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Abstract

Background: Networks Biology allows the study of complex interactions between
biological systems using formal, well structured, and computationally friendly
models. Several different network models can be created, depending on the type
of interactions that need to be investigated. Gene Regulatory Networks (GRN) are
an effective model commonly used to study the complex regulatory mechanisms
of a cell. Unfortunately, given their intrinsic complexity and non discrete nature,
the computational study of realistic-sized complex GRNs requires some
abstractions. Boolean Networks (BNs), for example, are a reliable model that can
be used to represent networks where the possible state of a node is a boolean
value (0 or 1). Despite this strong simplification, BNs have been used to study
both structural and dynamic properties of real as well as randomly generated
GRNs.

Results: In this paper we show how it is possible to include the post-transcriptional
regulation mechanism (a key process mediated by small non-coding RNA molecules
like the miRNAs) into the BN model of a GRN. The enhanced BN model is
implemented in a software toolkit (EBNT) that allows to analyze boolean GRNs from
both a structural and a dynamic point of view. The open-source toolkit is compatible
with available visualization tools like Cytoscape and allows to run detailed analysis of
the network topology as well as of its attractors, trajectories, and state-space. In the
paper, a small GRN built around the mTOR gene is used to demonstrate the main
capabilities of the toolkit.

Conclusions: The extended model proposed in this paper opens new
opportunities in the study of gene regulation. Several of the successful researches
done with the support of BN to understand high-level characteristics of regulatory
networks, can now be improved to better understand the role of post-
transcriptional regulation for example as a network-wide noise-reduction or
stabilization mechanisms.
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Introduction
In the last ten years the sequencing of the genome of several living organisms [1], as

well as the identification and functional annotation of thousand of the proteins that

these genomes encode [2,3], allowed remarkable advances in molecular biology. The

identification of the genome is only the first step in understanding how cells work, and

researchers are now switching to the next major challenge consisting in studying how

the different actors (genes, proteins, and other cellular components) interact together

and regulate each others to balance and synchronize all the biological activities of a

cell [4]. The biggest methodological problem is that these type of interactions are typi-

cal of complex (or non-linear) systems, where important properties emerge from the

interaction of their components, and cannot be predicted only from the study of the

parts taken individually. In fact, in biological systems, decisions are reached and actions

are taken by methods that are exceedingly parallel and extraordinarily integrated [5].

Complex Systems Biology aims at systematically studying complex interactions among

components of biological systems, by means of theoretical instruments provided by the

science of complex systems [6]. Consequently, to understand the nature of cellular

functions, it is necessary to study the behavior of genes in a holistic rather than in an

individual manner because the expressions and activities of genes are not isolated or

independent of each other [7]. In this context, the definition of models and computa-

tional methods supporting the study of Gene Regulatory Networks (GRN) is a primary

objective. GRNs are a general model, derived from the graph theory, used to represent

regulatory interactions between genes, proteins, and other regulatory elements like, for

example, small non-coding RNAs.

The more complex a network is, the simpler its model has to be in order to make its

computational analysis feasible. Several computational approaches have been proposed

and developed in literature [8] to model GRNs, and they mostly differ in the way they

model the interaction between nodes: partial differential equations, ordinary differential

equations, linear models [9-11], Bayesian networks [12,13], Boolean Networks [14] and

Petri nets [15]. Depending on the chosen approach, the state of each network node

can be considered as discrete or continuos. In the first case, each network node, i.e.,

genes/proteins, is supposed to assume only a small number of discrete states, avoiding

intermediate expression levels. Consequently, the regulatory interactions between

nodes are described by logical functions. Bayesian, Boolean and Petri networks support

this approach. Instead, if the states are considered to be continuous functions in time,

then their evolution is modeled by differential rate equations. Their punctual value is a

function of the expression of the input components. Partial differential equations,

(nonlinear) ordinary differential equations and linear models support this latter

approach.

Each approach has limits in the size of the network and the type of computation that

is able to handle. Consequently the choice of the best model depends on the type of

analysis that needs to be performed. In this paper we concentrate on the study of the

equilibrium states of GRNs and on the analysis of the dynamics that allow the network

to evolve from an initial state to one or more of its steady states. Equilibrium states

(known, in complex systems theory, as attractors) are particularly important because,

in GRNs, they have been correlated with the gene expression profiles obtained by

microarrays and other genomic experiments ( [16-19]).
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On of the simplest yet effective models that can be used to study a complex network

dynamics are Boolean Networks (BNs). Introduced by Kauffman [14] in 1969, they

repeatedly proved successful in modeling real regulatory networks (see [4,20-25], and

further references therein). A BN is a directed graph in which each node (gene)

receives inputs from a fixed number of selected nodes (genes). The state of a gene is

described by a Boolean variable that is active (ON, 1 value) or inactive (OFF, 0 value).

The value of the state of each gene is computed by means of a Boolean function

whose inputs are the state of its input nodes. Transitions between states are determi-

nistic, which means that a single output state is the consequence of a given input.

Although the approach seems to set a strong simplification towards reality, BNs enable

to study high-level properties of a network, like its state-space, its robustness to back-

ground noise, or its behavior under different initial conditions. Recent researches sug-

gest that also several realistic biological questions may be studied by looking at this

simple Boolean formalism and in particular computing and analyzing the related net-

work attractors (i.e., a state or a set of states towards which a system, that is moving

according to its dynamic, evolves over time) [19,26,27]. However, most published mod-

els focus on the classic Gene/Protein model, neglecting other regulatory mechanisms

like, for example, post-transcriptional regulation mediated by small non-coding RNA

sequences such as microRNA (miRNA).

miRNA and non-coding RNA have demonstrated to play a central role in how the

genome is regulated and how traits are passed on or eliminated by environmental and

genetic factors.

