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Abstract
Background: Due to the increasing importance of identifying insulin resistance, a need exists to
have a reliable mathematical model representing the glucose/insulin control system. Such a model
should be simple enough to allow precise estimation of insulin sensitivity on a single patient, yet
exhibit stable dynamics and reproduce accepted physiological behavior.

Results: A new, discrete Single Delay Model (SDM) of the glucose/insulin system is proposed,
applicable to Intra-Venous Glucose Tolerance Tests (IVGTTs) as well as to multiple injection and
infusion schemes, which is fitted to both glucose and insulin observations simultaneously. The SDM
is stable around baseline equilibrium values and has positive bounded solutions at all times. Applying
a similar definition as for the Minimal Model (MM) SI index, insulin sensitivity is directly represented
by the free parameter KxgI of the SDM.

In order to assess the reliability of Insulin Sensitivity determinations, both SDM and MM have been
fitted to 40 IVGTTs from healthy volunteers. Precision of all parameter estimates is better with the
SDM: 40 out of 40 subjects showed identifiable (CV < 52%) KxgI from the SDM, 20 out of 40 having
identifiable SI from the MM. KxgI correlates well with the inverse of the HOMA-IR index, while SI
correlates only when excluding five subjects with extreme SI values. With the exception of these
five subjects, the SDM and MM derived indices correlate very well (r = 0.93).

Conclusion: The SDM is theoretically sound and practically robust, and can routinely be
considered for the determination of insulin sensitivity from the IVGTT. Free software for
estimating the SDM parameters is available.

Background
The measurement of insulin sensitivity in humans from a
relatively non-invasive test procedure is being felt as a
pressing need, heightened in particular by the increase in
the social cost of obesity-related dysmetabolic diseases [1-
8]. Two experimental procedures are in general use for the
estimation of insulin sensitivity: the Intra-Venous Glucose

Tolerance Test (IVGTT), often modeled by means of the
so-called Minimal Model (MM) [9,10], and the Euglyc-
emic Hyperinsulinemic Clamp (EHC) [11]. The EHC is
often considered the "gold standard" for the determination
of insulin resistance. However, the standard IVGTT is sim-
pler to perform, carries no significant associated risk and
delivers potentially richer information content. The diffi-
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culty with using the IVGTT is its interpretation, for which
it is necessary to apply a mathematical model of the status
of the negative feedback regulation of glucose and insulin
on each other in the studied experimental subject.

Due to its relatively simple structure and to its great clini-
cal importance, the glucose/insulin system has been the
object of repeated mathematical modeling attempts [12-
23,23-30]. The mere fact that several models have been
proposed shows that mathematical, statistical and physi-
ological considerations have to be carefully integrated
when attempting to represent the glucose/insulin system.
In modeling the IVGTT, we require a reasonably simple
model, with as few parameters to be estimated as practica-
ble, and with a qualitative behavior consistent with phys-
iology. Further, the model formulation, while applicable
to the standard IVGTT, should logically and easily extend
to model other often envisaged experimental procedures,
like repeated glucose boli, or infusions. A simple, discrete
Single Delay Model ("the discrete SDM") of both feed-
back control arms of the glucose-insulin system during an
IVGTT has already been validated as far as its formal prop-
erties are concerned [31,32].

The present work has three main goals. The first goal is to
present the physiological assumptions underlying the
new model, from which an insulin sensitivity index, con-
sistent with the currently employed insulin sensitivity
index from the Minimal Model, can be derived. The sec-
ond goal is to discuss in general the inconsistent results
obtained by means of the common procedure of using
observed insulinemias for the estimation of the glucose
kinetics and then using observed glycemias for the estima-
tion of insulin kinetics (instead of performing a single
optimization on both feedback control arms of the glu-
cose/insulin system). The third goal is finally to study
comparatively the indices of Insulin sensitivity which are
obtained from the newly proposed SDM and from the
Minimal Model in its standard formulation (two equa-
tions for glycemia, driven by interpolated observed
insulinemias), on a sample of IVGTT's from 40 healthy
volunteers.

Methods
Experimental protocol
Data from 40 healthy volunteers (18 males and 22
females, average anthropometric characteristics reported
in Table 1), who had been previously studied in several

protocols at the Catholic University Department of Meta-
bolic Diseases were analyzed. All subjects had negative
family and personal histories for Diabetes Mellitus and
other endocrine diseases, were on no medications, had no
current illness and had maintained a constant body
weight for the six months preceding each study. For the
three days preceding the study each subject followed a
standard composition diet (55% carbohydrate, 30% fat,
15% protein) ad libitum with at least 250 g carbohydrates
per day. Written informed consent was obtained in all
cases; all original study protocols were conducted accord-
ing to the Declaration of Helsinki and along the guide-
lines of the institutional review board of the Catholic
University School of Medicine, Rome, Italy.

Each study was performed at 8:00 AM, after an overnight
fast, with the subject supine in a quiet room with constant
temperature of 22–24°C. Bilateral polyethylene IV cannu-
las were inserted into antecubital veins. The standard
IVGTT was employed (without either Tolbutamide or
insulin injections)[9]: at time 0 (0') a 33% glucose solu-
tion (0.33 g Glucose/kg Body Weight) was rapidly
injected (less than 3 minutes) through one arm line.
Blood samples (3 ml each, in lithium heparin) were
obtained at -30', -15', 0', 2', 4', 6', 8', 10', 12', 15', 20', 25',
30', 35', 40', 50', 60', 80', 100', 120', 140', 160' and 180'
through the contralateral arm vein. Each sample was
immediately centrifuged and plasma was separated.
Plasma glucose was measured by the glucose oxidase
method (Beckman Glucose Analyzer II, Beckman Instru-
ments, Fullerton, CA, USA). Plasma insulin was assayed
by standard radio immunoassay technique. The plasma
levels of glucose and insulin obtained at -30', -15' and 0'
were averaged to yield the baseline values referred to 0'.

