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Abstract
Background: It is of particular interest to identify cancer-specific molecular signatures for early
diagnosis, monitoring effects of treatment and predicting patient survival time. Molecular
information about patients is usually generated from high throughput technologies such as
microarray and mass spectrometry. Statistically, we are challenged by the large number of
candidates but only a small number of patients in the study, and the right-censored clinical data
further complicate the analysis.

Results: We present a two-stage procedure to profile molecular signatures for survival outcomes.
Firstly, we group closely-related molecular features into linkage clusters, each portraying either
similar or opposite functions and playing similar roles in prognosis; secondly, a Bayesian approach
is developed to rank the centroids of these linkage clusters and provide a list of the main molecular
features closely related to the outcome of interest. A simulation study showed the superior
performance of our approach. When it was applied to data on diffuse large B-cell lymphoma
(DLBCL), we were able to identify some new candidate signatures for disease prognosis.

Conclusion: This multivariate approach provides researchers with a more reliable list of
molecular features profiled in terms of their prognostic relationship to the event times, and
generates dependable information for subsequent identification of prognostic molecular signatures
through either biological procedures or further data analysis.

Background
High-throughput biotechnologies such as microarray and
mass spectrometry permit simultaneous measurements of
enormous bodies of genomic, proteomic, and metabolic
information to be made. Such information helps us
understand the molecular basis of important clinical out-
comes, and thus improves the efficiency as well as accu-
racy in clinical decision making. More specifically, a small
subset of these molecules can be used as biomarkers in
daily clinical practice for detecting disease at early stages,
measuring disease progress, monitoring the efficacy of
treatments, and potentially accelerating the drug discov-

ery process. However, the promise of genomics, proteom-
ics, and metabolomics in clinical medicine rests on
identifying these disease-specific molecular signatures.
Clinical and preclinical studies of patients' genomics and
proteomics profiles usually present datasets that share
common characteristics, i.e., many molecular features
("large p") collected from few individuals ("small n"). The
statistical challenge is to mine prognostic signatures from
thousands of candidates by efficiently extracting informa-
tion from samples of limited size, i.e., "small n large p"
datasets. Moreover, the clinical outcomes measured for
certain patients, e.g., survival times of cancer patients, are
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usually censored data, which further complicates the sta-
tistical analysis. There has been extensive research on the
classification and prediction of cancer using gene expres-
sion information [1-3], but there has been less progress in
identifying individual molecules that can be used to pre-
dict the clinical outcome. We devote this paper to devel-
oping a Bayesian approach to profile molecular features
on the basis of their prognostic relations to event times.

The proportional hazard model [4] has a long history in
modeling the association of risk factors to the right-cen-
sored event times observed in clinical study [5,6].
Through this model, it has been of special interest to
develop a systematic approach to identifying molecular
signatures for event times with "small n large p" datasets.
However, the overwhelmingly larger number of molecu-
lar candidates compared to the number of individuals
prohibits exhaustive variable selection because of the
heavy computation and model-overfitting considerations.
A variety of strategies have been proposed in the literature.
The first is to reduce the list of genotypic candidates by
univariately associating each of them with phenotypic
clinical outcome [1,7], and then regress the clinical out-
come on the selected candidates. The second employs
principal component analysis (PCA) to build up "eigen-
genes" (i.e., linear combinations of genes) and associates
these with phenotypic clinical outcomes, and the identifi-
cation of molecular signatures is further explored on the
basis of these [8]. The third strategy employs partial least
squares (PLS) [9,10] to construct orthogonal "eigengenes"
[11]. Other strategies have also been used to reveal inter-
esting prognostic molecular signatures for certain event
times [12-15]. Recently, Tadesse et al. [16] proposed a
Bayesian error-in-variable survival model to identify genes
of which the expression levels are associated with survival
outcome. It is widely accepted that most genes measured
in microarray experiments provide little information for
predicting patient survival, so a necessary step in the anal-
ysis is to reduce the number of candidates before identify-
ing prognostic molecular signatures with a relatively small
sample. This reduction is usually carried out by ranking
molecular features (either the original molecular candi-
dates or the "eigengenes") according to either z scores [7]
or Cox scores [17-19], which measure the univariate asso-
ciation of each molecular feature with the event time. Sev-
eral top-ranked molecular features are further explored for
their prognostic associations with the event time. As
shown in our simulation study, employing the univariate
Cox scores to profile molecular features can be misleading
as it may miss many important candidates but select many
false-prognostic ones. Indeed, molecular features with
high univariate association to the event time may not nec-
essarily predict the event time effectively when applied
together. As shown by Sha et al. [20] and Tadesse et al.
[21], the disease may often be affected jointly by subsets