In this paper we show how post-transcriptional regulatory interaction mediated by

miRNA can be included in a Boolean Network model. We present a software tool, pre-

viously introduced in [28], able to simulate and analyze these models and to study the

influence of post-transcriptional regulation on the dynamic properties of the networks

like state-space, basins of attraction, and robustness. The main contribution of the

paper is therefore a tool supporting an extended BN model that allows a more realistic

representation of the cell regulatory activity that, in turn, allows improving the explora-

tory power of the BN formalism.

Background
Boolean networks

The attempt to model the most general aspects of gene regulatory networks dates back

to the end of 1960s when Kauffman in [14] proposed a first idealized representation of

a typical gene network. He modeled the regulatory interaction among genes as a direc-

ted graph in which each gene receives inputs from a fixed number of selected genes.

The state of each regulatory entity, i.e., a gene, is represented as a Boolean value, either

1, representing the activation of the entity (e.g., a gene is expressed), or 0 representing

its inactivation (e.g., a gene is not expressed). Connections between genes are directed,

and an edge from node x to node y implies that x influences (activates or silences) the

expression of y. Formally, given a set of N entities, such as genes, proteins etc., the

state of the GRN is then naturally represented as a Boolean vector X̂ = [x1, · · · , xN] ,
that generates a space of 2N possible states. The behavior of the state of each node xi
is described using a Boolean function fi, which defines the value of the next state of xi
using, as inputs, the states of its input nodes, i.e., those which directly affect its

Benso et al. Theoretical Biology and Medical Modelling 2014, 11(Suppl 1):S5
http://www.tbiomed.com/content/11/S1/S5

Page 3 of 17



expression. Since the simulation of a BN is done in discrete time steps, the dynamics

of a Boolean network modelling a regulatory system are described by:

X̂(t + 1) = F̂
(
X̂(t)

)
(1)

where X̂(t + 1) is the next GRN state given the F̂ vector of all functions fi that map

the transition of a single node from the current state to the next one.

The transition between two states of a BN can be modeled in two ways: asynchro-

nously, where each entity updates its state independently from the others, or synchro-

nously, where all entities update their states together. The synchronous approach is the

most widely used in literature [29,30]. In the synchronous model, a sequence of states

connected by transitions forms a state-space trajectory. All trajectories always end into

a steady state or a steady cycle. These steady (or equilibrium) states are commonly

referred to as point or dynamic attractors, respectively. Point attractors consist of only

one state: once the system reaches that state, it is “frozen” and no longer able to move

elsewhere. On the contrary, dynamic (or periodic) attractors reveal a cyclic behavior of

the system: once a trajectory falls into one of the states belonging the dynamic attrac-

tor, the system can only move between states belonging to the same attractor. For

each attractor, the set of initial states that leads to it is called basin of attraction [31].

The analysis of the attractors characteristics (such as their size, or the size of their

basin of attraction and their trajectories) are very important clues used to infer general

GRN characteristics [31,32].

Post-transcriptional modeling

The starting point to model gene regulatory activities with Boolean Networks is the

Gene Protein/Product Boolean Network model (GPBN) proposed by [32]. Differently

from the previous approaches where regulatory networks were modeled using only

genes, in this work the authors detail the regulatory genes’ interactions by explicitly

separating genes from their protein products (as separate nodes in the network). We

now know that also miRNAs participate, post-transciptionally, in the regulation of

almost every cellular process like, for instance, cell metabolism, signal transduction,

cell differentiation, cell fate, and so on [33,34]. In the present work, with the intro-

duction of miRNAs, we show how it is possible to include post-transcriptional regu-

lation in the GPBN model. In general, miRNAs target mRNA molecules by

interfering, using still poor understood mechanisms, with their translation, stability,

or both [35]. Starting from the GPBN model, we extended the interaction between

genes by explicitly introducing, as separate network nodes, also their non-coding

RNA products [36,37]. In our extended GPBN model nodes are labeled in three pos-

sible ways: (1) genes (circular nodes), (2) mRNA Protein pairs (rectangular nodes),

and (3) miRNA (rhomboidal nodes). There are consequently four possible types of

edges between nodes (see Figure 1):

1. transcription/translation: an edge from a gene to a protein product; it represents

the process that from the gene activation leads to the protein expression;

2. gene activation: an edge from a protein to a gene; it represents the activation of

a gene by one or more protein products (Transcription Factors);

Benso et al. Theoretical Biology and Medical Modelling 2014, 11(Suppl 1):S5
http://www.tbiomed.com/content/11/S1/S5

Page 4 of 17



3. miRNA transcription: an edge from a host gene to a miRNA node; it means that

the expression of the gene implies the transcription of miRNA molecules encoded

in the DNA transcript;

4. post-transcriptional regulation: a (silencing) edge from a miRNA to a protein; it

means that the protein is a miRNA target and therefore the protein translation is

inhibited by the presence of the miRNA.

In order to properly model the post-transcriptional regulation mechanisms, it is neces-

sary to carefully design the set of boolean functions that define the (next) state of each

transcriptional product targeted by a miRNA node. Post-transcriptional regulation acts

at mRNA level, hence, considering the final protein product, it has higher priority com-

pared to gene expression activity. In terms of boolean networks, it can be modeled by

placing the miRNA expression state in Boolean AND with the mRNA expression state.

