEM® (version VII, Icon Development

Solutions, Ellicott City, MD) were used for modeling implementation and

computations.

Results
Final Pop-PK model

The initial model analyses for the description of CsA PK data suggested a two-

compartment structure with a combined additive and proportional error model. This

structural model was parameterized in terms of: clearance (CL), apparent volume of

distribution of the central compartment (Vc), apparent volume of distribution of the

peripheral compartment (Vp), inter-compartmental transfer rate (Q), absorption rate

(KA), lag time in oral absorption (ALAG), and oral bioavailability (F). Inter-individual

variability was estimated for CL, Vc, Q, KA, and F.

Moreover, as usually suggested in pediatric literature, clearance and volume were

scaled by weight with powers of ¾ and 1, respectively [24]. With this addition to the

structural model, we have performed a standard covariate analysis which led to the

final model that included weight (WT), age at profile date (AG), time post transplant-

ation (TPT), alkaline phosphatase (AP), and dosage form (FORM). The details of

model construction and estimated parameters can be found in the Appendix.

Pop-PK model selection based on associated B-LSS performance

The structural model with combined errors (Model 4 in Table 2) and the structural

model with additive errors (Model 6 in Table 2) were selected as the best models

for performing AUC prediction using B-LSS, for IV and PO profiles, respectively.

Their selection was based on their performance in terms of 95th PAE%. Associated

to these two models, 16 LSS (11 for IV and 5 for PO) had 95th PAE% of 20% or

less.

The performance of B-LSS was evaluated using the structural, final, and several

related Pop-PK models that differ from the final one in terms of error models as



Table 2 Performance of B-LSS for AUC prediction using selected Pop-PK models

Model 1 95th APE% Model 2 95th APE% Model 3 95th APE% Model 4 95th APE% Model 5 95th APE% Model 6 95th APE%

OFV −1900 −1895 −1613 −1790 −1773 −1447

IV C2, C2.5, C6, C10 10 C2, C3, C6, C8 11 C2, C2.5, C6, C10 23 C2, C2.5, C8, C10 7 C2, C2.5, C8, C10 8 C2, C2.5, C4, C6 15