of the genes while each individual gene might have a rel-
atively weak effect. This study focuses on developing an
efficient yet robust approach to profiling molecular fea-
tures on the basis of their prognostic associations with the
event time, taking advantage of the Bayesian framework
for the proportional hazard model proposed by Kalb-
fleisch [22].

We acknowledge the high correlation between some
molecular features due to the complicated genetic archi-
tecture. For example, genes involved in the same meta-
bolic pathway may be similarly or oppositely regulated.
These closely-related molecular features can result in col-
linearity between the candidates, and should therefore be
grouped together in order to address their prognostic
associations with the event time properly. Here, we group
closely-related molecular features into linkage clusters. A
centroid "gene" is constructed to represent each linkage
cluster and thus partially solve the collinearity issue. As
univariate Cox scores are unable to account for the com-
plicated correlation structures among molecular features,
we employ the Bayesian approach to construct a natural
framework for molecular feature profiling.

We first propose a two-stage procedure for profiling prog-
nostic molecular signatures for event times, and present
the construction of linkage clusters as well as their centro-
ids. A Bayesian framework of the Cox proportional hazard
model is specified for "large p small n" data and a profiling
criterion is described accordingly. The performance of our
approach is evaluated via a simulation study and applica-
tion to data concerning diffuse large B-cell lymphoma
(DLBCL) [15].

Results
Simulation study
To evaluate the performance of the proposed approach,
we simulated 20 survival datasets, each having p = 1, 000
features and n = 125 independent individuals. The feature
values were generated from an autoregressive process of
order one, with autocorrelation ρ = 0.5 and unit variance
white noise. The event times follow an exponential distri-
bution of which the rate is determined by a linear combi-
nation of the 12 features with non-zero coefficients.
Independent random censoring times were generated
from standard exponential distributions, and this induced
censoring of approximately 50% of the observed event
times. Among the 1, 000 autocorrelated features, the indi-
ces of the 12 with non-zero coefficients are 150, 151, 300,
302, 450, 453, 600, 604, 750, 755, 900, 906, and their val-
ues alternate between 1 and -1. Such constant-magnitude
coefficients were chosen in order to evaluate the effect of
correlation among features on the profiling, as the corre-
lations between the pairs of features, i.e., (150, 151),
(300, 302), (450, 453), (600, 604), (750, 755), and (900,
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906), decrease geometrically from 0.5 to 0.015625. As
shown in Figure 1, these feature pairs have similar chances
of being selected as top features while being ranked by the
Bayesian approach. In this simulation study, the proposed
Bayesian approach could select each non-zero coefficient
feature with high probability (more than 0.8) when more
than 12 features were selected in total. However, when
univariate Cox scores are used, a feature pair with higher
correlation is more likely to be among the selected top fea-
tures, and in general, all 12 features are less likely to be
correctly selected, as shown in Figure 2. The percentages of
the 12 non-zero coefficient features selected into top fea-
tures (i.e., success rates) are shown in Figure 3 when using
the Bayesian approach, or the univariate Cox scores. The
univariate Cox scores can lead to very high false discovery
rates because the features with non-zero coefficients are
usually ranked very low. Furthermore, as shown in Figure
3, the success rates of selecting features with non-zero
coefficients are very low even when a large number of fea-
tures are selected. On the other hand, when more than 12

features are selected using the Bayesian approach, the suc-
cess rates are usually higher than 0.8 and approach 1 very
quickly as more features are selected.