As already mentioned in [32], the introduction of gene products also requires to take

into account the time each product is synthesized in the BN timeline of states evolu-

tion. Since the update of inner node values is synchronous [31], the synthesis products

require s time steps to be ready (expressed). In the same way, once a gene is no longer

expressed, its related products are silenced after d time steps. In our work synthesis

and decay times (s and d ) are defined as unitary for all the entities so that, if a given

gene is turned ON/OFF at time t, all its products will be accordingly turned ON/OFF

at time t + 1. The lifecycle of miRNAs is the same as all other gene products.

Although the introduction of miRNAs activity into the BN makes it possible to

include their post-transcriptional effects into the dynamics of the system, it is not

enough to properly model the whole post-transcriptional activity. At this point, not all

the states are biologically valid. Even though, if well designed, the dynamics of the

GRN makes it impossible to evolve into a biologically illegal state, there is no guaran-

tee that an illegal state is not used as the initial state when simulating the network.

Figure 1 Modeling regulatory mechanisms: 1) transcription/translation - 2) gene activation -
3) miRNA transcription - 4) post-transcriptional regulation.
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To avoid illegal states, the description of the BN is expanded to include a set of con-

ditions identifying all illegal states of the network. These conditions are represented by

an additional set of Boolean equations that must be evaluated every time an initial

state of the network is considered. Using boolean basics, a state is considered legal if

all conditions return zero, illegal otherwise. As an example, let us consider a gene Gx

and its related protein mRNAx_Px. The protein can be synthesized only if the related

gene has been expressed. So, any state in which mRNAx_Px is equal to 1 (expressed),

while Gx is equal to 0 (not expressed) is considered as an illegal state.

Methods
There are a number of software applications for experimenting with BNs [38-40].

Some of them are too narrow in scope, inefficient or difficult to customize. Since our

primary goal was to integrate the post-transcriptional BN model into a flexible pro-

gramming environment, we modified the Boolean Network Toolkit (BNT) presented in

[30], which was very easy to customize thanks to the C++ open implementation of its

core engine. The resulting toolkit, named Extended BN Toolkit (EBNT), is under

development under GPL license and available at http://www.testgroup.polito.it/index.

php/bio-menu-tools/item/208-boolean-regulatory-network-simulator. The code is sup-

ported by the BOOST C++ cross platform and multithread library [41], which allows

high computational performances and code portability.

The input GRN description is a simple text file describing the nodes names, types,

and interconnections. A separate text file contains the functional constraints described

in the previous section. After being loaded in the BNT core, a boolean network is

represented as a direct graph using adjacent lists. Each node is represented as a data

structure containing different information such as the node name, type (e.g., gene, pro-

tein or miRNA), and other parameters useful to characterize the node from both a

functional and graphical point of view. Any network output file is in xgmml format, an

xml-like open format compatible with several visualization tools like Cytoscape [42], a

flexible and open-source software platform for visualizing complex networks. This

solution also allows to use the outputs of our tool with the many available Cytoscape

plugins for network enrichment and topological analysis.

The EBNT is currently composed of three main modules (see Figure 2): a Network

Enrichment module designed to help the researcher in modeling a more realistic net-

work, a GRN Simulator, implemented to run dynamic analysis on the network, and a

Topology Analyzer, able to compute static analysis on the considered GRN network.

• Network Enrichment: this module is designed to create a more reliable represen-

tation of the network. It is particularly useful when the goal is to analyze a realistic

regulatory network (and not to analyze random networks with topological charac-

teristics resembling the ones of real biological networks). The module is able to

verify the correct representation of the post-transcriptional mechanism. According

to [43], if the transcription/translation is active, mRNAs/proteins are synthesized in

one time step. Thus, if the BN includes a miRNA node targeting a gene instead of

a protein, a new protein node is generated. This node is then connected to the par-

ent gene and the miRNA target becomes the protein instead of the gene. Also, all

gene outgoing edges (that represent the synthesis of gene products) are re-arranged

Benso et al. Theoretical Biology and Medical Modelling 2014, 11(Suppl 1):S5
http://www.tbiomed.com/content/11/S1/S5

Page 6 of 17

http://www.tbiomed.com/supplements/11/S1
http://www.tbiomed.com/supplements/11/S1


accordingly. The final resulting network still respects the assumption that transcrip-

tion factors and proteins, undergoing post-transcriptional modification, decay in one

time step if the corresponding mRNA is not anymore expressed [43]. Figure 3 shows

the BN post-transcriptional enrichment process. The second task of this module

(currently under development also as a standalone Cytoscape 3.0 plugin) is to ana-

lyze the post-transcriptional interactions modeled in the network against available

online repositories. Existing miRNA targets can be verified or additional targets sug-

gested in order to make the network as realistic and complete as possible (at least

according to the available data).

• GRN Simulator: the simulator has been designed to compute the network

dynamics by identifying its attractors and by mapping all network simulation trajec-

tories into a state-space diagram. A state-space diagram is one of the only ways to

provide a graphical output of the set of possible states of a network. Ideally, a rea-

listic state-space representation should be done on an N-dimension diagram, where

Figure 2 The EBNT conceptual architecture: the Network Enrichment module, the GRN Simulator,
and the Topology Analyzer.

