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Abstract

Background: Several fractal and non-fractal parameters have been considered for the quantitative
assessment of the vascular architecture, using a variety of test specimens and of computational
tools. The fractal parameters have the advantage of being scale invariant, i.e. to be independent of
the magnification and resolution of the images to be investigated, making easier the comparison
among different setups and experiments.

Results: The success of several commercial and/or free codes in computing the fractal parameters
has been tested on well known exact models. Based on such a preliminary study, we selected the
code Frac-lac in order to analyze images obtained by visualizing the angiogenetic process occurring
in chick Chorio Allontoic Membranes (CAM), assumed to be paradigmatic of a realistic 2D vascular
network. Among the parameters investigated, the fractal dimension D; proved to be the most
robust estimator for CAM vascular networks. Moreover, only D;was able to discriminate between
effective and elusive increases in vascularization after drug-induced angiogenic stimulations on
CAMs.

Conclusion: The fractal dimension Dyis likely to be the most promising tool for monitoring the
effectiveness of anti-angiogenic therapies in various clinical contexts.

Introduction
The concept of fractal dimension was first introduced by

D =log. N (1)

Hausdorff [1] as a generalization of the geometrical
dimension, and subsequently developed by Kolmogorov
& Tihomirov [2]. By introducing a scale ¢, according to
which the original length of a segment is partitioned, and
counting the number N of self-similar parts resulting from
the partitioning, the fractal dimension D is defined as:

When D is integer, it reduces to the current geometrical
dimension (i.e, by partitioning in 3 equal parts the sides
of a square, we obtain 2 = log; (9), doing the same with a
cube we obtain 3 = log; (27), etc). However, also non-
integer values of D are possible, corresponding to differ-
ent 'recipes', e.g. by dividing a segment in 3 parts (& = 3)
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and considering a new figure in which N = 4 segments
form a cusp (such as in the Koch curve). Another example
is the branching structure with N = 5 equal branches (as in
the 'bush1' configuration, see Figure 1). Such plots pro-
duce a 'covering' of the plane which is intrinsically self-
similar or 'scaling' invariant.

Although, in mathematical terms, a structure can be ana-
lyzed at an arbitrary high resolution, and D is actually
defined as a 'limit', when the 'conceptual’ structure is plot-
ted as a 'real' image, the original scale-independence is
lost. Considering the image of a self-similar structure, two
intrinsic limits, i.e. the image resolution and its dimen-
sion, define the minimal (g,,) and maximal (g,,) values
for the scale parameter . When the image of a fractal
structure is considered, in order to apply Eq. (1), a practi-
cal approach for estimating D would be that of selecting a
series of values for ¢ (g, < € < gy), perform for each of
them a tessellation of the image in boxes and compute the
number N of boxes containing the image structures (box-
counting method, BCM), introduced by Mandelbrot [3].
For a detailed description of the method see Bunde & Hav-
lin [4].

Results are clearly dependent on the procedure of tessella-
tion and of evaluation of the linear regression. The quan-
tification of such a procedure for different computational
algorithms implemented in the most popular codes is the
goal of the first part of our study.

In the real world, self-similarity becomes an even less
well-defined concept. Accordingly, structures are generally
defined as 'fractal-like', or by means of truncated fractals.
First, real structures, although similar to segments, possess
a 'thickness' (which can be disregarded provided some
'skeletonization' procedure is performed), which adds

http://www.tbiomed.com/content/5/1/12

some 'noise' to the ideal fractal structure to which it
resembles. Moreover, the minimal and maximal values
within which the scaling behaviour is restricted (i.e. self-
similarity is satisfied) can be further reduced by the struc-
ture itself. This point is of great importance for the biolog-
ical systems, which have been recently investigated using
scaling relationships by Brown and colleagues [5].

The rationale for an approach based on the assessment of
fractal properties resides on previous studies on self-simi-
lar architectures observed in many biological structures,
such as the bronchial tree [6] and the placental villous tree
[7] and on the occurrence of scaling relationships (i.e.,
when two variables X and Y relate according to a given
power law:

Y=Y, 2)

As an example, Y can be the basal metabolic rate, X the
body mass of living organisms and p is a non-integer,
fixed value (p = 3/4 according to Kleiber [8]and West et al
[9])- In another example Y is the basal metabolic rate, X
the tumor mass and p a non-integer value changing
according to the developmental phase of the tumor itself
[10].