C0, C2, C3, C4 18 C0, C2, C3, C4 18 C0, C2, C2.5, C4 27 C0, C2, C3, C4 14 C0, C2, C3, C4 14 C0, C2.5, C3, C4 22

C0, C2, C2.5, C4 19 C0, C2, C2.5, C4 19 C0, C2, C3, C4 27 C0, C2, C2.5, C3 15 C0, C2, C2.5, C3 15 C0, C2, C2.5, C4 24

C0, C2, C2.5, C3 19 C0, C2, C2.5, C3 19 C0, C2, C2.5, C3 27 C0, C2, C2.5, C4 16 C0, C2, C2.5, C4 16 C0, C2, C2.5, C3 24

C2, C2.5, C10 12 C2, C3, C8 13 C2, C2.5, C6 24 C2, C2.5, C8 10 C2, C2.5, C8 10 C2.5, C8, C10 16

C0, C2, C3 20 C0, C2.5, C3 20 C0, C2, C3 28 C0, C2, C3 16 C0, C2, C3 16 C0, C2.5, C4 20

C0, C3, C4 20 C0, C2, C3 21 C0, C2, C4 28 C0, C2.5, C3 18 C0, C2.5, C4 19 C0, C2, C4 22

C0, C2.5, C3 20 C0, C3, C4 21 C0, C2.5, C3 28 C0, C2.5, C4 19 C0, C2.5, C3 19 C0, C2.5, C3 24

C2.5, C6 17 C2.5, C6 17 C2.5, C6 27 C2.5, C8 15 C2.5, C8 15 C2.5, C8 20

C0, C3 21 C0, C3 22 C0, C3 31 C0, C2.5 20 C0, C2.5 21 C0, C2.5 23

C0, C4 23 C0, C4 24 C0, C2.5 32 C0, C3 20 C0, C3 21 C0, C2 27

C0, C2.5 24 C0, C2.5 25 C0, C4 37 C0, C4 25 C0, C4 24 C0, C3 30

C6 24 C6 23 C3 33 C4 23 C4 22 C2.5 28

C0 37 C0 37 C0 45 C0 40 C0 38 C0 51

PO C1, C3, C4, C12 14 C1, C3, C4, C8 15 C1, C3, C4, C8 16 C1.5, C3, C4, C12 13 C1.5, C3, C4, C12 13 C1.5, C3, C4, C8 14

C0, C1, C3, C4 27 C0, C1, C3, C4 32 C0, C1, C3, C4 20 C0, C1, C2, C4 23 C0, C1.5, C3, C4 25 C0, C1.5, C2, C4 16

C0, C1, C2, C4 28 C0, C1, C2, C4 33 C0, C1, C2, C4 22 C0, C1.5, C3, C4 24 C0, C1, C2, C4 25 C0, C1.5, C3, C4 16

C0, C0.5, C3, C4 32 C0, C0.5, C3, C4 35 C0, C1.5, C2, C4 24 C0, C1, C3, C4 25 C0, C1, C3, C4 26 C0, C1, C3, C4 18

C1, C3, C4 21 C1, C3, C4 22 C1, C3, C4 20 C2, C4, C12 16 C1, C3, C8 17 C0.5, C3, C4 18

C0, C1, C4 35 C0, C1, C4 39 C0, C1, C4 30 C0, C1, C4 30 C0, C1, C4 30 C0, C2, C4 24

C0, C1.5, C4 38 C0, C0.5, C4 41 C0, C1.5, C4 33 C0, C2, C4 30 C0, C2, C4 33 C0, C1, C4 24

C0, C2, C4 40 C0, C1.5, C4 42 C0, C1, C3 35 C0, C2, C3 35 C0, C1.5, C4 36 C0, C1, C3 28

C1, C4 27 C1.5, C4 31 C1, C4 29 C1, C4 24 C1, C4 26 C1, C4 25
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Table 2 Performance of B-LSS for AUC prediction using selected Pop-PK models (Continued)

C0, C2 61 C0, C2 64 C0, C4 50 C0, C3 45 C0, C3 46 C0, C3 41

C0, C1 65 C0, C4 68 C0, C3 51 C0, C1 47 C0, C1 49 C0, C4 43

C0, C4 66 C0, C1 69 C0, C1.5 61 C0, C2 54 C0, C2 55 C0, C2 44

C3 45 C3 49 C4 41 C3 40 C3 40 C3 33

C0 99 C0 99 C0 100 C0 86 C0 85 C0 86

Model 1: significant covariates included, combined error model (final model).
Model 2: significant covariates included, proportional error model.
Model 3: significant covariates included, additive error model.
Model 4: no covariates, combined error model (selected structural model): best model for B-LSS application regarding IV profiles.
Model 5: no covariates, proportional error model.
Model 6: no covariates, additive error model: best model for B-LSS application regarding PO profiles.
Ct: concentration at time t in hours post-dose, OFV: objective function value, 95th APE%: 95th percentile of the absolute relative errors.
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well as the covariates included. For each model, 28 LSS (14 for IV and 14 for PO)

were selected using the above performance criteria. The results of the evaluated

models are shown in Table 2. It is worth emphasizing that the final model did not

give the best prediction for AUC though it has the least OFV. Associated to this

model, 10 LSS (9 for IV and 1 for PO) had 95th PAE% of 20% or less.

Bayesian LSS performance

Twelve B-LSS (8 for IV and 4 for PO, using models no. 4 and 6, respectively)

that required 4 or less concentration-time points obtained within 4 hours

post-dose, estimate AUC with 95th PAE% of 20% or less, Table 2. Among these

LSS, (C0, C2, C3, C4) for IV and (C0, C1.5, C2, C4) for PO CsA, had the best perform-

ance, with 95th PAE% of 14% and 16%, respectively. However, it is possible to reduce

the prediction error if a prolonged sampling period beyond 4 hours post-dose is

allowed. For example, the LSS (C2, C2.5, C8, C10) had a reduced PAE% of 7% for IV

CsA.

Furthermore, the prediction of the ‘underlying’ AUC revealed that the selected B-LSS

often had a better performance when the ‘underlying’ AUC was estimated rather than

the observed AUC. Indeed, under the same conditions of 4 or less sampling points

within 4 hours post-dose, we identified 15 B-LSS (instead of 12), that have 95th PAE%

of 20% or less, Table 3.