Figure 3 The post-transcriptional BN enrichment process is able to verify the correct
representation of the post-transcriptional mechanism. If the BN includes a miRNA node targeting a
gene instead of a protein, a new protein node is generated. This node is then connected to the parent
gene and the miRNA target becomes the protein instead of the gene.
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N is the number of network nodes. Since this is graphically unfeasible, a 2D graph

representation is used, where each network state is represented by a node, and two

nodes are connected if they represent two consecutive states in the network evolu-

tion (e.g., if node A is connected to node B, it means that the network can directly

pass from state A to state B). In a synchronous network like the ones modeled in

this work, in the state-space diagram it is possible to identify separate sets of con-

nected nodes. Each set represents a set of trajectories (state sequences) ending in

the same point or periodic attractor. Each separate set of connected nodes is called

“basin of attraction”, and the analysis of its size and characteristics can provide

interesting additional clues on the original network dynamics (like robustness and

resistance to gene expression noise). Figure 4 shows the Cytoscape rendering of the

state-space of an example network where it is possible to identify the basins of

attraction, and the corresponding network attractors (red nodes). To provide a bet-

ter exploratory capability to the user, we also implemented a Cytoscape plugin that

allows to easily navigate the network state-space and to identify trajectories and

states of interest, and to zoom into each state or attractor to analyze the corre-

sponding detailed network configuration in terms of expressed and silenced nodes.

Figure 5 shows the overall attractor search process, modified to work with the

extended BN model. The attractor search procedure is an iterative process invol-

ving probes network simulations. P robes is the number of initial states from which

the network is evolved to identify its attractors. If the number of network nodes

(N) makes considering all possible (2N) initial state candidates computationally

unacceptable, then a reduced number of random initial state candidates can be

Figure 4 Cytoscape rendering of the state-space of an example network where it is possible to
identify the basins of attraction, and the corresponding network attractors (red nodes).
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selected. At each iteration, a new initial state is selected among the set of candi-

dates, and its validity against the transcriptional and post-transcriptional constraints

is verified. If the state is marked as legal, the network dynamics are simulated to

search for an attractor on the selected trajectory; if instead at least one of the con-

straints is true, it means the given state is not valid and it needs to be discarded.

• Topology Analyzer: this module, under continuous development, integrates cus-

tom and freely available Cytoscape plugins to perform several topological analysis

on both the original regulatory network and the state-space networks obtained dur-

ing the simulations. It can be used, for example, to identify network bottlenecks

and hubs, or measure the network diameter (the maximum distance between any

two nodes in a network), the network sensitivity and robustness [44], or the cluster-

ing coefficient (the percentage of existing links among the neighborhood of one

node). An useful capability is the ability to merge two state-spaces to highlight

their differences in terms of attractors and simulation trajectories (see an example

in the Results section).

Results and discussion
To demonstrate the performances of the presented toolset, we performed two set of

experiments. In the first, designed to better profile its scalability and the manageable

network size, we applied the attractors search algorithm on a set of artificially gener-

ated GRNs that include post-transcriptional regulation mechanisms. The second

experiment was performed to give readers an example of the type of analysis that the

tool allows to perform on a small but realistic regulatory network involving the mTOR

pathway.

Performance characterization
Experiments were performed on a 8-core workstation featuring multithreading pro-

gramming on three different network types:

• dense networks: each node has an average in/out degree (number of input/output

edges) equal to 25;

Figure 5 Pseudocode of the attractors search algorithm, modified to work with the extended BN
model. The attractor search procedure is an iterative process involving probes network simulations. P robes
is the number of initial states from which the network is evolved to identify its attractors.
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• sparse networks: each node has an average in/out degree equal to 5;

• scale-invariant networks: each node has an average in/out degree equal to 5; a

select number of nodes are hubs with in/out degree greater than 25;

For each class we generated four networks with increasing number of nodes: 10, 20,

50, and 100 nodes. For each network we applied the attractor search algorithm consid-

ering increasing number of initial probes, and each experiment has been repeated 10

times to account for the casualty of the initial state generation (Figure 6). The attractor

search algorithm is a multithreaded function able to explore the network states exploit-

ing all available microprocessor cores. In this way, the search is 8-times faster then in a

single-core implementation. The only actual limitation is the memory consumption

since the search complexity considerably increases with the number of nodes and

edges of the network. With 8GB of available RAM we noticed a performance break-

down when the GRN configuration reaches 100 nodes with an average number of

incoming edges per node higher than 29. The results reported in Figure 6 show that

Figure 6 Time performances of the network attractors search algorithm. Experiments were performed
on three different network types (Sparse, Dense, and Scale Free) with different number of nodes (10, 20,
50, and 100). For each network experiments were repeated with 10K, 100K, and 1M initial random states.
Each bar represents the average of 10 experiments with the same number of random initial states;
Reference Hardware: Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz ; 8GB RAM 1333MHz.
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attractors of networks up to 100 nodes are computed in a very reasonable time (Real

Time is lower than CPU Time thanks to the multithreading approach).

Simulation of the mTOR pathway

To show an example of how the presented tool can provide biologically meaningful infor-

mation, we performed a set of simulations on a slightly modified version of the mTOR

pathway (#hsa04150 - http://www.genome.jp/kegg-bin/show_pathway?hsa04150), whose

dysregulation is considered as a key factor in several malignancies. The mTOR signaling

pathway combines the signals produced by several upstream pathways, like insulin, growth

factors and amino acids [45], as well as cellular nutrition, energy levels and redox status

[46]. Targeting this pathway with selected drugs showed promising results in the treat-

ment of several types of cancer (e.g., leukemia, glioblastoma, myelodysplasia breast, hepa-

tic and pancreatic [47,48]), in which the mTOR pathway has been found dysregulated

[49]. In the following experiments we used a subset of the mTOR pathway of Figure 7; the

pathway contains two main complexes: mTORC1 (composed of mTOR, GBL, and RAP-

TOR), and mTORC2 (composed of mTOR, GBL, and RICTOR). Our experiment focused

on the mTORC2 complex (regulated by insulin, growth factors, serum, and nutrient levels

[50]). In literature, several works suggest that the RICTOR gene is a possible responsible

for metastasis and inhibition of growth factors [51]. When down-regulated, it seem to

reduce the phosphorylation of AKT and PKC that impairs the differentiation of Th2 cells.