The discrete Single Delay Model
In the development of the discrete SDM, four two-com-
partment models, describing the variation in time of
plasma glucose and plasma insulin concentrations fol-
lowing an IVGTT, have been considered.

For each model the glucose equation includes a second-
order linear term describing insulin-dependent glucose
uptake, expressed in net terms since it includes changes in
liver glucose delivery and changes in glucose uptake, as
well as a zero-order term expressing the net balance
between a possible constant, insulin-independent frac-
tion of hepatic glucose output and the essentially constant

Table 1: Anthropometric characteristics of the subjects studied (mean ± SD in 40 subjects).

Gb (mM) Ib (pM) Gender n (%) Age (years) Height (cm) BW (kg) BMI (Kg/m2)

F 22 (55%)
4.54 ± 0.51 40.80 ± 21.88 M 18 (45%) 45.25 ± 16.44 166.10 ± 8.63 67.53 ± 10.01 24.36 ± 2.34
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glucose utilization of the brain. A linear term for glucose
tissue uptake may or may not be present, and the effect of
plasma insulin on glucose kinetics may or may not be
delayed.

Variations in plasma insulin concentration depend on the
spontaneous decay of insulin and on pancreatic insulin
secretion. After the nearly instantaneous first phase insu-
lin secretion, represented in the model by means of the
initial condition, a delay term is considered; it represents
the pancreatic second phase secretion and formalizes the
delay with which the pancreas responds to variations of
glucose plasma concentrations.

The details of the four considered models are reported in
Table 2. Each model was fitted to the experimentally
observed concentrations and for each of the 40 subjects
the Akaike value was computed. Models were compared
by performing paired t-tests on the computed Akaike
scores. The selected model was model A, whose schematic
diagram is represented in Figure 1 and whose equations
are reported below:

I (0) = Ib + I∆GG∆, (2a)

The symbols are defined in Table 3. In equation (1) the
term -KxgI (t) G (t) represents the net balance between

insulin-dependent glucose uptake from peripheral tissues
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Schematic representation of the two-compartments, one-dis-crete-delay modelFigure 1
Schematic representation of the two-compartments, 
one-discrete-delay model. Vg and Vi are the distribution 
volumes respectively for Glucose (G) and Insulin (I). Dg 
stands for the glucose bolus administered; KxgI is the second-
order net elimination rate of glucose  per unit of insulin con-
centration; Kxi is the first order elimination rate of insulin; Tgh 
is the net difference between glucose production and glucose 
elimination; Tigmax is the maximal rate of second phase insulin 
release.
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Table 2: Tested models and relative average Akaike information 
Criterion (AIC). 

Model Desciption Free 
parameters

Average 
AIC

A Without first order 
plasma glucose 
elimination (Kxg) and 
without delay on insulin 
action (τi)

Vg, I∆, τg, KxgI, 
Kxi, γ

383.90

B With first order plasma 
glucose elimination (Kxg) 
and without delay on 
insulin action (τi)

Vg, I∆, τg, KxgI, 
Kxi, γ, Kxg

386.72

C Without first order 
plasma glucose 
elimination (Kxg) and 
with delay on insulin 
action (τi)

Vg, I∆, τg, KxgI, 
Kxi, γ, Kxg, τi

385.95

D With first order plasma 
glucose elimination (Kxg) 
and with delay on insulin 
action (τi)

Vg, I∆, τg, KxgI, 
Kxi, γ, Kxg, Kxg, 

τi

389.03

The four models studied differ according to the presence or absence 
of an insulin-independent glucose elimination rate term (-Kxg G) and 
according to the presence or absence of an explicit delay in the action 
of insulin in stimulating tissue glucose uptake (I(t-τi) instead of I(t)). 
The model that does not include either one of these two features 
was named model A; model B includes the term (-KxgG); model C 
uses I(t-τi) instead of I(t); model D includes both.
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and insulin-dependent hepatic glucose output (above
zero-order, constant hepatic glucose output), whereas the

term  represents the net difference between insulin-

independent tissue glucose uptake (essentially from the
brain) and the constant part of hepatic glucose output.
The initial condition Gb + G∆ expresses the glucose con-

centration as the variation with respect to the basal condi-
tion, as a consequence of the IV glucose bolus. In the
second equation, the first linear term -KxiI (t) represents

spontaneous insulin degradation, whereas the second

term represents second-phase insulin delivery from the β-
cells. Its functional form is consistent with the hypothesis
that insulin production is limited, reaching a maximal
rate of release Tigmax/Vi by way of a Michaelis-Menten

dynamics or a sigmoidal shape according to whether the γ
value is 1 or greater than 1 respectively. Situations where

γ is equal to zero correspond to a lack of response of the

pancreas to variations of circulating glucose, while for γ
values between zero and 1 the shape of the response
resembles a Michaelis-Menten, with a sharper curvature

towards the asymptote. The parameter γ expresses there-
fore the capability of the pancreas to accelerate its insulin

secretion in response to progressively increasing blood
glucose concentrations. The initial condition Ib + I∆G G∆

represents instead the immediate first-phase response of
the pancreas to the sudden increment in glucose plasma
concentration.

It should be noticed that the form of Equation 1 is by no
means new, a similar equation having been discussed, for
instance in [33]. On the other hand, as far as we know, the
form of Equation 2 is original. In particular, the exponent
γ has been introduced to represent the 'acceleration' of
pancreatic response with increasing glycemia, and has
proved to be necessary for satisfactory model fit during
model development.

