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Abstract
Background: In order to improve understanding of metabolic systems there have been attempts
to construct S-system models from time courses. Conventionally, non-linear curve-fitting
algorithms have been used for modelling, because of the non-linear properties of parameter
estimation from time series. However, the huge iterative calculations required have hindered the
development of large-scale metabolic pathway models. To solve this problem we propose a novel
method involving power-law modelling of metabolic pathways from the Jacobian of the targeted
system and the steady-state flux profiles by linearization of S-systems.

Results: The results of two case studies modelling a straight and a branched pathway, respectively,
showed that our method reduced the number of unknown parameters needing to be estimated.
The time-courses simulated by conventional kinetic models and those described by our method
behaved similarly under a wide range of perturbations of metabolite concentrations.

Conclusion: The proposed method reduces calculation complexity and facilitates the
construction of large-scale S-system models of metabolic pathways, realizing a practical application
of reverse engineering of dynamic simulation models from the Jacobian of the targeted system and
steady-state flux profiles.

Background
Systematic modelling has emerged as a powerful tool for
understanding the mathematical properties of metabolic
systems. The rapid development of metabolic measure-
ment techniques has driven advances in modelling, espe-
cially using data on the effects of perturbations of
metabolite concentrations, which contain valuable infor-
mation about metabolic pathway structure and regulation
[1]. A power-law approximation for representing enzyme-

catalyzed reactions, known as Biochemical Systems The-
ory, is an effective approach for understanding metabolic
systems [2,3]. Generalized Mass Action (GMA) and S-sys-
tems [4,5], which are often used as power-law modelling
approaches, have wide representational spaces that permit
adequate expression of enzyme kinetics [6] in spite of
their simple fixed forms. Moreover since S-system forms
have a smaller number of parameters than GMA forms,
the S-system is an appropriate modelling framework. The
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derivation of an S-system model from given experimental
data is a powerful tool not only for understanding non-
linear properties but also for determining the regulatory
structure of the system [7,8].

S-system modelling from time-course data is often diffi-
cult due to its non-linear properties. Non-linear-fitting
algorithms, such as genetic algorithms or artificial neural
networks, have been used to resolve this problem [9-14].
Although these methods can be applied to metabolic
pathways, massive computing power is required in the
case of targeted models involving a number of closely-
connected, underspecified parameters [13]. Moreover, the
wider the range of targeted metabolic pathways, the more
likely is the occurrence of local minima due to the expan-
sion of the parameter search space. The network-struc-
tures-segmentation method can reduce the total
parameter search range in genetic network modelling [15]
but it is difficult to apply this to metabolic pathways
because of the close relationships between reversible reac-
tions and because of allosteric regulation. Diaz-Sierra and
Fairén have proposed an approach, based on the steady-
state assumption, that allows the construction of S-system
models from a Jacobian matrix of the system [16]. Since
the Jacobian constrains the search range of underspecified
parameters at the optimization stage, these authors'
method allows efficient parameter estimation. However,
the problem of an excess number of parameters requiring
estimation remains unsolved.

We present an approach to power-law modelling of meta-
bolic pathways from the Jacobian of the targeted system
and steady-state flux profiles with linearization of the S-
system. This reduces the number of underspecified param-
eters. Two numerical experiments show that the S-system
model generated by this method describes similar
dynamic behaviour to that indicated by conventional
kinetic models.

Methods
Retrieving the Jacobian from time-course data
As a first step, the Jacobian must be obtained from meta-
bolic time-course data. In this section, we summarize the
method of Sorribas et al [17], which we use in this work.

In biochemical systems, the Jacobian can be defined as:

where J is the Jacobian matrix, and δX represents a small
perturbation and contains the concentration Xi as its ele-
ments. The elements of the Jacobian can be obtained from
perturbed time-courses using linear least-squares fitting
[17,18]. This method is based on the fact that transients

yield linear responses to small perturbations under
steady-state conditions [5]. The mathematical basis for
this is that the linear representation constitutes the first-
order term of a Taylor series expansion, which is suffi-
ciently accurate in this situation.

Determination of the kinetic orders of the S-system
The S-system is a power-law representation constructed of
two terms: the production rate and the degradation rate:

where αi and βi are rate constants, gij and hij are kinetic
orders, and xi represents the concentration of a com-
pound.

In steady state conditions, it can be expressed simply as:

Flux =  V+ =  V -  (3)

where Flux is the sum of the steady-state fluxes into xi, and
V+ and V- are production and consumption terms, respec-
tively.

In steady state conditions, the production term and the
consumption term in Eq.(2) can therefore be represented
as:

where xj,0 represents the steady-state concentration of xj.