Application to a real dataset
We applied the proposed two-stage procedure to data on
diffuse large B-cell lymphoma (DLBCL) [15]. These data
include the expression levels of 7, 399 genes from a total
of 240 patients. The genomic information for each patient
was obtained at the beginning of the study, and the
patients were followed up until death or the end of the
project. The missing gene expression values were imputed
using the nearest neighbor averaging approach [12,23].
Using the single linkage clustering approach in Cluster 3.0
[24], we identified 5,656 linkage clusters by pruning the
hierarchical tree such that the node distances within
branches are less than 0.2. There are 4,944 linkage clusters
containing only one gene, while the largest has 186 genes.
We then consider selecting prognostic molecular features

Frequency of successes using the Bayesian approachFigure 1
Frequency of successes using the Bayesian approach. For each of the six feature pairs, the frequency of successes (y-
axis) is calculated as the total number of correct detections in the 20 simulated datasets when the Bayesian approach is used to 
select a certain number of features (x-axis).
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from the 5, 656 candidates, each being the centroid of a
linkage cluster.

The univariate Cox scores of all candidate clusters are cal-
culated and shown in decreasing order in Figure 4. There
are 761 candidates with Cox scores above the 95 percen-

tile of the  distribution, and 290 candidates with Cox

scores above the 99 percentile of the  distribution. We

selected the top 100, 200, 300, and 500 candidates with
the largest Cox scores and applied our Bayesian method to
profile them. The top 25 of the 500 candidates are listed
in Table 1.

Employing our Bayesian approach to profile the 500 can-
didates with the largest Cox scores, the posterior probabil-

ities, i.e., k defined in (2), of the top 25 clusters range

from 0.0538 to 0.9825. However, the ranks of these 25

clusters vary widely when their univariate Cox scores are
used, and only five of those with the top 25 univariate Cox
scores appear in this list. Therefore, it may be misleading
to profile the clusters for their prognostic ability on the
basis of their univariate Cox scores, since many false prog-
nostic features can be highly ranked owing to the compli-
cated correlation structure among features.

When fewer than 500 candidates, for example, 100, 200
or 300, are profiled with the Bayesian approach, most of
those that appeared in the top 25 of the 500 profiled can-
didates are also among the top 25 clusters as long as they
are profiled. Indeed, the only exception is the cluster with
two features in gene NM_00176, which was ranked at 61
when 300 candidates were profiled by the Bayesian
approach. However, the complicated correlation structure
between clusters makes it preferable to profile a number
of clusters sufficient to avoid missing critical prognostic
features. An exploratory selection of prognostic features
from the top 25 clusters shown in Table 1 implies that 16

χ1
2

χ1
2

p

Frequency of successes using univariate Cox scoresFigure 2
Frequency of successes using univariate Cox scores. For each of the six feature pairs, the frequency of successes (y-axis) 
is calculated as the total number of correct detections in the 20 simulated datasets when univariate Cox scores are used to 
select a certain number of features (x-axis).
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genes may be considered to construct prognostic features
for the event time, and some of these features were
ignored from the lists of 100, 200, and 300 candidates
chosen on the basis of their univariate Cox scores. The
cluster with 38 features from 11 genes is not one of the 16
selected, though all those genes except AK000170 belong
to the MHC class II signature group defined by Rosenwald
et al. [15]. D13666, which was reported by both Sha et al.
[20] and Gui and Li [25], belongs to the lymph-node sig-
nature group, and BC012161 and AF134159 belong to
the proliferation signature group (see Rosenwald et al.
[15]). D42043, D88532, BC012161, and LC_33732 were
also reported by Sha et al. [20]. It is interesting to observe
that, among the 16 selected genes, AF414120 (gene
CTLA4) is a member of the immunoglobulin superfamily
and encodes a protein that transmits an inhibitory signal