From the steady state condition at baseline it follows that:

An index of insulin sensitivity may be easily derived from
this model by applying the same definition as for the Min-
imal Model [9], i.e.
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(3)Table 3: Definition of the symbols in the discrete Single Delay Model

Symbol Units Definition

t [min] time
G(t) [mM] glucose plasma concentration at time t
Gb [mM] basal (preinjection) plasma glucose concentration
I(t) [pM] insulin plasma concentration at time t
Ib [pM] basal (preinjection) insulin plasma concentration

KxgI [min-1 pM-1] net rate of (insulin-dependent) glucose uptake by tissues per pM of plasma insulin concentration
Tgh [mmol min-1 kgBW-

1] 
net balance of the constant fraction of hepatic glucose output (HGO) and insulin-independent zero-order 
glucose tissue uptake

Vg [L kgBW-1] apparent distribution volume for glucose
Dg [mmol kgBW-1] administered intravenous dose of glucose at time 0
G∆ [mM] theoretical increase in plasma glucose concentration over basal glucose concentration at time zero, after the 

instantaneous administration and distribution of the I.V. glucose bolus
Kxi [min-1] apparent first-order disappearance rate constant for insulin

Tigmax [pmol min-1kgBW-1] maximal rate of second-phase insulin release; at a glycemia equal to G* there corresponds an insulin secretion 
equal to Tigmax/2

Vi [L kgBW-1] apparent distribution volume for insulin
τg [min] apparent delay with which the pancreas changes secondary insulin release in response to varying plasma 

glucose concentrations
γ [#] progressivity with which the pancreas reacts to circulating glucose concentrations. If γ were zero, the 

pancreas would not react to circulating glucose; if γ were 1, the pancreas would respond according to a 
Michaelis-Menten dynamics, with G* mM as the glucose concentration of half-maximal insulin secretion; if γ 
were greater than 1, the pancreas would respond according to a sigmoidal function, more and more sharply 
increasing as γ grows larger and larger

I∆G [pM mM-1] first-phase insulin concentration increase per mM increase in glucose concentration at time zero due to the 
injected bolus

G* [mM] glycemia at which the insulin secretion rate is half of its maximum
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It can be shown [34] that the solutions of the proposed
discrete Single-Delay Model for I and G are positive and
bounded for all times, and that their time-derivatives are
also bounded for all times. Further, the model admits the
single (positive-concentration) equilibrium point (Gb,
Ib). The system is also asymptotically locally stable around
its equilibrium point. Parameters G* and Vi are set respec-
tively to 9 mM and 0.25 L (kgBW)-1, so that the set of free
parameters of the final model to be estimated is {Vg, I∆G,
τg, KxgI, Kxi, γ}.

Figure 2 shows the shape of the dynamics of insulin
release predicted by the model, resulting from the average
parameter values estimated on the 40 subjects.

The Minimal Model
The two equations of the standard Minimal Model are
written as follows:

The symbols are defined in Table 4.

The Minimal Model [10] describes the time-course of glu-
cose plasma concentrations, depending upon insulin con-
centrations and makes use of the variable X, representing
the 'Insulin activity in a remote compartment'. While in
later years different versions of the Minimal Model
appeared [35,36], the original formulation reported
above is most widely employed, even in recent research
applications [37-44].

Statistical Methods
For each subject the four alternative models (A, B, C, D,
described in table 2) have been fitted to glucose and insu-
lin plasma concentrations by Generalized Least Squares
(GLS, described in Appendix 1) in order to obtain individ-
ual regression parameters. All observations on glucose
and insulin have been considered in the estimation proce-
dure except for the basal levels. Coefficients of variation
(CV) for glucose and insulin were estimated with phase 2
of the GLS algorithm, whereas single-subject CVs for the
model parameter estimates were derived from the corre-
sponding variances, obtained from the diagonal elements
of the estimated asymptotic variance-covariance matrix of
the GLS estimators. The individual-specific regression
parameters were then used for population inference.

For the Minimal Model, fitting was performed by means
of a Weighted Least Squares (WLS) estimation procedure,
considering as weights the inverses of the squares of the
expectations and as coefficients of variation 1.5% for glu-
cose and 7% for insulin [9]. Observations on glucose
before 8 minutes from the bolus injection, as well as
observations on insulin before the first peak were disre-
garded, as suggested by the proposing Authors [9,10]. A
BFGS quasi-Newton algorithm was used for all optimiza-
tions [45]. A-posteriori model identifiability was deter-
mined by computing the asymptotic coefficient of
variation (CV) for the free model parameters: a CV smaller
than 52% translates into a standard error of the parameter
smaller than 1/1.96 of its corresponding point estimate
and into an asymptotic confidence region of the parame-
ter not including zero.

dG t

dt
b X t G t b G G(0) bb 0

( )
( ) ( ) ,= − +[ ] +1 1 =

(4)

dX t

dt
b X t b I t I I(0) Ib b
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Table 4: Definition of the symbols in the Minimal Model

Symbol Units Definition

t [min] time after the glucose bolus
G(t) [mM] blood glucose concentration at time t
X(t) [min-1] auxiliary function representing insulin-excitable 

tissue glucose uptake activity, proportional to 
insulin concentration in a "distant" 
compartment

Gb [mM] subject's basal (pre-injection) glycemia
Ib [pM] subject's basal (pre-injection) insulinemia
b0 [mM] theoretical glycemia at time 0 after the 

instantaneous glucose bolus
b1 [min-1] glucose mass action rate constant, i.e. the 

insulin-independent rate constant of tissue 
glucose uptake, "glucose effectiveness"

b2 [min-1] rate constant expressing the spontaneous 
decrease of tissue glucose uptake ability

b3 [min-2 

pM-1]
insulin-dependent increase in tissue glucose 
uptake ability, per unit of insulin concentration 
excess over baseline insulin

SI (b3/b2) [min-1 

pM-1]
insulin sensitivity index and represents the 
capability of tissue to uptake circulating plasma 
glucose

Second-phase pancreatic insulin secretionFigure 2
Second-phase pancreatic insulin secretion. Insulin 
secretion versus plasma glucose concentrations, as com-
puted from the average values of the discrete SDM parame-
ters.
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In order to compare the two models under the same sta-
tistical estimation scheme, the Minimal Model was also
fitted to observed data points using the same GLS algo-
rithm employed for the SDM.