These cells are important because they produce cytokines like IL-4, IL-5, IL-10, and IL-13,

responsible for several protective functions as antibody production, eosinophil activation,

and inhibition of several macrophage functions [52]. In a previous work ([53]), we

hypothesized that the down-regulation of RICTOR could be caused by a cascading effect

caused by the disruption of a protective feedback loop involving the RSK gene that hosts

an intragenic miRNA (miR-1976) which is able to inhibit the expression of the MLL tran-

scription factor. MLL is responsible for the transcription of HOXA9, which hosts miR-

196b that, if expressed, would target RICTOR dysregulating the mTORC2 complex.

Figure 7 The mTOR default network (empty nodes) enhanced with the PPL (filled nodes). For
simulating misbehaviors we removed the edge marked as 1, thus impairing the miR-1976 post-
trascriptional regulation of MLL. This acts as common pathological rearrangements of MLL, which lead to
several malignancies.
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The analysis of this complex regulatory mechanism seemed an excellent candidate to

test the proposed EBNT toolkit.

To setup the experiments we designed two versions of the yellow shaded portion of

the mTOR pathway of Figure 7: the first version is fully working, whereas in the sec-

ond we deleted the down-regulatory edge between miR-1976 and MLL (see Figure 7,

edge marked “1”). Such modification mimics a set of known pathological MLL translo-

cations (t(4;11), t(11;19), t(9;11) and t(1;11)), which may impair the inhibition capability

of miR-1976. In fact, the MLL translocation may cause modifications in its miRNAs

binding sites, further causing the ectopic expression of miR-196b ( [54]). For the simu-

lated pathway to be active, the RSK/ERK and PDK1 (driven respectively by interferon

and insulin) have to be expressed. Moreover, to see the effect of the regulatory loop,

MLL has to be expressed; in this way it is possible to see the effect of miR1976 that, if

working correctly, is able to inhibit the translation of the MLL mRNA into the MLL

protein, thus blocking the expression of HOAX9 and of its intragenic miRNA

miR196b that is then not able to down-regulate RICTOR.

After modeling both networks, we run the Network Enrichment module to add, for

each gene, their related proteins and possible co-transcribed miRNAs; the final result,

containing 22 nodes, is shown in Figure 8. For each node of the network the figure

reports its name (the UNIPROT Id in case of proteins) and the implemented boolean

function used, during the simulation, to compute the value of the next state of the

node. In the top-right corner it is also possible to see the constraints applied to vali-

date the initial random probes, as explained in the Methods section. In the figure is

also evident the silencing edge (marked “1”) from mir1976 to the MLL protein

(Q03164), which is missing in the Faulty version of the network.

The simulation of the Control network allowed to identify 92 attractors, whereas the

simulation of the Faulty network reported 73 attractors. In both experiments we

exhaustively simulated all the possible 222 probes (initial states), and the simulations

took less than 243 seconds for both networks (see Table 1).

Figure 8 The actual simulated network(s) with all the next-state boolean functions and the
constraints used to validate the initial probes.
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In the Additional file 1 and Additional file 2 it is possible to see all of the identified point

and periodic attractors, including the number of initial states that led to each of them (Hits).

Since we did not set any constraint on the value of the nodes that do not have any

input node (those nodes that are not controlled by any other node), some of the iden-

tified attractors are not biologically significant for the experiment because they corre-

spond to states where neither the pathway nor the regulatory loop are activated.

Given the set of attractors of the Control network, we focused on the first one, because

it describes a stable state in which both the pathway and the regulatory loop are fully acti-

vated and is compatible with the information available from the literature concerning the

correct expression of the mTOR pathway: the activating signals of the mTOR pathway

(RSK/ERK and PDK1), all subunits of mTORC2 complex (GBL, mTOR, and RICTOR),

and both AKT and RHEB are expressed; in this context, even if MLL is expressed, we

have the malignant regulatory path composed by the MLL protein, HOXA9, and miR-

196b blocked thanks to the protection of miR-1976 that, co-expressed by RSK, is able to

inhibit the translation of the MLL protein that would activate the regulatory cascade that

would eventually down-regulate RICTOR. Looking at the attractors of the Faulty network,

again only the fist attractor corresponds to a situation in which both the pathway and the

regulatory loop are activated (MLL, RSK/ERK, and PDK1 expressed). This time, as

expected, the absence of a single regulatory edge, leads to the complete impairment of the

mTORC2 complex. The malignant MLL’s cascade, without the protective binding of miR-

1976, expresses miR-196b, which interferes with the RICTOR protein translation, so inhi-

biting the mTORC2 complex formation. As already said RICTOR inhibition and the

resulting mTORC2 knock-off, are two effects of the reduced phosphorylation of AKT and

the impaired differentiation of Th2 cells [52].

The simulations results seem compatible with the data available in literature; they

highlight the importance of MLL, the HOXA cluster (HOXA9), and both miR-196b

and miR-1976, as presented by Schotte at al. [55,56] regarding Acute Lymphoblastic

Leukemia (ALL). Also Popovic et al. [54] suggest that “miR-196b function is necessary

for MLL fusion-mediated immortalization and it may justify the fact that the mTOR

pathway protects itself (with miR1976) by not allowing its expression. Similarly, the

same work shows that the level of miR-196b is decreased up to 14-fold in the absence of

MLL, thus confirming the down-regulatory role of miR-1976 on MLL”.