Such scaling properties are actually assumed to be origi-
nated by the microvascular structure, which is responsible
for the delivery of nutrients to body cells. In principle, a
generic branching system, whose purpose is to exchange
nutrients at its endpoints, may satisfactorily develop with-
out restrictive rules, such as self-similarity. However, opti-
malization (i.e. maximal delivery of nutrients at the
endpoints) is reached imposing some constraints on the
vessels length and diameters, in order to minimize energy

a b

Figure |

c

Images representing 3 different fractal networks: a) 'bushl', D;= 1,46; b) 'bush3’, D;= |,5, c) 'Hilbert', D= 2.
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expenditure for flow and metabolic purposes, which can
be expressed as a power law relation between parent and
daughter vessels' dimensions (see Zamir, [11]). As West
pointed out [9], power exponents p are expected to be dif-
ferent in the pulsatile regimen (arteries, for which at each
branching point, the area is preserved to minimize wave
reflection) and in the microcirculation.

Finally, almost no geometrical constraints are expected for
vascular networks induced by angiogenesis and elicited by
various 'growth factors' produced by proliferating tissues,
e.g. tumors. The characteristics of such vascular patterns
are mainly due to the interplay with the host, and vascular
growth is driven by local information about pressure,
blood velocity, and by the presence of some randomness
and noise. This point was emphasized by Sandau & Kurz
[12,13], who suggested an extension of the concept of
fractal dimension, called 'complexity', which best
describes the case of non self-similar networks. Other
parameters, related to the vascular network positional,
topological and orientational orders were introduced by
Guidolin et al [14].

Actually, the former considerations explain why Baish,
Jain & Gazit [15] found that the in-vivo estimation of the
fractal dimension of planar vascular networks in normal
tissues and in four different tumor lines, implanted in the
dorsal skinfold chamber of immuno-deficient mice
ranges between the value of 2 for normal capillaries, 1.7
for arteries and veins and 1.88 for tumor vessels.

A similar estimation done on casts, derived from the
application of other models proposed in the literature,
gives values of 2 for the 'space-filling' growth model, 1.71
for the 'diffusion limited aggregation' model (simulating
the arterio-venous system) and 1.90 for the 'invasion per-
colation' model (simulating the tumor neovasculature).

Due to the possible relevance of the fractal parameters for
characterizing the neovascular tumor structures, which
may be of interest for both diagnostic [16] and therapeutic
[17] purposes, we wish here to investigate the vascular
fractal dimension in the simplified model of the Chorio-
Allontoic membranes (CAM) of chick eggs. A comparison
with other parameters currently evaluated is performed.
Moreover, since different expression of pro- and anti-ang-
iogenic factors should elicit differences in the microvascu-
lar network development, we challenged the CAM with
such compounds and evaluated their effects on the inves-
tigated parameters.

Methodology

Definition of the parameters

As previously stated, many geometrical forms in nature
and, in particular, many vascular networks are thought to
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be 'fractal-like’, i.e. they can be subdivided, up to a given
scale, into 'self-similar' parts. The most popular (and
potentially useful) parameters defined to describe fractals
(from here on named 'fractal parameters') are the fractal
dimension Dy, which is the 'experimental' counterpart of
D defined in Eq. (1), and the lacunarity L. Qualitatively,
D¢specifies how completely a fractal-like structure fills the
space for decreasing scales, while the lacunarity assesses
its texture, i.e. the distribution and size of the empty
domains. The operative definitions given in our paper are
the following. Images of the vascular network (of linear
dimension A), obtained from any technique (microscopy,
RMN, etc) are normally pre-processed in order to reduce
their grey levels to a dichotomic (black/white) binary fig-
ure, or sometimes even skeletonised, i.e. the difference in
diameter of the branches is neglected. Then a matrix of
squares of side 1 = €A, with € spanning in a given range (g,
< g < gy,), is superposed on the binary image and the cor-
responding number Ny, of boxes containing at least one
black 'pixel' of the image, is computed.