Results
Delay Model Selection
Each delay model (A, B, C and D) was fitted on data from
each one of the experimental subjects and the Akaike
Information Criterion (AIC) was computed. Six paired t-
tests were performed (A vs. B, A vs. C, A vs. D, B vs. D, C
vs. D and B vs. C). Model A had the lowest average on the
individual AIC's. All tests were conducted at a level alpha
of 0.05 and differences were found to be statistically sig-
nificant (A vs. B, P < 0.001; A vs. C, P < 0.001; A vs. D, P <
0.001; B vs. D, P = 0.036; C vs. D, P = 0.002), except for
the comparison B vs. C, which was found to be non-signif-
icant (P = 0.191). The best model under the AIC criterion
was therefore model A, which performed significantly bet-
ter than either model B or C, which in turn performed sig-
nificantly better than model D.

Model Parameter Estimates
For the discrete SDM the parameter coefficients of varia-
tion were derived for each subject from the asymptotic
results for GLS estimators. Coefficients of variation for all
parameters in all subjects were found to be smaller than
52%, except: for parameter τg, which in 5 subjects was esti-
mated to about zero, producing therefore a large CV, and
which otherwise exhibited a large CV in 13 other subjects;
for parameter γ, in those 3 subjects for whom it was esti-
mated at a value less than 1 as well as for another single
subject; and for parameter Kxi in 2 subjects.

For the MM, the corresponding standard errors and coef-
ficients of variation (for each parameter and for each sub-
ject) were computed by applying standard results for
weighted least square estimators, where the coefficients of
variation for glucose and insulin were set respectively to
1.5% and 7%. Parameters of the MM were also estimated
by means of the same GLS procedure employed for the
SDM. However, since for all parameters and individuals
the resulting confidence regions were as large as or larger
than the corresponding WLS regions, only the more favo-
rable results obtained by WLS were retained for compari-
son.

Figures 3, 4 and 5 portray three typical subjects with both
insulin and glucose concentration observations, as well as
predicted time courses based on the discrete SDM and the
MM. In order to have a comparison curve for predicted
insulin, the original Minimal Model for Insulin secretion
[10], fitted by means of the original procedure described
by Pacini [46], was employed. For subjects 13 and 27 (fig-
ures 3 and 4) the predicted curves are nearly superim-
posed. For subject 28 (Figure 5), while the MM curve
seems closer to the points than that of the SDM, its pre-
dicted insulin concentrations are visibly increasing at the
end of the observation period (and will be predicted to
increase to extremely high levels within a few hours),
instead of tending to the equilibrium value Ib. This behav-
ior is common to a few subjects (for subjects 23, 25 and
28 most evidently over 180 minutes) and is consistent
with the theoretical results demonstrated in De Gaetano
and Arino [31].

Plot for Subject 13Figure 3
Plot for Subject 13. Glucose and Insulin (circles) concentrations versus time together with the predicted time-curves from 
the SDM (continuous lines) and the MM (dotted lines) for subject 13.
Page 6 of 16
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2007, 4:35 http://www.tbiomed.com/content/4/1/35
Figures 6 and 7 report the scatter plots between KxgI and
SI. In the first figure all 40 subjects were considered,
whereas for the second figure, 5 subjects were discarded:
they were those subjects whose indices of insulin-sensitiv-
ity SI from the MM were either very small (less than 1.0 ×
10-5) or very large (greater than 1.0 × 102). In all these
cases the coefficients of variation of SI were found to be

very large, varying between 1545% and 2.36 × 109%. If
these extreme-SI subjects are not considered, the scatter
plot of figure 7 shows a clear positive correlation between
KxgI and SI (r = 0.93).

It has been demonstrated that the homeostasis model
assessment insulin resistance index HOMA-IR (computed

Plot for Subject 28Figure 5
Plot for Subject 28. Glucose and Insulin (circles) concentrations versus time together with the predicted time-curves from 
the SDM (continuous lines) and the MM (dotted lines) for subject 28.

Plot for Subject 27Figure 4
Plot for Subject 27. Glucose and Insulin (circles) concentrations versus time together with the predicted time-curves from 
the SDM (continuous lines) and the MM (dotted lines) for subject 27.
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as the product of the fasting values of glucose, expressed
as mM, and insulin, expressed as µU/mL, divided by the
constant 22.5) [47-49], its reciprocal insulin sensitivity
index 1/HOMA-IR [50], and the quantitative insulin sen-
sitivity check index QUICKI [51] are useful surrogate indi-
ces of insulin resistance because of their high correlation
with the index assessed by the euglycemic hyperinsuline-
mic clamp [11].

The insulin sensitivity index 1/HOMA-IR was therefore
compared to the estimated SI and KxgI parameter values.
Table 5 reports the correlation results. The upper part of
the table reports results referred to the whole sample of 40
subjects, while the lower part of the table does not con-
sider the 5 subjects for which the SI index could not be
reliably computed. The correlation between 1/HOMA-IR
and KxgI is about the same in the two analyses and is sig-
nificant in both, whereas the correlation between 1/

HOMA-IR and SI is positive and significant only in the
reduced 35-subject sample.

In order to evaluate the performance of the MM also
under conditions of arbitrary stabilization of the parame-
ter estimates, WLS data fitting with the Minimal Model
was repeated when constraining parameters b2 and b3, set-
ting their lower bounds to 10-5 and 10-7 respectively. The
use of boundaries for parameter values in the optimiza-
tion process leading to parameter estimation can be a
legitimate procedure, especially when starting the optimi-
zation, in order to facilitate convergence of the sequence
of estimates to the optimum. However, the optimum
eventually reached must lie in the interior of the specified
region of parameter space in order for it to be a local opti-
mum and for the statistical properties of the resulting esti-
mate to be maintained.

In the case where the optimum lies at one of the bounda-
ries, the gradient of the loss function with respect to the
parameter is not zero, the point is not an isolated local
optimum and the properties of the considered estimator
(Ordinary Least Square, Weighted Least Square or Maxi-
mum Likelihood) are lost.