To better visualize the different behavior of the two networks, we run another

experiment in which we used a reduced amount of probes (2000), and added a set of

constraints that forced the expression of ERK/RSK, PDK1, and MLL. In this case we

obtained only one attractor for each network, exactly corresponding to the ones dis-

cussed previously in this section. As an additional step, we used one of the latest func-

tionalities of the Topology Analyzer to merge the two state-space diagrams obtained

by the simulations. The result is presented in Figure 9: the nodes marked in green

Table 1 Summary of the mTOR pathway simulations: number of nodes, attractors, and
execution time for the fully functional (Control) and modified (Faulty) network

Control Faulty

# nodes 22 22

# attractors 92 73

Time 242.37 241.12
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(labeled “2”) correspond to states of the default network; the nodes marked in red

(labeled “1”) are states which belong to the network without the protective edge; nodes

marked in blue (labeled “M”) are the set of states that are common in the two net-

works (theoretically the two networks should have the same 222 states, but in this

simulation we used 2000 random probes and therefore some of the initial states may

be different between the two networks). Interestingly, all the common states (“M”) are

at the top of the resulting merged state-space diagram. However, after no more than

two transitions, the control and faulty network trajectories appear completely disjunct,

resulting in the two previously discussed attractors. This is a good clue of how deeply

the pathway may be influenced by a single modification (i.e., MLL rearrangements

modeled by a single edge deletion), which eventually leads to distinct attractors

describing completely different phenotypes.

Conclusions and future work
The BNT presented in this paper is an important step towards a more realistic analysis

of the high-level functional and topological characteristics of GRNs. Resorting to the

tool facilities, such as multicore implementation and support for common input/output

formats, the dynamics of real networks of significant size can be analyzed. Thanks to

the extended model that includes post-transcriptional regulation, exciting new research

scenarios are opening up because the EBNT offers now a way not only to simulate a

realistic size network, but also to gather new insights on the role of miRNAs from a

functional as well as structural point of view. Our current efforts are geared toward

verifying and better understanding the role of post-transcriptional regulation (and miR-

NAs in particular) as network-wide noise-reduction or stabilization mechanism.

Additional material

Additional File 1: Additional file 1 contains the whole list of attractors for the default mTOR network

Additional File 2: Additional file 2 contains the whole list of attractors for the mTOR network with deleted
edge between miR-1976 and MLL

Figure 9 State-space comparison between default and modified mTOR pathway. Nodes in green
(labeled “2”) refer to states belonging to the default pathway, in red (labeled “1”) states of the network without
the protective edge, and in blue (labeled “M”) the set of common states between the two state-spaces.

Benso et al. Theoretical Biology and Medical Modelling 2014, 11(Suppl 1):S5
http://www.tbiomed.com/content/11/S1/S5

Page 14 of 17

http://www.biomedcentral.com/content/supplementary/1742-4682-11-S1-S5-S1.PDF
http://www.biomedcentral.com/content/supplementary/1742-4682-11-S1-S5-S2.PDF


List of abbreviations used
GRN - Gene Regulatory Network
BN - Boolean Network
GPBN - Gene Protein/Product Boolean Network
BNT - Boolean Network Toolkit
EBNT - Extended Boolean Network Toolkit

Competing interests
The authors declare that they have no competing financial interests or other conflicts of interest.

Authors’ contributions
AB, SDC, GP and AS planned the study, participated in its design and coordination, and wrote the manuscript. AV
implemented the model in software and ran the experiments. All authors read and approved the final manuscript.

Acknowledgements
The authors wish to acknowledge and thank Stefano Benedettini (European Centre for Living Technology, Venice,
Italy, e-mail: s.benedettini@unive.it), because its knowledge and support helped us to develop our tool.

Declarations
Publication funding for this article has come from Grant No. CUP B15G13000010006 awarded by the Regione Valle
d’Aosta for the project: “Open Health Care Network Analysis” and by the Italian Ministry of Education, University and
Research (MIUR) (Project PRIN 2010, MIND).
This article has been published as part of Theoretical Biology and Medical Modelling Volume 11 Supplement 1, 2014:
Selected articles from the 1st International Work-Conference on Bioinformatics and Biomedical Engineering-IWBBIO
2013. The full contents of the supplement are available online at http://www.tbiomed.com/supplements/11/S1.

Authors’ details
1Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy. 2Consorzio Interuniversitario
Nazionale per l’Informatica, Verres (AO), Italy.

Published: 7 May 2014

References
1. Werner T: Next generation sequencing in functional genomics. Brief Bioinform 2010, 11(5):499-511.
2. Benso A, Di Carlo S, urRehman H, Politano G, Savino A: Using genome wide data for protein function prediction by

exploiting gene ontology relationships. Automation Quality and Testing Robotics (AQTR), 2012 IEEE International
Conference on 2012, 497-502.

3. ur Rehman H, Benso A, Di Carlo S, Politano G, Savino A, Suravajhala P: Combining Homolog and Motif Similarity Data
with Gene Ontology Relationships for Protein Function Prediction. IEEE International Conference on Bioinformatics and
Biomedicine 2012.

4. Albert R: Boolean Modelingof Genetic Regulatory Networks. In Complex Networks, Volume 650 of Lecture Notes in
Physics Ben-Naim E, Frauenfelder H, Toroczkai Z, Springer Berlin Heidelberg 2004, 459-481.