Consequently αi and βi yield:

Defining Xi as:

 = yi (x1, ..., xn)  (i = 1, ..., n)  (7)

the Jacobian of Eq. (2) can be represented as:
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In steady state conditions, Eq. (8) can be simplified by
substitution of Eq. (5) with αi and Eq. (6) with βi, giving:

and thus:

Once Jacobian Jij, xj,0, and Flux are given, Eq. (10) is a con-
straint for the determination of the kinetic orders gij and
hij. Savageau has described the linearization of S-system as
an "F-factor" for stability analysis [19]. We use this repre-
sentation to estimate parameter values.

In most cases gij and/or hij are available from the structure
of the metabolic pathway; however, in the absence of
known kinetic orders, parameter estimates are needed to
determine them. In such cases Eq. (10) is adopted as lim-
iting the parameter search range.

Results
Case study 1: a linear biochemical pathway
In the first case study, we applied this approach to the
published biochemical model of yeast galactose metabo-
lism shown in Figure 1[20]. This model consists of five
metabolites, and four enzyme reactions mainly described
by Michaelis-Menten equations. The kinetic equations,

systems parameters, and initial conditions are listed in
Appendix 1.

In this case, all parameters of the S-system model were
determined, without the need for estimation. The bio-
chemical model could be converted into the following S-
system form.

Since X1 is an independent variable, it was omitted from
the listed rate equations.

The following constraints were provided from the path-
way structure: h22 = g32, h23 = g33, h33 = h43 = g53, h34 = h44
= g54, h54 = g44, h55 = g45, β2 = α3, β3 = β4 = α5, and α4 = β5.
The steady-state concentrations were: X1,0 = 0.50 mM
(fixed value), X2,0 = 0.146 mM, X3,0 = 0.007 mM, X4,0 =
0.817 mM, and X5,0 = 0.243 mM. The steady-state fluxes
were: V1 = V2 = V3 = V4 = 0.081 mM/min. The Jacobian was:

Our method was able to generate the S-system model of
the linear pathway from the steady-state metabolite con-
centrations, the steady-state fluxes, and its Jacobian. For
example, g21 and g32 were determined by:

Because h22 is equal to g32,
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The pathway of galactose metabolism [20]Figure 1
The pathway of galactose metabolism [20]. Substances 
(X1–5) represent the following metabolites in the paper refer-
enced: X1, external galactose (GAE); X2, internal galactose 
(GAI); X3, galactose 1-phosphate (G1P); X4, UDP-glucose 
(UGL); and X5, UDP-galactose (UGA). The reactions are VTR, 
transporter of galactose; VGK, catalyzed by galactokinase; 
VGT, catalyzed by galactose-1-phosphate uridyltransferase; 
VEP, catalyzed by UDP-galactose 4-epimerase. X3 is an inhibi-
tor whose rate is given as VGK. The kinetic equations, sys-
tems parameters, and initial conditions of this model are 
shown in Appendix 1.
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In this modelling process, all the parameters were deter-
mined by simple calculations of this kind. The resulting S-
system model was:

Case study 2: A branched biochemical pathway
The branched biochemical pathway shown in Figure 2
was tested in the second example. This pathway has the
typical features of a biochemical pathway: branching,
feedback regulation, and product inhibition (see Appen-
dix 2). X3 is the inhibitor of both V3 and V4.

Most of the parameters were obtained by our method.
However one parameter could not be determined by cal-
culation and a parameter estimation method was used.
The model could be converted into the following S-system
form:

The following constraint was provided by the pathway
structure: h11 = g21. Steady-state concentrations were: X1,0
= 0.067, X2,0 = 0.049, X3,0 = 0.081, X4,0 = 0.041, and steady-
state fluxes were: V1 = V2 = 0.1, V3 = V5 = 0.043, and V4 = V6
= 0.057. The Jacobian was:

More than half of the parameters were obtained by simple
calculations using the steady-state concentrations, the
steady-state fluxes, and the Jacobian. The following four
parameters could not be determined: α3, g33, β3, and h33.
For example, h11 is a parameter which could be deter-
mined by:

Because g33 is a parameter that could not be determined
by a calculation, an estimate provided by some constraint
was needed. As α3, h33, and β3 could be treated as depend-
ent parameters, once g33 was obtained all four parameters
were determined:

Moreover, the search range of g33 could be limited by the
definition that h33 has a positive value since X3 is the sub-
strate of the reaction V3. The search range of g33 was set
from 0 to -0.95. When the number of underspecified
parameters was one whose search range was limited, a lin-
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The branched pathwayFigure 2
The branched pathway. X3 is an inhibitor of both V3 
andV4.
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ear-fitting algorithm could be used to fit the time-course
data in the original kinetic model. In this modelling, g33
was determined by a linear optimization method. Conse-
quently, the following S-system model was generated:

The list of parameters used in the above calculation is
shown in Table 1.