In our case, when arbitrarily delimiting the MM parame-
ters, we did frequently obtain optima at the boundary of
the acceptance region. In this case, the predicted curves
were as good as in the original 'unconstrained' MM anal-
ysis, but parameter estimates sometimes were found to be
very different. With this latter procedure 7 subjects exhib-
ited SIindex values greater than 1 × 10-2; the correlation
coefficient with the 1/HOMA-IR was 0.173 (P = 0.287)
when all 40 subjects were considered and 0.396 (P =
0.023) when these 7 subjects were excluded.

Table 5: Correlation between 1/HOMA-IR and the two insulin-
sensitivity indices KxgI and SI

KxgI SI

1/HOMA-IR Pearson 
Correlation

0.588 -0.151

full sample Sig. (2-tailed) < 0.001 0.351
N 40 40

KxgI SI

1/HOMA-IR Pearson 
Correlation

0.599 0.569

reduced 
sample

Sig. (2-tailed) < 0.001 < 0.001

N 35 35

SI versus KxgI in the whole sampleFigure 6
SI versus KxgI in the whole sample. Scatter plot between 
the Insulin Sensitivity (SI) derived from MM and the parame-
ter KxgI over the whole sample of 40 subjects.
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SI versus KxgI in the reduced sample. Scatter plot 
between the Insulin Sensitivity (SI) derived from MM and the 
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Table 6 reports the sample means of the parameter esti-
mates of the discrete SDM, whereas Table 7 reports the
same results for the MM estimated with the standard WLS
approach.

It is of interest to note that KxgI and SI, which measure the
same phenomenon, have the same theoretical definition
and are computed in the same units, coincide very well in
absolute numerical value when the 5 subjects discussed
above are not considered (KxgI = 1.40 ×10-4 min-1pM-1 vs.
SI = 1.25 ×10-4 min-1pM-1). KxgI and SI, on the other hand,
differ markedly if the whole sample is considered (KxgI =
1.43 ×10-4 min-1pM-1 vs. SI = 30 min-1 pM-1).

Coefficients of variation for glucose and insulin, when
considering the discrete SDM, were estimated by GLS to
be respectively 19.8% and 31.5%. (for the MM, when
adopting the GLS procedure, they were estimated to be
respectively 17.5% and 30.9%). Although the estimated
values are much larger than those reported in literature [9]
(1.5% for glucose and 7% for insulin), they reflect both
the variability due to measurement error and the variabil-

ity due to actual oscillation of glucose and insulin concen-
trations in plasma. While these error estimates are rather
large, they may be more realistic, in vivo, than simple esti-
mates of the variance of repeated laboratory in-vitro meas-
urements on the same sample.

Discussion
The present work introduces a new model for the interpre-
tation of glucose and insulin concentrations observed
during an IVGTT. The model has been tested in a sample
of "normal" subjects: these subjects' IVGTTs were selected
from a larger group of available IVGTTs on the basis of
normality of baseline Glycemia (< 7 mM) and 'normality'
of BMI (< 30 Kg m-2).

Presentation of the physiological assumptions underlying 
the discrete Single-Delay Model
The new model was chosen on the basis of the Akaike cri-
terion from a group of four different two-compartment
models: all models in the group included first-order insu-
lin elimination kinetics, second-order insulin-dependent
net glucose tissue uptake, a zero-order net hepatic glucose
output, and progressively increasing but eventually satu-
rating pancreatic insulin secretion in response to rising
glucose concentrations. The differences among the four
tested models were that, while one model included both
an explicit delay in the action of circulating insulin on glu-
cose transport, as well as a term for insulin-independent
tissue glucose uptake, one model only included insulin
delay, another model only included insulin-independent
glucose uptake, and the final model included neither. This
final model was chosen because, from a purely numerical
point of view, neither the addition of a delay in the insulin
action on glucose transport, nor the addition of an insu-
lin-independent, first-order glucose elimination term
appeared to improve the model fit to observations.

The delay in the glucose action on pancreatic response,
expressed in the discrete SDM by the explicit term τg, was
found to be necessary if a second-phase insulin response
was to produce an evident insulin concentration 'hump'.
For this reason, this delay was included in all four models
tested in the present work.

It is somewhat surprising that the best model among
those studied does not require an explicit delay in insulin
action on glucose transport, which had been expressed in
the Minimal Model by the 'remote-compartment' insulin
activity X [9]. Some reports had in fact indirectly substan-
tiated [52,53] an anatomical basis for this delay: it should
be kept in mind, however, that an actual delay in the cel-
lular or molecular action of the hormone is not at all nec-
essary in order to explain the commonly apparent delay in
hormone effect, as judged by a perceptible decrease in glu-
cose concentrations. In other words, even if the action of

Table 6: Descriptive Statistics of the parameter estimates for the 
SDM on the whole sample.

Sample parameter estimates: descriptive statistics

Parameter Vg I∆ τg KxgI kxi γ

Mean 0.152 41.79
1

19.271 1.43E-
04

0.101 2.464

SD 0.050 20.63
7

12.156 8.7 E-
05

0.079 0.875

CV (%) 32.66 49.38 63.08 60.93 78.00 35.53
SE 0.007

9
3.263

1
1.9220 1.38E-

05
0.0124 0.1384

CV (%) 5.16 7.81 9.97 9.63 12.33 5.62
min 0.065 11.68

6
3.58E-

37
4.34E-

05
0.0314 0.736

max 0.292 90.90 60 4.28E-
04

0.480 4.122

Sample correlation matrix of the parameter estimates

Vg I∆ τg KxgI kxi γ

Vg 1 0.248 0.044 -0.454 -0.353 0.136
I∆ 1 0.203 -0.529 0.059 0.117
τg 1 -0.403 -0.383 -0.185

KxgI 1 0.552 -0.288
kxi 1 0.098
γ 1

0.039 CVG 19.75%
0.099 CVI 31.46%σσG

2

σσI
2
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the hormone on its target is not retarded, its actual percep-
tible effect may well exhibit a delay. Thus a mathematical
model of the system may correctly show a delayed effect
of insulin even in the absence of an explicit term repre-
senting retarded action of the hormone. In any case, an
explicit representation of this mechanism does not seem
necessary to explain the observations in the present series.