to T cells (Ling et al. [26]). AF127481, a lymphoid blast
crisis oncogene (LBC), plays an important role in regulat-
ing the Rho/Rac GTPase cycle while the Rho/Rac family of
small GTPases mediates cytoskeletal reorganization, gene
transcription, and cell cycle progression through unique
signal transduction pathways (Sterpetti et al. [27]).
U46767 (gene CCL13) encodes a cytokine that plays a
role in the accumulation of leukocytes during inflamma-
tion (Garcia-Zepeda et al. [28]). NM_000176 (gene
NR3C1) encodes a receptor for glucocorticoids that can
act as both a transcription factor and a regulator of other
transcription factors. This protein can also be found in
heteromeric cytoplasmic complexes along with heat
shock factors and immunophilins (Subramaniam et al.
[29]). X52186 (gene ITGB4) encodes the integrin beta 4
subunit, a receptor for the laminins, which tends to asso-

Comparison between the Bayesian approach and Cox scoresFigure 3
Comparison between the Bayesian approach and Cox scores. Shown as success rates (y-axis) are the true positive 
rates when a certain number of features (x-axis) are selected in each of the 20 simulated datasets. The solid line represents the 
results from the Bayesian approach and the dotted line represents the results using univariate Cox scores.
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ciate with the alpha 6 subunit and is likely to play a piv-
otal role in the biology of invasive carcinoma (Hogervorst
et al. [30]).

Discussion
With high-throughput techniques now available, there
has been extensive recent discussion of disease-specific
molecular signatures [31,32]. The whole genome and pro-
teome profiles for each of the limited number of patients
presents an enormous number of molecular candidates
with a complicated correlation structure. Here we group
highly-correlated molecular features into linkage clusters
in order to profile prognostic signatures. While the molec-
ular features within the same linkage clusters are expected
to have similar prognostic association with the event time,
physical linkages and metabolic pathways will be able to

provide confirmatory information. Thereupon, we
strongly suggest that available genome, proteome, and
metaboleme information be explored and combined with
observed profiles to construct the linkage clusters. By
doing this, we can improve the reliability significantly and
establish the biological functionality of linkage clusters
without overusing the limited number of profiles.

When an optimal subset with a prespecified number of
candidates is targeted, classical model selection
approaches may be employed to explore all possible sub-
sets and identify the best one. However, "small n large p"
datasets may still obstruct this practice because of the
enormous computation and unidentifiable models

involved. Indeed, when p diverges as n → ∞, many classi-

Cox Score plot for DLBCL dataFigure 4
Cox Score plot for DLBCL data. This figure shows the descending Cox scores of 5,656 Candidates in the DLBCL data. 

The dotted and dashed lines indicate the 99 and 95 percentiles of the  distribution respectively.
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cal approaches may not work even if p <n. Although uni-
variate Cox scores are frequently utilized to profile
candidates and accordingly select the subset, it is risky to
identify prognostic signatures by this approach as it is easy
to include false signatures but miss the true ones owing to
the strong correlations among molecular features. For
example, when a molecular feature is positively correlated
with both true signatures, it may happen that the false
one, instead of the two true ones, is selected. Ein-Dor et al.
[33] discussed the discrepancies while using a univariate
approach. Built upon the multivariate proportional haz-
ard model (1), the proposed Bayesian approach is able to
search all possible subsets of a certain size stochastically
via Gibbs sampling. With restrictive priors for "small n

large p" datasets, the posterior probability k serves as a

relative measure for profiling each candidate's prognostic
association with the event time, accounting for other can-
didates. It is straightforward to extend this Bayesian
approach to profile molecular signatures by controlling
other clinical factors [3] and considering microenviron-
ments [34].