5. Lähdesmäki H, Shmulevich I, Yli-Harja O: On learning gene regulatory networks under the Boolean network model.
Machine Learning 2003, 52:147-167.

6. Kaneko K: Life: An introduction to complex systems biology, Volume 171. Springer Heidelberg, Germany; 2006.
7. Shmulevich I, Dougherty E, Kim S, Zhang W: Probabilistic Boolean networks: a rule-based uncertainty model for

gene regulatory networks. Bioinformatics 2002, 18(2):261-274.
8. Jong HD: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational

Biology 2002, 9:67-103.
9. van Someren EP, Wessels LF, Reinders MJ: Linear modeling of genetic networks from experimental data. Proc Int

Conf Intell Syst Mol Biol 2000, 8:355-66.
10. Csikász-Nagy A, Battogtokh D, Chen KC, Novák B, Tyson JJ: Analysis of a generic model of eukaryotic cell-cycle

regulation. Biophys J 2006, 90(12):4361-79.
11. Fomekong-Nanfack Y, Kaandorp JA, Blom J: Efficient parameter estimation for spatio-temporal models of pattern

formation: case study of Drosophila melanogaster. Bioinformatics 2007, 23(24):3356-63.
12. Friedman N, Linial M, Nachman I: Using Bayesian networks to analyze expression data. Journal of Computational

Biology 2000, 7:601-620.
13. Moler EJ, Radisky DC, Mian IS: Integrating naive Bayes models and external knowledge to examining copper and

iron homeostasis in S. cerevisiae. Physiol Genomics 2000, 4(2):127-135.
14. Kauffman SA: Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 1969,

22(3):437-67.
15. Steggles LJ, Banks R, Wipat A: Modelling and analysing genetic networks: from boolean networks to petri nets.

Proceedings of the 2006 international conference on Computational Methods in Systems Biology CMSB’06, Berlin,
Heidelberg: Springer-Verlag; 2006, 127-141.

16. Crespo I, Krishna A, Le Béchec A, del Sol A: Predicting missing expression values in gene regulatory networks using
a discrete logic modeling optimization guided by network stable states. Nucleic Acids Research 2013, 41:e8[http://nar.
oxfordjournals.org/content/41/1/e8.abstract].

17. Villarreal C, Padilla-Longoria P, Alvarez-Buylla ER: General Theory of Genotype to Phenotype Mapping: Derivation of
Epigenetic Landscapes from N-Node Complex Gene Regulatory Networks. Phys Rev Lett 2012, 109:118102[http://link.
aps.org/doi/10.1103/PhysRevLett.109.118102].

Benso et al. Theoretical Biology and Medical Modelling 2014, 11(Suppl 1):S5
http://www.tbiomed.com/content/11/S1/S5

Page 15 of 17

http://www.ncbi.nlm.nih.gov/pubmed/21833263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11718795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21237189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21237189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15846451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17149551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16376941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16376941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11100157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18599105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18599105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15808501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11256080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11256080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14585447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14585447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12428927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12428927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18301946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18301946?dopt=Abstract


18. Huang S, Eichler G, Bar-Yam Y, Ingber DE: Cell Fates as High-Dimensional Attractor States of a Complex Gene
Regulatory Network. Phys Rev Lett 2005, 94:128701[http://link.aps.org/doi/10.1103/PhysRevLett.94.128701].

19. Huang S: On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol 2011, 21(3):183-199.
20. Bornholdt S: Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 2008,

5(Suppl 1):S85-94.
21. Wilczynski B, Furlong EEM: Challenges for modeling global gene regulatory networks during development: insights

from Drosophila. Dev Biol 2010, 340(2):161-9.
22. Serra R, Villani M, Semeria A: Genetic network models and statistical properties of gene expression data in knock-

out experiments. J Theor Biol 2004, 227:149-57.
23. Ilya S, A KS, Maximino A: Eukaryotic cells are dynamically ordered or critical but not chaotic. PNAS 2005, 102(38).
24. Rämö P, Kesseli J, Yli-Harja O: Perturbation avalanches and criticality in gene regulatory networks. J Theor Biol 2006,

242:164-70.
25. Serra R, Villani M, Graudenzi A, Kauffman SA: Why a simple model of genetic regulatory networks describes the

distribution of avalanches in gene expression data. J Theor Biol 2007, 246(3):449-60.
26. Luo JX, Turner MS: Evolving sensitivity balances Boolean Networks. PLoS One 2012, 7(5):e36010.
27. Huang S, Ernberg I, Kauffman S: Cancer attractors: a systems view of tumors from a gene network dynamics and

developmental perspective. Seminars in cell & developmental biology 2009, 20(7):869-876[http://dx.doi.org/10.1016/j.
semcdb.2009.07.003].

28. Benso A, Di Carlo S, Rehman HU, Politano G, Savino A, Squillero G, Vasciaveo A, Benedettini S: Accounting for Post-
Transcriptional Regulation in Boolean Networks Based Regulatory Models. In PROCEEDINGS IWBBIO 2013:
INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING. Univ Grenada; Spanish Chapter
IEEE Computat Intelligence Soc; SBV Improver; Illumina; e Hlth Business Dev Bull Espana S A; Univ Grenada, Fac Sci;
Univ Grenada, Dept Comp Architecture & Comp Technol; Univ Granada, CITIC UGR;Ortuno, F and Rojas, I 2013:397-404,
[International Work-Conference on Bioinformatics and Biomedical Engineering, Univ Grenada, Fac Sci, Granada, SPAIN,
MAR 18-20, 2013].

29. Bower J, Bolouri H: Computational Modeling Genetic & Biochem Computational Molecular Biology Series, Mit Press; 2001
[http://books.google.it/books?id=-9hZDDfMroQC].