Comparing transient dynamic responses after 
perturbation
To evaluate the versatility of this method, the transient
dynamics of the S-system model in response to various
perturbations were compared with those of the original
Michaelis-Menten model, by calculating the mean relative
errors (MRE):

where n is the number of metabolites in the model, m, the
number of sampling points in the time course, x'i(t) rep-
resents the time course calculated from the created S-sys-

tem model, and xi(t), the time course calculated from the
original Michaelis-Menten model. In this experiment
there were 10 sampling points, the interval between sam-
pling points was 0.5, and X2 in case study 1 and X1 in case
study 2 were the targets of perturbations ranging from 0%
to 200%. The time-courses of metabolites in response to
perturbations of 100% are shown in Figure 3. In both
examples, similar dynamic behaviour was observed in the
S-system model and the reference model as a response to
the perturbation.

The changes of MREs in response to the perturbation
range are shown in Figure 4. The initial MREs with no per-
turbation were within 1%. Although a slight increase in
MREs was observed in both case studies, they remained
within 4% at a perturbation range of 200%.

Discussion
Power-law modelling from time-course data of metabo-
lite concentrations often requires parameter estimates that
depend on the size of the target metabolic network. Espe-
cially when developing a large-scale metabolic model, this
requires problem-specific simplifications. Our method
can reduce the number of underspecified parameters by
using steady-state flux profiles and the Jacobian of the tar-
geted system derived from time courses of metabolites,
and is thus suitable for large-scale power-law modelling.
To validate our methods we used two existing biochemi-
cal pathway models, the straight and branched pathway
models, described by dynamic equations. In the S-system,
modelling of a linear metabolic pathway with 12 parame-
ters (case study 1), our method determines all parameters
accurately, whereas the method developed by Diaz-Sierra
and Fairén [16] leaves at least four parameters underspec-
ified that include error correction parameters. In the case
of the branched metabolic pathway with 16 parameters
(case study 2), our method determines all but one param-
eter, whereas the method of Diaz-Sierra and Fairén has 12
underspecified parameters that include error correction
parameters. The case studies demonstrate that our method
of developing S-system models from time series can
reduce the number of underspecified parameters more
efficiently than the previously reported method [16]. Fur-
thermore, the perturbation response experiments show
that the models created by our method can reproduce
dynamics similar to the reference models, since the MRE
was around 3% when the perturbation range was 200%
(Fig. 4). S-system models generated by our method can
provide accurate simulations within a wide range of the
steady-state point. This limitation does not prevent the
modelling and analysis of metabolic pathways, as it does
with many power-law metabolic models [4,5].

Robustness against experimental noise is an important
requirement for the practical application of modelling
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Table 1: The parameters of the S-system model in case study 2

Parameter Calculated Estimated Determined or Estimated

α1 0.1 0.1 determined
β1,α2 0.955 0.955 determined
h11, g21 0.833 0.833 determined
β2 0.908 0.908 determined
h22 0.861 0.861 determined
h23 -0.154 -0.154 determined
α3 0.464 0.471 determined from g33
g32 0.892 0.892 determined
g33 -0.124 -0.118 estimated
β3 0.345 0.351 determined from g33
h33 0.827 0.833 determined from g33
α4 0.453 0.453 determined
g42 0.838 0.838 determined
g43 -0.178 -0.178 determined
β4 0.995 0.995 determined
h44 0.898 0.898 determined
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methods. Since the Jacobian is rather sensitive to the noise
in time series [18], a robust corrective response to the
numerical errors contained in a Jacobian is important in
developing a model involving its use. In the method of
Diaz-Sierra and Fairén [16], error correction parameters
are incorporated into the S-system model to reduce the
effect of experimental noise. However, this approach may
lead to an increase in the number of underspecified
parameters. As an alternative approach to reducing the
experimental noise in time-course data, the estimation of
appropriate slopes using a non-linear neural network
model is effective [10], and can provide an error-control-
led time course that enables the Jacobian to be obtained
with high accuracy. Methods for obtaining accurate esti-

mates of the specific effects of general types of perturba-
tion have been discussed [21] and might enable more
precise analysis of data such as time-scale metabolite con-
centrations obtained under perturbations.