Another difference with respect to commonly accepted
concepts is the lack of a "glucose effectiveness term", i.e.
of a first-order, insulin-independent tissue glucose uptake

rate term. Except for the fact that it has become customary
to see this term included in glucose/insulin models, there
appears to be no physiological mechanism to support
first-order glucose elimination from plasma, when excep-
tion is made of glycemias above the renal threshold and
when diffusion into a different compartment is dis-
counted. Tissues in the body (except for brain) do not take
up glucose irrespective of insulin: brain glucose consump-
tion is relatively constant, and is subsumed, for the pur-
poses of the present model, in the constant net (hepatic)
glucose output term. It must be emphasized that none of

Table 7: Descriptive Statistics of the parameter estimates from the WLS methods for the MM.

Sample parameter estimates for the 40 Subjects

Parameter b0 b1 b2 b3 b4 b5 b6 b7 SI

Values 13.415 0.016 0.061 6.59E-06 0.425 5.091 0.136 618.82 30.00
SD 2.605 0.016 0.107 1.11E-05 1.428 1.362 0.065 311.51 148.48

CV (%) 19.42 98.91 174.90 168.85 335.99 26.75 47.43 50.34 494.99
SE 0.407 0.003 0.017 1.74E-06 0.223 0.213 0.010 48.65 23.19

CV (%) 3.03 15.45 27.32 26.37 52.47 4.18 7.41 7.86 77.30

Sample parameter estimates for the 35 Subjects

Parameter b0 b1 b2 b3 b4 b5 b6 b7 SI

Values 13.251 0.013 0.066 7.49E-06 0.222 5.023 0.136 632.869 1.25E-04
SD 2.175 0.012 0.113 1.16E-05 0.372 1.357 0.064 319.523 7.40E-05

CV (%) 16.42 92.92 172.24 155.47 167.22 27.02 47.04 50.49 59.35
SE 0.340 0.002 0.018 1.82E-06 0.058 0.212 0.010 49.901 1.16E-05

CV (%) 2.56 14.51 26.90 24.28 26.12 4.22 7.35 7.88 9.27

Sample correlation matrix of the parameter estimates for the 40 Subjects

b0 b1 b2 b3 b4 b5 b6 b7

b0 1 0.588 -0.264 -0.270 -0.224 0.194 0.023 0.073
b1 1 -0.190 -0.199 0.118 0.289 0.091 0.051
b2 1 0.960 -0.082 -0.165 0.147 -0.126
b3 1 -0.081 -0.185 0.180 -0.209
b4 1 0.506 -0.097 0.020
b5 1 -0.184 0.301
b6 1 0.140
b7 1

Sample correlation matrix of the parameter estimates for the 35 Subjects

b0 b1 b2 b3 b4 b5 b6 b7

b0 1 0.410 -0.300 -0.314 0.151 0.386 -0.003 0.185
b1 1 -0.155 -0.136 0.539 0.429 0.090 0.203
b2 1 0.968 0.022 -0.145 0.151 -0.153
b3 1 -0.011 -0.174 0.204 -0.249
b4 1 0.694 0.247 0.487
b5 1 -0.123 0.384
b6 1 0.149
b7 1
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the subjects studied exhibited sustained, above-renal-
threshold glycemias. It is therefore likely that, even if such
a first-order mechanism were indeed present, its explicit
representation did not prove indispensable for the accept-
able fitting of the present data series. In future analyses it
may be necessary to reintroduce insulin action delay or
first order insulin-independent glucose uptake or both.

Remarks on decoupled fitting versus single-pass fitting of 
data points
It is of interest to comment on a widespread conception
that interpolated observed data, used in place of theoreti-
cally reconstructed curves, are a reliable approximation of
the true signal for the purpose of parameter estimation.
This approach has been used, for instance, in the original
'decoupling' method of parameter estimation for the MM
[46], which we will use simply as an example for illustrat-
ing the present remarks.

The strategy of fitting one state variable at a time (while
assuming the linearly interpolated, noisy observations of
the other state variable to provide the true input function)
decouples the regulatory system: the expected feedback
effect, of the state variable being fitted onto the other state
variable, is disregarded. It happens thus that the estimated
parameters are optimal in predicting the observed glucose
assuming the erratic observed insulin as the true value of
the insulin concentration, but are far from optimal when
the expected glucose determines the expected insulin and
is then determined by it in its turn. This separate fitting
strategy produces sets of estimated parameters such that
the expected time course of glucose using the expected
time course of insulin as input may differ markedly from
both the actual glucose observations and from the
expected glucose obtained using the noisy insulin obser-
vations as input. In other words, the separate fitting strat-
egy produces parameter values which do not make model
predictions of glucose and insulin consistent with each
other.

In order to clarify the statement above and to show that
the concerns raised are far from purely philosophical, Fig-
ure 8 shows four sets of model-reconstructed curves asso-
ciated with the same data set. In figure 8.a the observed
points are fitted with the SDM (one-pass fitting, minimiz-
ing errors in glycemias and insulinemias simultaneously)
and the resulting SDM-predicted time courses are super-
imposed. The fitting, with six parameters, is reasonably
good and a second-phase insulin secretion "hump" is
clearly visible.