The three-component prior for the coefficients in model
(1) is crucial in constructing the profiling criterion. First,
the prior probability of each component can be controlled
with a uniform distribution on a subset of [0,1] to guaran-
tee that the model is identifiable such that a Gibbs sam-
pler can feasibly be employed to search the parameter

p

Table 1: Bayesian Profiling of the DLBCL Data. The 16 starred genes are proposed by our exploratory selection. Bracketed are the 
numbers of features from the same gene, which are included in the same cluster.

GenBank Accession No. Cox 100 200 300 500

Score Rank
k

Rank
k

Rank
k

Rank
k

Rank

*D42043 18.91 6 0.99 2 0.99 1 0.99 1 0.98 1
*D88532 9.13 122 - - 0.99 2 0.89 2 0.93 2
*U50196 6.82 272 - - - - 0.12 6 0.32 3

*BC012161 21.28 3 0.81 4 0.55 4 0.61 4 0.31 4
*AF414120 5.77 387 - - - - - - 0.27 5
*AF004709 5.27 460 - - - - - - 0.20 6
AF127481 17.14 8 1.00 1 0.90 3 0.67 3 0.19 7

*AK025954 5.93 365 - - - - - - 0.14 8
*AA504484 (2) 5.23 468 - - - - - - 0.11 9

J00220 8.40 167 - - 0.32 9 0.09 11 0.09 10
*AA837319 9.84 96 0.45 6 0.20 11 0.07 15 0.09 11
AA027985 11.44 50 0.30 9 0.18 13 0.09 10 0.09 12
*D13666 12.85 32 0.34 8 0.34 7 0.10 7 0.08 13
LC_33732 7.52 223 - - - - 0.07 16 0.08 14
*AK000271 7.01 260 - - - - 0.09 12 0.08 15
AF134159 14.11 18 0.43 7 0.20 10 0.08 13 0.07 16

*AA805749 5.72 393 - - - - - - 0.07 17
*U46767 11.33 52 0.51 5 0.20 12 0.13 5 0.06 18

*AA804793 9.21 117 - - 0.43 6 0.09 9 0.06 19
AA829241 12.76 33 0.25 10 0.12 21 0.06 19 0.06 20

*NM_000176 (2) 11.28 56 0.19 12 0.13 18 0.02 61 0.06 21
X00452 (5) 14.42 16 0.92 3 0.46 5 0.10 8 0.06 22
X00457 (3)
X62744 (3)
U15085 (4)
M16276 (4)
K01171 (5)
M20430 (4)
M83664 (2)
K01144 (6)
AK000170
LC_24239
*X52186 5.44 436 - - - - - - 0.05 23
U59302 6.68 287 - - - - 0.07 14 0.05 24

AA825732 7.67 215 - - - - 0.05 21 0.05 25

p p p p
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space stochastically. Putting these prior probabilities on a
restricted interval allows various numbers of nonzero
coefficients in model (1). Second, the three-component
prior approach provides flexibility in the possible imbal-
ance between the scales and/or sizes of positive and nega-
tive coefficients in the model. Third, the three-component
prior automatically results in a three-component poste-
rior distribution for each coefficient, with the posterior
probability of each component available for further calcu-
lation. In summary, the profiling criterion, posterior

probability ( k), has a natural explanation and can be

easily implemented in practice.