This procedure, using Eq. (2), withY=N,, Y,=1and X =
¢, allows to define D¢= p. In other words, D;is computed
as the slope of the straight line Log N = D¢log ¢ in a log-
log representation. If the variable under investigation is
the variance over the square of the mean number of black
points in the box of side | = €A, being ¢ the standard devi-
ation and p the mean, i.e. Y = (¢/pn)2and Y, = 1 then, from
Eq. (2) we can argue that the lacunarity of the image is L
= p. By virtue of their definitions, both D;and L are
expected to be scale invariant (in a given range) accord-
ing to Eq.(2).

Among non-fractal parameters, the most diffused is the
Vascular density V4, which is generally evaluated by esti-
mating the fraction of the image area covered by vessels.
Also the distribution of diameters and lengths of the ves-
sels, as well as the number of generations in the tree-like
networks, are often evaluated [18]. In order to monitor
angiogenesis, the number of neo-formed vessels has been
quantified by counting the number of network nodes per
unit section, called angiogenic index or forks density F;[19].

Validation of the parameters estimation methodology by

applying various computational codes on 'exact models'

A few examples of 'exact models', i.e. 'fractal-like' trees
generated by dedicated SWs (e.g. the shareware 'treegener-
ator', http://www.treegenerator.com/) were considered,
some of which simulating the arterial tree (as the 'bush1’
and 'bush 3' models, see Figure 1) and the capillary net-
work (the so-called 'Hilbert' model, see Figure 1). Their D¢
is intrinsically defined by the constitutive constructive
algorithm, i.e. the 'bush1’ structure is obtained by divid-
ing the initial segment into 5 sub-segments of length
equal to 1/3 of the initial one, and replicating the above
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process. Therefore its fractal dimension is D¢ = In5/In3 =
1.465. Analogously, 'bush 3' was proved to have D¢= 1.5
and the Hilbert network D;= 2. No 'exact' estimations for
the lacunarity L of the same models are available. We will
therefore simply check its scaling properties.

It is straightforward to observe that, for what concerns the
vascular density V4 and the number of forks Fy, no scale-
invariance is expected. Images of trees extended to differ-
ent generations were generated, in order to check the abil-
ity of various programs, mainly working on the basis of
the BCM, to estimate the correct D;and L values given by
the exact calculations independently from the network
extension. The code 'Winrhizo' was applied to simple frac-
tal models to estimate F.

The commercial codes compared in this paper are 'Fracta-
lyse', (TheMA, F), Whinrhizo' (Regent Instruments Inc.)
and Image Pro Plus (Media Cybernetics), while
FDSUREFFT is a MATLAB® routine and FracLac is a freely
downloadable Plugin of ImageJ http://rsb.info.nih.gov/ij/

Table 1 summarizes the results for D;obtained by means
of several codes. Data are missing for the cases in which
the program was unable to give an estimation.

The lacunarity L was also evaluated for the same exact
models using FracLac. After a direct verification that L
changes very slightly with the number of generations
(according to the expected scaling properties), we found
(mean + Standard Deviation): L = 0.374 + 0.008 for 'bush
1', L = 0.67 + 0.04 for 'bush 3' and L = 0.17 + 0.02 for
Hilbert.

To summarize, according to Tab 1, only FracLac could
evaluate Dy at best for all the exact models. Some of the
programs, optimized for branching structures, such as
FDSURFFT and Winrhizo, performed well for the 'bush’
models but failed with 'Hilbert', while programs opti-

Table I: evaluation of D;using different SW codes

http://www.tbiomed.com/content/5/1/12

mized for capillary structures, such as Image Pro Plus and
Fractalyse, failed in estimating D¢for branched structures.
Moreover, FracLac can estimate lacunarity. As far as limi-
tations are concerned, we conclude that some computer
codes addressed to the evaluation of the fractal dimen-
sions perform well only in limited contexts (for instance
for tree-like and/or capillary-like structures), and it is
therefore necessary to check the code performance before
application.

CAMs as models for 2d vascular trees

Estimation of the parameters on the CAMs: scaling
properties and robustness

The Chorio-Allontoic Membrane (CAM) in the fertilized
hen egg starts to develop on the 5th day of incubation by
the fusion of the chorion and the allantois [20]. It is com-
pletely formed on the 11th day and lies attached under
the inner eggshell membrane (See Figure 2). Throughout
CAM development, blood vessels and capillaries expand
intensively [20,21]. The angiogenesis has been monitored
using several parameters. For the chick embryo, Kirkner et
al [22] showed that D;exhibits an almost linear depend-
ence on the incubation time, from around 1.3 at day 6 up
to 1.8 at days 13-14, followed by a decrease in the later
stages of maturation. A similar pattern was shown by Par-
sons-Wingerter for the quail embryo [23]. Their results
(obtained by using the MATLAB-supported VESGEN
code) have been validated using the FracLac code on the
same images.