In figure 8.b the observed points are fitted with the
'decoupling' Minimal Model based on three equations
[46] (two-pass fitting, using interpolated insulinemia as
input for the fit of glycemias, then interpolated glycemia

as input for the fit of insulinemia). The predicted curves
lie close to the observations (in this set-up eight parame-
ters are free) and second-phase insulin secretion is readily
apparent. In figure 8.c the observations are fitted with the
same three MM equations, this time using a simultaneous,
one-pass procedure. In this way, glycemias and insuline-
mias are simultaneously predicted from the model and
parameters are adjusted to provide the best overall
weighted fit. While the predicted curves pass through the
observed points, no second-phase insulin secretion hump
is visible. In fact, best estimates for the simultaneous
three-equation MM parameters never produced a visible
second-phase insulin secretion hump in any one of the 40
subjects from the present series. Finally, figure 8.d shows
the original observations and the curves obtained when
using simultaneously the classical MM parameter esti-
mates. In other words, in figure 8.d the same parameter
values obtained in the classical 'decoupling' MM fit of fig-
ure 8.b are employed. This time, however, instead of using
the recorded noisy observations to provide feedback regu-
lation, the actual predictions of the model are used, so
that predicted glycemia influences the prediction of
insulinemia and vice-versa. It can be appreciated how, in
this case, predictions fail to approximate observations.

If it is required that the identified model be consistent, i.e.
that the functional form of the model, together with the
estimated parameter values, reproduce the dynamics actu-
ally observed, then decoupling the feedback and estimat-
ing separately its two arms provides misleading results:
while it would seem that the fit is good (Figure 8.b), such
good fit actually relies on the specific realization of a
chance occurrence of errors in the observations. In this
way parameters are obtained which can apparently repro-
duce features (like in this case the second-phase insulin
secretion hump), but can do so only by exploiting that
experiment's specific observation errors. When these same
parameters are used to model the interaction of predicted
glycemias and insulinemias on each other (as in figure
8.d), no such features appear and indeed, even actual data
fit is very poor.

Comparison of Insulin Sensitivity determinations from the 
SDM and the MM
The possibility to reliably estimate an index of insulin-
sensitivity is essential to any model which aims at being
useful to diabetologists. In the following, we discuss the
comparison between the newly-introduced Discrete Sin-
gle Delay Model, and the Minimal Model in its (to date)
uncontroversial formulation, i.e. considering only the two
equations (4) and (5), fitted using interpolated insuline-
mias as forcing function, from which the insulin sensitiv-
ity index SI is computed. This is the 'standard' MM, being
currently used in many experimental applications [37-
44].
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By applying the same definition of the Insulin Sensitivity
Index to both the discrete SDM and the standard MM, we
obtain quantities (the KxgI and the SI), which have the
same units of measurement and, over the restricted sub-
ject sample, approximately the same average value and a
correlation coefficient of 0.93.

One evident difference between the performances of the
discrete SDM and the MM over the 40 subjects considered
in this series relates to the stability of estimation, in par-
ticular with respect to the insulin sensitivity indices (KxgI
for the SDM and SI for the MM). Whereas in every one of
the 40 subjects considered, the estimate of KxgI had a coef-
ficient of variation smaller than 52% (i.e. its 95% asymp-
totic confidence region excluded zero), in 20 out of 40
'normal' subjects the SI did not result significantly differ-
ent from zero.

Correlation between the SI and the KxgI was poor when
considering all 40 subjects, very good when excluding five
subjects whose SI was either very large or very small. Aver-

age values of SI varied by five orders of magnitude, and
correlation with 1/HOMA-IR dropped, when going from
the restricted 35-subject sample to the full 40-subject sam-
ple. Average values of the KxgI and correlation of the KxgI
with 1/HOMA-IR were very similar when using either the
full sample or the restricted sample.

Besides the insulin-sensitivity index, all other model
parameters were generally identifiable with the discrete
SDM and often not identifiable with the MM, pointing to
the fact that the MM appears overparametrized with
respect to the information available from the standard
IVGTT.

It is worth to point out that there is a clear difference
between stability and accuracy. In this respect, the result
which should be considered is, in our opinion, the corre-
lation with the 1/HOMA-IR: when parameter estimates
with the MM are numerically stable (when boundary
parameter estimates are avoided and in those cases where
extreme values are not produced, i.e. the 35-subject

Comparison between different methods of data fittingFigure 8
Comparison between different methods of data fitting. Each figure reports Glucose (white circles) and Insulin (black 
diamonds) observed concentrations versus time, together with the predicted time-curves (dashed line for Glucose and contin-
uous line for Insulin) using four different methods: the discrete Single Delay Model (figure 8.a); the Minimal Model with its tra-
ditional two-pass 'decoupling' estimation method (figure 8.b); the Minimal Model when all parameters are fitted simultaneously 
(figure 8.c); the Minimal Model when global system behavior (interacting glycemias and insulinemias) is reconstructed from sep-
arately estimated (two-pass) parameters (figure 8.d).

A.

D.C.

B.
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reduced sample), then the MM results correlate well with
the other indices (SDM, 1/HOMA-IR), and we should
conclude that in this case the three methods deliver more
or less accurate estimation of the actual insulin sensitivity
of the subjects. When numerical problems in the MM esti-
mation procedure occur (i.e. when considering also the 5
subjects with estimation problems), this correlation,
between MM on one hand and SDM or 1/HOMA-IR on
the other, is lost (while correlation between SDM and 1/
HOMA-IR is always maintained, whether with 40 or with
35 subjects) and extreme SI coefficient values are pro-
duced. In this case, it would probably be reasonable to
think that the two other methods, agreeing with each
other and producing plausible numerical estimates,
would be more accurate than the MM.

The five poorly identified SI's had been singled out as
being non-significantly different from zero and either
extremely small or extremely large; but in fact the 20
poorly identified SI's (with CV > 52%) were distributed
over the entire observed SI range: this would contradict the
simplistic postulation that only those SI's are unidentifia-
ble which are too small to be measured (being so low that
their confidence interval would include the zero value
assuming a constant variance throughout the range),
hence that typically the unidentifiable SI's correspond to
high degrees of insulin resistance.