Discussion
Limited sampling strategies are gaining ground over extensive sampling in the drug

development process and clinical practice, particularly in pediatric therapies. With

the increasing use of Pop-PK modeling and Bayesian philosophy in drug R&D, we

can notice the recent transition from classical regression LSS approach towards B-

LSS. The current work investigates the use of B-LSS in the estimation of AUC, for

CsA administered through IV or PO routes in pediatric hematopoietic stem cell

transplantation. Taking into account clinical considerations, our approach uses the

empirical Bayesian method as implemented in NONMEM® for the selection of the

smallest set of sampling points (i.e. LSS) that allow accurate estimation of individ-

ual AUC.

Through LSS development process, we have been led to question the appro-

priateness, for B-LSS application, of the final Pop-PK model, particularly when its

development is mainly driven by the objective function value OFV. For this, we

have tested several related Pop-PK models and found that the usually referred as

the final one does not necessarily provide the best B-LSS performance for AUC

prediction. This is in fact not counterintuitive since this final model is chosen

under curve fitting criteria. The PK parameters found through this goodness of

fit criteria might not give the best estimation of AUC, which is indeed a

summary of the information carried by the concentration curve. It would be

interesting in the future to directly integrate an additional constraint that

minimizes prediction errors in AUC, within the model optimization process, in

order to account for both curve fitting and AUC estimation.

The prediction error of B-LSS depends on the Pop-PK-model used to predict

drug concentrations. Several Pop-PK model components such as covariate and



Table 3 Performance of B-LSS for the prediction of observed and ‘underlying’ AUC using selected Pop-PK models

LSS # Concentration-time
points

Error indices (for observed AUC) Error index for ‘underlying’ AUC

RMSE%
(Confidence interval)

ME%
(Confidence interval)

E% 95th PAE%: 95th PAE%:

<−20% [−20%, 20%] >20%

IV 1 C2, C2.5, C8, C10 4.39(3.26, 5.28) 1.19(−0.67, 3.06) 0 23 0 7 14

2 C0, C2, C3, C4 7.30(4.37, 9.36) 1.93(−1.18, 5.04) 0 23 0 14 17

3 C0, C2, C2.5, C3 7.71(4.32, 10.01) 1.75(−1.57, 5.07) 0 22 1 15 17

4 C0, C2, C2.5, C4 7.61(2.33, 10.51) 2.83(−0.30, 5.95) 0 22 1 16 19

5 C2, C2.5, C8 5.70(4.30, 6.81) 3.24(1.17, 5.31) 0 23 0 10 17

6 C0, C2, C3 8.14(4.63, 10.54) 2.40(−1.04, 5.84) 0 22 1 16 19

7 C0, C2.5, C3 9.85(7.16, 11.95) −0.61(−4.96, 3.73) 0 23 0 18 14

8 C0, C2.5, C4 9.53(6.42, 11.85) 0.89(−3.30, 5.09) 0 23 0 19 16

9 C2.5, C8 8.64(6.49, 10.36) 0.58(−3.24, 4.39) 0 23 0 15 14

10 C0, C2.5 11.33(8.25, 13.74) 1.05(−3.93, 6.04) 1 22 0 20 19

11 C0, C3 11.42(8.55, 13.69) −0.94(−5.97, 4.09) 1 22 0 20 15

12 C0, C4 12.11(8.19, 15.04) 2.65(−2.58, 7.87) 1 21 1 25 19

13 C4 13.88(10.30, 16.71) 4.36(−1.46, 10.19) 1 18 4 23 25

14 C0 23.32(16.81, 28.37) 0.55(−9.75, 10.86) 6 10 7 40 38

PO 15 C1.5, C3, C4, C8 6.98(5.29, 8.33) −3.20(−5.24, −1.17) 0 39 0 14 16

16 C0, C1.5, C2, C4 7.50(4.97, 9.36) 0.70(−1.76, 3.15) 0 38 1 16 11

17 C0, C1.5, C3, C4 7.60(5.48, 9.25) −0.35(−2.85, 2.14) 0 39 0 16 14

18 C0, C1, C3, C4 9.34(6.62, 11.42) 0.43(−2.63, 3.50) 1 38 0 18 16

19 C0.5, C3, C4 11.73(7.27, 14.91) 0.08(−3.77, 3.93) 1 38 0 18 15

20 C0, C2, C4 11.02(8.00, 13.37) 3.40(−0.04, 6.84) 1 36 2 24 19

21 C0, C1, C4 10.26(6.11, 13.15) 0.48(−2.89, 3.84) 1 37 1 24 20

22 C0, C1, C3 13.08(9.20, 16.04) 2.07(−2.17, 6.31) 2 34 3 28 21
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Table 3 Performance of B-LSS for the prediction of observed and ‘underlying’ AUC using selected Pop-PK models (Continued)

23 C1, C4 11.96(8.36, 14.70) −2.86(−6.68, 0.95) 4 34 1 25 25

24 C0, C3 18.65(11.05,23.94) 2.16(−3.92, 8.24) 4 31 4 41 34

25 C0, C4 21.37(16.26,25.47) 2.09(−4.89, 9.07) 6 23 10 43 38

26 C0, C2 21.19(12.55,27.21) 8.61(2.25, 14.97) 2 29 8 44 36

27 C3 17.46(12.77,21.14) −3.17(−8.81, 2.47) 7 29 3 33 30

28 C0 43.26(31.81,52.26) 15.62(2.37, 28.87) 7 14 18 86 87

The selected Pop-PK models are the structural model with combined errors (Model 4 in Table 2) and the one with additive errors (Model 6 in Table 2) for IV and PO CsA, respectively.
Ct: concentration at time t in hours post-dose, ME%: relative mean prediction error, RMSE%: relative root mean squared prediction error, 95th APE%: 95th percentile of the absolute relative errors.
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error models can significantly influence the performance of B-LSS. In a standard

Pop-PK model development, reduction in model objective function value OFV is

the main criterion to judge the quality of the model. In this approach, Pop-PK

parameters are estimated and optimized via a restricted maximum likelihood

method implemented in NONMEM®. However, for B-LSS application to estimate

AUC, a more efficient selection of Pop-PK models can be achieved by the

additional consideration of the impact of Pop-PK model components on AUC

prediction rather than only considering their impact on PK parameters estima-

tion. In our case, for example, even though the structural model with combined

error shows a better overall fit for PO profiles, it underestimates Cmax of indivi-

dual profiles. The structural model with additive error allowed a better estimation

of Cmax that has the main contribution to AUC value calculated by trapezoidal

method and therefore this model is associated with a better performance of

B-LSS.

To develop B-LSS for CsA in pediatric hematopoietic stem cell transplantation

and investigate its performance, we developed a Pop-PK model following the

standard procedure, from the structural model to the final covariate model, while

carefully keeping the intermediate tested models for comparison. In order to

identify the model that best predicts AUC, the performance of the final model

was compared with intermediate ones that differ in one or more model compo-

nents. For each model, all possible one, two, three, or four concentration-time

point LSS were investigated and their predictive performance evaluated. More-

over, we studied the situation when B-LSS are targeting the ‘underlying’ AUC

rather than the observed AUC and found that the B-LSS prediction performance

is improved. Indeed, we have used the two models (no. 4 and 6 in Table 2 for IV

and PO CsA, respectively), which have the smallest prediction errors for the

observed AUC, and obtained a better performance when the ‘underlying’ AUC

was estimated.

The studied population covers a wide range of demographic and clinical charac-

teristics that enables large applicability of the developed LSS. In addition, to

avoid the overestimation of the predictive performance, the data set used for

validation has to be different from the one used for learning. However, the small

number of initially available PK profiles, a common issue in pediatric research,

led us to use leave-one-out-cross-validation approach. This method is generally

used as an alternative to compensate for small data sets. When evaluating the

LSS performance, relative errors indices, namely E%, ME% and RMSE%, were

computed. However, we are aware that the use of relative errors might induce

the bias when applied to highly asymmetrical data, thus their distribution was

considered [28]. The 95th PAE% was used to initially compare B-LSS performance

for the Pop-PK models since it is more frequently used in clinical setting for the

evaluation of errors. Other error indices are calculated as well for all considered

models and the detailed results are reported in Table 3 for the best performing

ones, namely, for models no. 4 and 6 of Table 2. Particularly, the 12 proposed

B-LSS (8 IV and 4 for PO CsA) were verified for the absence of bias and their

ME% were not significantly different from 0. Even though the LSS developed in

this study allow accurate and precise CsA AUC estimation, we have to mention
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that further prospective trials are still needed to determine whether AUC-based

monitoring can increase efficacy and avoid toxicity. However, evaluating the value

of AUC as a marker for therapeutic drug mentoring is outside the scope of this

paper.