Methods
Construction of linkage clusters and their centroids
To facilitate pattern recognition and reveal otherwise hid-
den structures and functions, genes and proteins are usu-
ally clustered into groups based on different biological
metrics, such as sequence similarity [35] or expression
profiles [12,36]. With gene expression data only, many
approaches have been applied to cluster genes that exhibit
similar expression profiles across samples (see the review
by Jörnsten and Yu, [36]). As we are interested in the prog-
nostic relationships of genes to the event time, highly cor-
related genes are more likely to have the same power to
predict the event time and therefore should be grouped
into the same cluster. Here we define linkage clusters as
groups of genes with large pairwise correlations in abso-
lute value. As shown by Shaffer et al. [37], these linkage
clusters of molecular features may reveal functional simi-
larity/dissimilarity. Proteins regulated in the same meta-
bolic pathway may also act similarly or oppositely.
Although expressions of genes/proteins are usually
observed with measurement errors, these linkage clusters
can still be identified in experimental data. As shown in
Figure 5, the molecular features can be mutually corre-
lated as highly as correlation coefficient |ρ| ≥ 0.96. From
a statistical point of view, these closely-related molecular
features can cause collinearity or near collinearity in mul-
tivariate identification of prognostic signatures and there-
fore destabilize the identification result if all these closely-
related molecular features are included in the prognostic
model.

Hierarchical clustering approaches (e.g., the complete
linkage clustering or single linkage clustering approach in
Cluster 3.0 by de Hoon et al. [24]) can be used to con-
struct these linkage clusters. With the mutual correlation
coefficients estimated from the data, we use the absolute
values of correlation coefficients as the similarity scores,
i.e., with the distance measure d = 1 - |ρ|. We prune the
hierarchical tree with a prespecified value for the distance,
e.g., d ≤ 0.2 (hence absolute values of the correlation coef-

p

Illustration of Linkage BlocksFigure 5
Illustration of Linkage Blocks. Part (a) indicates the color 
bar used in the other parts. Parts (b), (c) and (d) represent 
three different linkage blocks with correlation coefficients 
being 0.96, 0.98, and 0.97 respectively, where each row cor-
responds to a gene and each column corresponds to an indi-
vidual.
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ficients are no less than 0.8). The molecular features
within the same branch are assumed to be within the
same linkage cluster. The centroid of the linkage cluster is
used to represent all the elements within the linkage clus-
ter, and subsequent identification of prognostic signatures
proceeds by associating these centroids only with the
event time.

The expression levels of the centroids are calculated by
standardizing expressions of all genes. More specifically,
for each linkage cluster, we first randomly select one gene
and reverse the expression signs of all genes within the
cluster that are negatively correlated with this gene. Then
the expression level of the centroid is calculated by aver-
aging the expression levels of all the genes within the same
linkage cluster. Meanwhile, the measurement errors in
expression levels are attenuated after averaging the gene
expression levels within the same linkage cluster.

Bayesian framework of proportional hazard model
Suppose that p linkage clusters are identified and therefore
the expressions of the p centroids are calculated for each
of the n individuals. The observed event time for the i-th
individual is denoted yi, with δi indicating whether it was
right-censored owing to loss in follow-up (i.e., δi = 0 if
right-censored and δi = 1 otherwise). Accordingly, the
expressions of the centroids are denoted zi = (zi1, zi2, …,
zip). We use the popular Proportional Hazard Model [4] to
associate the molecular features with the event time, i.e.,
the hazard function is modeled as follows:

λ(t|zi) = λ0(t)exp(zi β),  (1)

where β includes the p coefficients for all the centroids,
and λ0(·) is an unspecified baseline hazard function.

Further, let  = {(yi, δi, zi) : i = 1, 2, …, n} be the observed

data, and (t) = {i : yi ≥ t} be the risk set at time t. Follow-

ing Kalbfleisch [22], we construct the Bayesian framework

to estimate β by considering only the partial likelihood
function,

which avoids the nuisance baseline hazard function λ0(t).

With a large number of available linkage clusters, the
time-to-event of interest may be associated with a rela-
tively small number of linkage clusters. On the other
hand, the available "large p small n" data sets hamper us
in detecting linkage clusters with too weak effects on the
time-to-event of interest, and we expect to be able to iden-

tify those linkage clusters with strong effects. We therefore
incorporate this important prior information by consider-
ing the following prior distribution for each βk:

βk ~ (1 - w+ - w-)δ{0} + w+N+(0, ) + w-N-(0, ),

where N+(µ, σ2) and N-(µ, σ2) are the truncated Gaussian
distributions with only positive and negative parts, respec-
tively. As shown by Zhang et al. [38] and Zhang et al. [39],
this three-component prior has some theoretical proper-
ties and allows a possible imbalance between scales and/
or sizes of positive and negative coefficients in model (1).