To assess the robustness of our method against experi-
mental noise, we measured the calculation error when
numerical errors were manually inserted into the Jacobian
or steady state fluxes. Table 2 summarizes the MREs of the
simulated time trajectories of the S-system and the origi-
nal Michaelis-Menten model. It is evident that the Jaco-
bian is quite sensitive to numerical error because of the
direct effect on a kinetic order of a Jacobian. Furthermore,
the steady-state flux profile data may include experimen-

metabolite changes in response to perturbation of one metabolite by 100%Figure 3
metabolite changes in response to perturbation of one metabolite by 100%. (a) and (b) represent the changes in 
metabolites in case study 1 when X2 is the perturbation target, derived using the reference and S-system model, respectively. 
(c) and (d) are the changes in case study 2 when X1 is the perturbation target given by the reference and S-system model, 
respectively.
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tal noise. However, the models created by our method are
relatively robust to errors in the Jacobian and steady-state
fluxes, indicating that these methods will be useful in
practice.

Sorribas and Cascante proposed a method for identifying
regulatory patterns using a given set of logarithmic gain
measurements [7]. In their paper, they suggested that one
strategy for selecting possible patterns is to perform per-

turbation experiments and to measure the corresponding
dynamic response. For practical application of this
approach, it is crucial to develop appropriate ways of per-
forming the required experiments; however, measuring
the logarithmic gain resulting from various steady-state
fluxes is not practical due to a lack of exhaustive measure-
ment method. Our approach can be used to develop rea-
sonably accurate models of metabolic pathways by using
a single set of appropriate steady-state flux profiles.
Although steady-state flux profile data remains difficult to
be measured directly and comprehensively, several meth-
ods of measuring steady-state flux profiles by using iso-
topes have been developed [22,23]. Our method assumes
that the Jacobian obtained is accurate. Therefore it is
important to obtain time-course data reflecting transient
dynamics after a suitably small perturbation in which the
Jacobian behaves in a linear manner [17].

Comprehensive metabolome data will undoubtedly accu-
mulate as a consequence of advances in metabolic meas-
urement techniques [24-26]. In our laboratory we have
developed a high-throughput technique using capillary-
electrophoresis mass spectrometry that provides effective
time-course data involving a few hundred ionic metabo-
lites [27,28]. Our method promises to provide high-
throughput modelling of large-scale metabolic pathways
by exploiting the accumulating metabolome and steady-
state flux profile data along with the anticipated develop-
ments in metabolome measurement techniques.

Conclusion
Our method provides stable and high-throughput S-sys-
tem modelling of metabolic pathways because it drasti-
cally reduces underspecified parameters by employing the

Table 2: Mean relative errors (MREs) as a function of
experimental errors. The MREs of the S-system models and the
original models were measured in case study 2. The time-course
data obtained from the models included the perturbation-of-
state variable in order to examine the difference in dynamic
response between the S-system model and the original
Michaelis-Menten model. The Jacobian and steady-state fluxes
were reproduced with a 100% numerical error. Numerical errors
for the Jacobian were inserted equally into all the elements of
the Jacobian. X1was the target of the perturbation. The time-
course data were obtained from the S-system model where
X1was perturbed by an increase of 50%. Ten time points were
sampled for the calculation, with an interval of 0.5 s between
them. The MRE was calculated from the time-course data in the
S-system model and the original Michaelis-Menten model. In the
case of the branched biochemical pathway (case study 2), the
Jacobian was increased by 100%, and the three steady-state
fluxes, J1–2, J3–5, and J4–6represent the flux through V1 and V2, the
flux through V3 and V5 and the flux through V 4 and V6,
respectively.

Experimental Data Size of Error (%) MRE (%)

Jacobian 100 5.06
J1–2 100 0.55
J3–5 100 1.86
J4–6 100 1.65

Changes in the mean relative error (MRE)Figure 4
Changes in the mean relative error (MRE). Perturbations of the targeted metabolite ranging from 0% to 200% were 
applied. (a) Evolution of MRE in case study 1, in which X2 was the perturbation target. (b) Evolution of MRE in case study 2, in 
which X1 was the perturbation target.
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steady-state flux profile and Jacobian retrieved from time-
course data. S-system models generated by this method
can provide accurate simulations within a wide range
around the steady-state point. In combination with the
metabolome measurement techniques it should permit
high-throughput modelling of large-scale metabolic path-
ways.

Appendices
Appendix 1: Biochemical model of yeast galactose 
metabolism
The model of the yeast galactose utilization pathway was
constructed by Atauri et al. [20], whose reaction map is
presented in Figure 1.

The rate equations of the model are:

where the rate expressions are:

The parameters used are available in reference [20]. The
calculated steady-state conditions were: X1; 0.5 mM
(fixed), X2; 0.146 mM, X3; 0.00703 mM, X4; 0.817 mM,
X5; 0.243 mM, and the flux through the pathway; 0.0081
mM·s-1.

Appendix 2: Branched biochemical pathway
The rate equations of the branched model the reaction
scheme of which is shown in Figure 2 are:

 = V1 - V2

 = V2 - V3 - V4

 = V3 - V5

 = V4 - V6

where the rate expressions are:

V = 0.1
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