In the current study, using standard model diagnostic criteria, we have con-

structed a two compartment Pop-PK model with lag time and combined error to

characterize CsA PK data, which is in agreement with previous hematopoietic

stem cell transplantation studies [11,13,17,20,29]. In our structural model, CL was

estimated to be 14.8 L/h with an IIV of 31% (14.8, 31%), which are similar to the

reported ones for pediatric patients (11.3, 36%) [17] and (15.3, 17%) [20]. How-

ever, higher values of CL were reported for adult populations (22.3, 27.7%) [11],

(25.4, 38.7%) [13], and (52, 42%) [29]. The covariate influence on CL was de-

scribed in two studies. Willemze et al. [7] has shown power and linear relation-

ships between CL and WT as well as CL and time post transplantation (TPT),

respectively. Kim et al. [29] reported linear relationships between CL and sex as

well as hematocrit. In our study, WT was included as an allometric covariate for

both CL and VC, which is in agreement with the findings of Willemze et al. [7]

and generally adopted in pediatric PK modeling [24]. In addition, we found rela-

tionships between CL and alkaline phosphatase (AP) as well as age at profile date

(AG), the former relationship is compatible with the fact that CsA has hepatic

metabolism and that its elimination depends on liver function. Hematopoietic

stem cell transplantation complication includes chronic and acute liver graft-

versus-host disease for which alkaline phosphatase is a clinical marker [30,31]. In

addition our investigation confirmed the inverse correlation between age and two

PK parameters, namely, CL and Vc [15,16]. Moreover, our results regarding the

central and peripheral volume of distribution were within the range of the re-

ported studies [11,13,17,20,29], where values largely vary (Vc: 12.9-52, Vp: 59.9-

496). Furthermore, a lag time for CsA absorption was previously reported in

three studies [11,13,17]. The present investigation showed the influence of two

clinically relevant covariates on lag time, namely, time post transplantation and

FORM. In hematopoietic stem cell transplantation patients, time post transplant-

ation is related to the intestinal integrity that can affect CsA absorption [9] and,

as expected, capsules need additional time to be available for absorption when

compared to suspension. KA value was higher than that reported in adults

[11,13,29] and close to estimates of Willemze et al. in pediatrics [17]. The CsA

bioavailability in our study was estimated to be 59% with an IIV of 30%, which

compares well with reported values [11,17].
Conclusion
B-LSS requiring 4 or less concentration-time points obtained within 4 hours post-dose

can estimate CsA AUC in pediatric hematopoietic stem cell transplantation with ac-

ceptable prediction errors. However, the Pop-PK model developed using the standard

model diagnostic criteria, does not always lead to the best model for B-LSS application.

As we have seen in this paper, even the final covariate model gives a better fitting for

concentration data in the sense of objective function value (OFV) than the structural
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model, the latter has a better AUC prediction than the former. Thus, for improved B-

LSS application, more considerations with focus on the error in AUC prediction have

to be taken into account in the development of Pop-PK models. Moreover, in the case

where the prediction of the ‘underlying’ AUC is preferred compared to the observed

AUC, as the residual error is excluded in the former, B-LSS can have a better

performance.

Appendix
Pop-PK model development

Population pharmacokinetic analyses were performed using the nonlinear mixed effect

model approach as implemented in NONMEM® software (Version VII). The first order

conditional estimation with interaction (FOCE-I) method was used to determine PK

parameters.

To define the structural model, one, two and three compartment models with

first-order absorption and elimination were used to analyze available CsA data.