A priori, the hyperparameters  and  are assumed to

follow inverse gamma distributions as IG(1, φ+) and IG(1,

φ-), respectively. Here, sufficiently large φ+ and φ- are rec-

ommended to approximate the noninformative priors 1/

 and 1/ , respectively. For the prior distribution of

(w+,w-), a noninformative prior (such as Dirichlet(1, 1, 1))

is not applicable since the model is not identifiable with p
» n. As shown in Zhang et al. [40], the number of reliably
identified significant predictors is limited by the sample
size n. Following Zhang et al. [39] and Zhang et al. [41],
we let

w+ + w- ~ Unif(0, 2 /p),

which guarantees the model to be identifiable. On the
other hand, as the number of candidate predictors is large,

the upper bound, 2 /p, on (w+ + w-) can be so restric-

tive that the resultant posterior probability for a true pre-
dictor to be significant can be very small. However, these
posterior probabilities, as relative measures of signifi-
cance, play an important role in profiling all features for
their prognostic relations to the event time.

The Gibbs sampler
In view of the large number of parameters to be estimated,
we consider a Gibbs sampler to obtain the posterior distri-
butions of the parameters and make inferences. The Gibbs
sampler can be developed by iteratively sampling each
parameter from its full conditional distribution.

For simplicity, let β-k include all components of β except

βk, and write gk(βk|β-k, ) = PL(β| ) when βk is of par-

ticular interest. Then the full conditional distribution of βk

is a mixture of a point mass at zero and two continuous
distributions, i.e.,
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βk|w+, w-, , ,

~ (1 - k+ - k-)δ{0} + k+ k+ + k- k-,

where k+ and k- zare the distributions corresponding

to the following probability density functions,

and the probabilities for βk to be positive and negative are,
respectively,

Here, wk+ and wk- are normalization coefficients, which
can be calculated as

The full conditional distribution of w+ and w- is

(w+, w-, 1 - w+ - w-)|β

~ Dirichlet( +, -, p - + - -), w+ + w- ≤ ,

where + = #{k : βk > 0} and - = #{k : βk < 0}. Finally,

the full conditional distribution of  and  are

The parameters were initialized on the basis of estimators
from univariate approaches. After the initial burn-in
period (5,000 in the following analysis), the next 5,000
iterations in the Markov chain were used for inference
without thinning. Convergence of the algorithm was
checked by the diagnostic tools in Cowles and Carlin [42].

Profiling criterion

The significance of each centroid in model (1) is deter-
mined by one pair of parameters. They are, for the j-th

centroid, the posterior probabilities pk+ = P(βk > 0| ) and

pk- = P(βk < 0| ). Given data , the marginal posterior

distribution of βk is still a mixture of three components,

i.e., being positive with probability pk+ = E[ k+| ],

being negative with probability pk- = E[ k-| ], and hav-

ing a point mass at zero with probability 1 - pk+ - pk-. The

two parameters pk+ and pk- can be estimated from the

Markov chains of βk+ and βk- drawn from the above

Gibbs sampler. With moderately large p, the upper bound

2 /p on (w+ + w-) may not be restrictive and βk can be

estimated with the median value of its posterior probabil-
ity. However, p is usually much larger than n in gene
expression data and, as a result, pk+ and pk- may be heavily

shrunk to zero. Therefore, identifying significant prognos-
tic centroids with the posterior median values will be too
conservative. Instead, we suggest profiling the prognostic
association of k-th centroid to the event time by

k = max{pk+, pk-},  (2)

which is a relative measure when p is much larger than n.
As demonstrated in the simulation study, this profiling
criterion performs much better than the popular univari-
ate Cox score.
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