30. Benedettini S, Roli A: An efficient simulator for Boolean network models. European Conference on Complex Systems
2012.

31. Aldana M, Coppersmith S, Kadanoff LP: Boolean dynamics with random couplings Springer-Verlag; 2003, 23-89.
32. Graudenzi A, Serra R, Villani M, Damiani C, Colacci A, Kauffman SA: Dynamical properties of a boolean model of gene

regulatory network with memory. J Comput Biol 2011, 18(10):1291-303.
33. Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO: Concordant Regulation of

Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA. PLoS Biol 2009, 7(11):e1000238.
34. Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest ARR, Kolle G, Gabrielli B, Grimmond SM: The miR-17-5p

microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 2008, 9(8):R127.
35. Hwang H, University TJH: Dynamic Regulation of MicroRNAs by Post-transcriptional Mechanisms Johns Hopkins University;

2009 [http://books.google.it/books?id=BWvTZ6_NU0YC].
36. Glass L, Kauffman SA: Co-operative components, spatial localization and oscillatory cellular dynamics. J Theor Biol

1972, 34(2):219-37.
37. Glass L, Kauffman SA: The logical analysis of continuous, non-linear biochemical control networks. Journal of

Theoretical Biology 1973, 39:103-129.
38. BNSim. [https://code.google.com/p/bnsim/], [Viewed: November 2011].
39. Albert I, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for life scientists. Source Code for Biology and

Medicine 2008, 3:16.
40. Gershenson C: RBNLab [http://sourceforge.net/projects/rbn/], [Viewed: November 2011].
41. Dawes B, Abrahams D, Rivera R: Boost C++ Libraries [http://www.boost.org/doc/libs/].
42. Cytoscape: Cytoscape: An Open Source Platform for Complex Network Analysis and Visualization [http://www.cytoscape.

org].
43. Albert R, Othmer HG: The topology of the regulatory interactions predicts the expression pattern of the segment

polarity genes in ¡i¿Drosophila melanogaster¡/i¿. Journal of Theoretical Biology 2003, 223:1-18.
44. Shmulevich I, Kauffman SA: Activities and Sensitivities in Boolean Network Models. Phys Rev Lett 2004, 93:048701.
45. Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev 2004, 18(16):1926-1945.
46. Tokunaga C, Yoshino Ki, Yonezawa K: mTOR integrates amino acid-and energy-sensing pathways. Biochem Biophys

Res Commun 2004, 313(2):443-446.
47. Easton JB, Houghton PJ: mTOR and cancer therapy. Oncogene 2006, 25(48):6436-6446.
48. Faivre S, Kroemer G, Raymond E: Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov

2006, 5(8):671-688.
49. Beevers CS, Li F, Liu L, Huang S: Curcumin inhibits the mammalian target of rapamycin-mediated signaling

pathways in cancer cells. Int J Cancer 2006, 119(4):757-764.
50. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM: mSin1 is necessary for Akt/PKB

phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 2006, 16(18):1865-1870.
51. Zhang F, Zhang X, Li M, Chen P, Zhang B, Guo H, Cao W, Wei X, Cao X, Hao X, Zhang N: mTOR complex component

Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer Res 2010, 70(22):9360-9470.
52. Romagnani S: Th1/Th2 cells. Inflamm Bowel Dis 1999, 5(4):285-94.
53. Benso A, Di Carlo S, Politano G, Savino A: A systematic analysis of a mi-RNA inter-pathway regulatory motif. J Clin

Bioinforma 2013, 3:20.
54. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J,

Rowley JD, Zeleznik-Le NJ: Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to
immortalization. Blood 2009, 113(14):3314-3322.

Benso et al. Theoretical Biology and Medical Modelling 2014, 11(Suppl 1):S5
http://www.tbiomed.com/content/11/S1/S5

Page 16 of 17

http://www.ncbi.nlm.nih.gov/pubmed/23510016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23510016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23858386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1870978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15492219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16895930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16895930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20354512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20708344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17251915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17251915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19926313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19926313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20099302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24143114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24143114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19287074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19287074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21149340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19719775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16034368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16860654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22323448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21248164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22188167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22190731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22190731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22902638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22902638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22882857?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22747445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23207153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22266823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17055429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22560925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22560925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7536332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7536332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16596183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16596183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19200257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14980512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23255321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23255321?dopt=Abstract


55. Schotte D, Chau J, Sylvester G, Liu G, Chen C, van der Velden V, Broekhuis M, Peters T, Pieters R, Den Boer M:
Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia.
Leukemia 2008, 23(2):313-322.

56. Schotte D, Lange-Turenhout E, Stumpel D, Stam R, Buijs-Gladdines J, Meijerink J, Pieters R, Den Boer M: Expression of
miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute
lymphoblastic leukemia. Haematologica 2010, 95(10):1675-1682.

doi:10.1186/1742-4682-11-S1-S5
Cite this article as: Benso et al.: An extended gene protein/products boolean network model including post-
transcriptional regulation. Theoretical Biology and Medical Modelling 2014 11(Suppl 1):S5.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Benso et al. Theoretical Biology and Medical Modelling 2014, 11(Suppl 1):S5
http://www.tbiomed.com/content/11/S1/S5

Page 17 of 17

http://www.ncbi.nlm.nih.gov/pubmed/18923441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20494936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20494936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20494936?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Background
	Boolean networks
	Post-transcriptional modeling

	Methods
	Results and discussion
	Performance characterization
	Simulation of the mTOR pathway

	Conclusions and future work
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