The lag time in absorption was also tested for each model. The exponential model

was used to describe inter-individual variability for PK parameters as expressed in

Eq.7:

θij ¼ θj � EXP ηij

� �
ð7Þ

where θij is the jth PK parameter for the ith individual, θj is the typical value of the

population parameter; ɳij is a random variable characterizing the between subject vari-

ability. A combined version of additive and proportional models was used to test for

the residual variability (Eq.8):

Cobs ¼ Cpred � 1þ ε1ð Þ þ ε2 ð8Þ

where Cobs and Cpred are the observed and predicted CsA blood concentrations,

respectively; ɛ1 and ɛ2 are random variables describing the unexplained residual

variability.

The structural model was developed based on statistical significance in the

reduction of the objective function value (OFV) using likelihood ratio (LT) test, as

well as other criteria such as the model stability and the improvement in model

fitting. As usually done in pediatric Pop-PK modeling, weight was initially inte-

grated as an allometric scaling factor for the clearance and volume of distribution.

The covariate model was established using the forward inclusion backward elimi-

nation method. This approach was accomplished through three steps. In the first

step, we set up the basic model by including weight as an allometric scaling factor

for the clearance and volume of distribution into the structural model. Scatter

plots of model parameters against each covariate helped to evaluate the potential

covariate impact and the relation patterns. In the second step, each candidate

covariate was screened in turn by incorporating it into the basic model to develop

the intermediate models toward a full one. The difference in OFV obtained for a

model with n + 1 covariates and the nested one with n covariates approximates

the χ2 distribution with one degree of freedom, and a change of OFV greater than

6.63, associated with a p-value of 0.01, was considered for statistical significance.

The following covariate were considered: weight (WT), age at profile date (AG),
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time post transplantation (TPT), sex, dosage form (FORM), co-administration of

corticosteroid, calcium channel blacker and azole antifungal, blood urea nitrogen,

albumin, total protein, total bilirubin, aspartate aminotransferase (ALT), alanine

aminotransferase (AST), gamma glutamyl transpeptidase (GGP), alkaline phos-

phatase (AP), hemoglobin, hematocrit , and red blood cell count. Only potentially

clinically meaningful relationships were considered. Hence, we have tested the

influence on CL of WT, AG, sex, FORM, co-administration of corticosteroid,

calcium channel blacker and azole antifungal, blood urea nitrogen, albumin, total

protein, total bilirubin, ALT, AST, GGP, AP, hemoglobin, hematocrit and red

blood cell count; we have tested the influence on Vc, Q, and Vp of WT, AG, and

sex; and finally tested the influence on KA and ALAG1 of AG, sex, TPT, and

FORM. Sex, FORM, and co-medications were included in the model as catego-

rical covariates in a linear mode. Other covariates were included as continuous

ones in linear, exponential, and power modes; these covariates are centered to

their median values. In the backward step, each covariate was independently

removed from the full model to confirm its importance. An increase in OFV of

more than 7.87 (p-value, 0.005) was required to confirm that the covariate

was significant. The final Pop-PK model included all significant covariates. The

Perl speaks NONMEM (PsN) toolkit was used for stepwise covariate model

building [25].

Pop-PK results

The initial analyses without covariates showed that a two-compartment model

with lag time and combined error model described the CsA PK profile better
Table 4 Parameter estimates for the two structural Pop-PK models selected for B-LSS
application

Structural Pop-PK model with
combined residual error

Structural Pop-PK model with
additive residual error

PK
parameters

NONMEM fixed
effect parameters

Inter-individual
variability%

NONMEM fixed
effect parameters

Inter-individual
variability%

estimate RSE% estimate RSE% estimate RSE% estimate RSE%

CL 14.82 7 31 14 14.49 8 32 15

Vc 31.8 9 † 24.91 10 †

Q 13.49 13 80 11 13.14 15 100 14

Vp 104.6 10 - - 86.15 8 - -

KA 0.71 16 83 11 0.58 13 75 10

ALAG 0.39 6 - - 0.39 6 - -

F 0.61 10 32 24 0.61 11 29 24

θ8 0.86 10 - - 1.02 15 - -

Cov (CL, Q) - - 44 27 - - 48 22

Residual error Prop. 17.5 -

Add. 15 ng/mL 100 ng/mL

The selected Pop-PK models are the structural model with combined errors (Model 4 in Table 2) and the one with
additive errors (Model 6 in Table 2) for IV and PO CsA, respectively.
†Inter-individual variability (Vc) = Inter-individual variability (CL) × θ8.
CL: clearance, Vc: apparent volume of distribution of the central compartment, Vp: apparent volume of distribution of the
peripheral compartment, Q: inter-compartmental transfer rate, KA absorption rate, ALAG: lag time in oral absorption,
F: oral bioavailability, RSE%: relative standard errors.
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than the other tested models. Thus, this is chosen as the structural model in