The five subjects referred to above (subjects 5, 16, 32, 36,
38) had no problems with the SDM (KxgI's estimated at
1.07 × 10-4, 9.28 × 10-5, 1.64 × 10-4, 1.41 × 10-4 and 3.07
× 10-4 respectively), while their SI estimates under the MM
(1.53 × 10-6, 3.03 × 10+2, 8.97 × 10+2, 1.00 × 10-12 and
1.51 × 10-12) were extreme because, in order to accurately
fit the observations, the values of either the b2 coefficient
or the b3 coefficient were set essentially to zero (subj 5,
b3= 5.37 × 10-8; subj 16, b2 = 1.86 × 10-9; subj 32, b2= 1.14
× 10-9; subj 36, b3 = 6.35 × 10-14; subj 38, b2= 6.63 × 10-14).

This happens because, in these five subjects in particular,
observed insulinemias display an erratic behavior. Since
the MM does not use a model for insulinemia, but uses
interpolated (error-containing) observations on insuline-
mia to drive the glycemia model, parameters get estimated
so as to explain observed glycemias on the basis of erratic
insulinemias, and sometimes these parameters will be off-
scale. The same may occur, due to relative overparametri-
zation, if it is the glycemias which exhibit correlated errors
or large oscillations, even in the presence of smoothly var-
ying observed insulinemias.

The occurrence of "zero-SI" values (SI values with very low
point estimation) has long been a recognized problem
with the MM. For instance, in 1997, Ni et al. [54] affirmed
that "... the occurrence of SI values indistinguishable from

zero ("zero-SI") is not negligible in large clinical studies".
This was supposed to be due to inaccurate one-compart-
ment modelling of the glucose kinetics, and to be resolved
by the use of a more complex two-compartment model
(which would on the other hand have introduced more
parameters in the estimation process). In the present
series of non-obese subjects, while estimation with the
MM gave rise to 3 out of 40 zero-SI cases, the SI was in fact
not significantly different from zero in half of the subjects,
while the SDM produced insulin sensitivity coefficients
KxgI which were significantly different from zero in all sub-
jects, (with a minimum KxgI of 4.34 × 10-5). It is therefore
possible that overparametrization of the MM plays a
greater role than the level of approximation (with a single
rather than a double compartment for glucose) in the pro-
duction of "zero-SI" estimates.

We finally note that the I∆G parameter from the SDM has
the same meaning as the dynamic responsivity index Φd
used by Campioni et al. [55] to characterize the secretion
rate of insulin from the promptly releasable pool (assum-
ing it proportional to the actual glucose concentration
reached).

Conclusion
The SDM has been designed for simultaneous fitting to
glucose and insulin concentrations, and has been proven
to have mathematically consistent solutions, admitting
the fasting state as its single equilibrium point and con-
verging back to it from the perturbed state. The sigmoidal
shape of pancreatic insulin secretion in response to
increasing glucose concentrations agrees with plausible
physiology, since pancreatic ability to secrete insulin is
limited.

In the present work it has been shown that, in 20 out of
40 healthy volunteers, while the standard Minimal Model
fails to assess reliably the SI index, the SDM provides a pre-
cise estimate of insulin sensitivity. The present work there-
fore shows that the statistical, mathematical and
physiological design features of the SDM actually trans-
late, when the model is applied to data, into meaningful,
robust estimates of insulin sensitivity from the standard
IVGTT.

Future work in the evaluation of this model will entail
testing it in samples of subjects with high prevalence of
insulin resistance. Free software for fitting the SDM to a set
of IVGTT data is available from the webpage of the CNR
IASI Biomathematics Lab [56].
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Appendix
To obtain subject-specific model parameters and popula-
tion estimates on the SDM the GLS method was used. GLS
is a two-stage method:

(1) at first individual estimates  for each subject i (i =

1,...,40) are obtained;

(2) then the estimates  are used to construct the popu-

lation estimates.

When observations are taken at different times from sev-
eral subjects, it is important to take into account in the
modeling procedure two sources of variability: random
variation among measurements within a given individual
and random variation among individuals. To accommo-
date these two different variance components a hierarchi-
cal statistical model was built:

Stage 1 (intra-individual variation)
given the model:

yi = fi(βi) + ei

E(ei|βi) = 0 Cov(ei|βi) = R(βi,ξ)

where E(yi) = fi with fi representing the numerical solution
of SDM for subject i, the variability within subject i is
expressed by means of the functional form of R(βi,ξ),
where the additional intra-individual covariance parame-
ter vector ξ is the same across the individuals. Denoting
with G and I respectively the state variable Glucose and
the state variable Insulin, the variance-covariance matrix R
in the present application has the structure of a block-
diagonal matrix:

where

The parameters  and , which have to be estimated,

are the squares of the coefficients of variation respectively
for glucose and insulin.

Stage 2 (inter-individual variation)
In the second stage of the hierarchical model the variation
among individuals (due for example to gender, age, treat-
ment group or simply to biological variability among dif-
ferent individuals), is taken into account by means of a
statistical model for the subject structural parameters βi.
In this work the simplest case of a linear model has been
considered:

βi = β + bi, bi~N(0, D)

where β is the vector of the fixed effects or the vector of the
population parameters, whereas bi is the vector of the ran-
dom effects for the i-th individual.

The Standard Two Stage method (STS) proceeds according
to the following scheme:

STAGE 1

(1) In m separate estimation procedures (where m is the
total number of subjects), obtain preliminary estimates

 for each individual i, i = 1,..., m (m = 40).

(2) Use residuals from these preliminary fits to estimate

 minimizing the following function:

(3) Form estimated weight matrices based on the esti-

mated parameters  and :

(4) Using the estimated weight matrices from step (3), re-
estimate the βi by means of m minimizations: for each
individual i, i = 1,... m minimize the following quantity

The resulting estimates can be treated as preliminary esti-
mates and it is possible to return to point (2). The algo-
rithm should be iterated at least once and for each

individual i the final estimates are denoted with .

STAGE 2

In this stage it is assumed that the estimates  are

treated as they were known. So the population estimates

of the vector β and of the variance-covariance matrix D are
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given by the sample mean and the sample variance-covar-
iance matrix:
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