the current study. The estimated PK parameters were CL, Vc, Vp, Q, KA,

ALAG, and F. Inter-individual variability OMEGA can be estimated for CL, Vc,

Q, KA and F; inter-individual variability of Vc is highly correlated with that of

CL and was estimated as a linear function of it. Parameter estimates for the

structural model with combined and additive error model are shown in

Table 4.

The final model comprises the following covariates: WT, AG, TPT, and AP,

and FORM. The estimated parameters are reported in Table 5. The relative

standard errors (% RSE) of the parameters were acceptable, with a range from

0.05 to 0.30. Figure 4A shows the relationship between the observed and the

predicted CsA concentrations based on the final parameter estimates (PRED).

Figure 4B shows the relationship between the observed and the individual pre-

dicted concentrations (IPRED). Both plots show good correlation, suggesting

that the final model explains well the observed data, although peak concentra-

tions in several individuals were slightly underestimated by PRED. The values

and distribution of weighted residual (WRES) were unsatisfactory confirming

the adequate use of FOCE-I instead of FO as an estimation method. The
Table 5 Final Pop-PK model parameter estimates

PK
parameters

NONMEM fixed effect parameters Inter-individual variability%

Estimate RSE% Estimate RSE%

CL

θ1 = 15.66 5

17 11θ10 = −0.32 19

θ11 = 0.0017 29

Vc
θ2 = 36.68 9

2 7
θ13 = −0.39 16

Q
θ3 = 14.71 9

55 15
θ12 = 0.023 18

Vp θ4 = 105 10 - -

KA θ5 = 0.8 15 72 10

ALAG

θ6 = 0.46 3

- -

θ8 = 0.005 5

θ9 = −0.39 for suspension 19

θ9 = −0.022 for capsule 18

θ14 = −0.014 30

F θ7 = 0.59 8 30 15

Residual error Prop. 16

Add. 19 ng/mL

CL ¼ THETA 1ð Þ � WT=36:1ð Þ � � 0:75ð Þ � AG=11:82ð Þ � �THETA 10ð Þð Þ � 1þ THETA 11ð Þ � AP − 99ð Þð Þ � EXP ETA 1ð Þð Þ.
Vc = THETA(2) × (WT/36.1) × ((AG/11.82) * * THETA(13)) × EXP(ETA(2)).
Q = THETA(3) × (1 + THETA(12) × (WT − 36.1)) × EXP(ETA(3)).
Vp = THETA(4).
KA = THETA(5) × EXP(ETA(4)).
ALAG ¼ THETA 6ð Þ � EXP THETA 8ð Þ � TPT − 3:71ð Þð Þ � 1 þ THETA 9ð Þð Þ � 1 þ THETA 14ð Þ � AG− 11:82ÞÞðð .
F = THETA(7) × EXP(ETA(5)).
CL: clearance, Vc: apparent volume of distribution of the central compartment, Vp: apparent volume of distribution of the
peripheral compartment, Q: inter-compartmental transfer rate, KA absorption rate, ALAG: lag time in oral absorption,
F: oral bioavailability, WT: weight, AG: age at profile date, TPT: time post transplantation, AP: alkaline phosphatase, FORM:
dosage form, RSE%: relative standard errors.



Figure 4 Graphical model evaluation. A: relationship between the observed and the predicted CsA
concentrations based on the final parameter estimates (PRED); B: relationship between the observed and
the individual predicted concentrations (IPRED); C: distribution of weighted residual (WRES) and conditional
weighted residuals (CWRES).
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conditional weighted residuals (CWRES) for model-predicted concentrations

shown in the narrow rectangular distribution in function of observed concen-

tration and time, Figure 4C, are also acceptable.
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