Six eggs were incubated at 37°C in a humidified environ-
ment. After 72 hours eggs were oriented and windowed,
6-10 ml removed from the egg and embryo were visually
checked for heart beat (vitality). At day 10 Watman paper
discs (6 mm diameter) were exposed to UV, soaked in
hydrocortisone (3 mg/ml in ethanol 100%), dried and
placed on CAMs. Contaminated CAMs were excluded
from the study. After treatments, membranes are fixed
with 3.7% PAF in PBS and after 10 min CAMs were
removed and placed into a Petri dish containing PAF.

D;exact D;FDSURFFT Dsfractalyse D whinrhizo Dy ipp Dsfrac_lac
bushl_3 1,46 1,41 1,26 1,42 - 1,43
bush|_4 1,46 1,43 1,30 1,43 1,41 1,45
bushl_5 1,46 1,44 1,30 1,42 1,45 1,46
bushl_6 1,46 1,44 1,61 1,43 1,45 1,46
bush3_3 1,5 1,22 1,66 1,52 1,5 1,66
bush3_4 1,5 1,33 2,01 - 1,88 1,75
bush3_5 1,5 1,61 1,90 - 1,98 1,77
Hilbert5 2 - 2,07 1,67 1,05 1,73
Hilberté 2 - 1,98 - 2 2,06
Hilbert7 2 - 1,98 - 2 2,06
Hilbert9 2 - 1,98 - 2 2,09

Page 4 of 8

(page number not for citation purposes)


http://rsb.info.nih.gov/ij/

Theoretical Biology and Medical Modelling 2008, 5:12
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Figure 2

Picture of chorio-allontoic membrane (CAM) of
chick embryo. The lighter round area represents the Wat-
man paper disk (diameter = 6 mm). Magnification 10x.

Discs were excised and imaging performed a JVC TK-
C1380E color video camera (ImageProPlus 4.0 imaging
software) connected to a stereomicroscope (model SZX9;
Olympus). Pictures, taken at different magnifications,
were processed with the dedicated software.

At first the scaling properties were tested among three dif-
ferent magnifications (6x, 10x and 16x) for the parame-
ters Vg, L and Dy showing that both V4 and Dy vary
significantly depending on the magnification only when it
is larger than 10 (p < 0.05 ANOVA), while no test for L was
reliable due to the huge data dispersion (see fig 3).

20 -

15 —
m6x

1,0 —  |m10x
0 16x

0,5 |

Nl =

vd L Df
Figure 3

Comparison of the values of the parameters V (vascular
density), L (lacunarity) and Dy (fractal dimension) from images
of untreated CAMs taken at different magnifications.

http://www.tbiomed.com/content/5/1/12

In conclusion, D¢satisfies the scaling properties (as well as
V4), provided images are taken at low and intermediate
magnification (< 16 x).

In order to test the parameters robustness, i.e. suitability
with the (sometimes unpredictable) variations in its oper-
ating environment, we applied the code FracLac on the six
images (magnification 10x) to estimate D, L and V4. Each
evaluation of D;and L was performed averaging results
from four computational procedures, which assumed as
starting point for the box counting algorithm the 4 differ-
ent corners of the image.

Results are given in figure 4. It is apparent that Dyis very
consistently defined (no statistically difference, p < 0.05),
and the final value is 1,733 + 0,006. On the contrary, the
result for L is affected by a large deviation (0,36 + .0,11),
producing a percentage error of about 50% and vanifying
any further statistical analysis Also the non-fractal param-
eter V4 shows a much larger, statistically significant varia-
bility, i.e. V4= 0,37 £ 0,14 (p < 0.05).

In conclusion, Dy proved to be a very robust parameter,
showing only very slight changes among the estimated
values on different CAMs. Moreover, the value of Dy esti-
mated on CAMs confirms its characteristics of being an
efficient distributive system.

Estimation of the parameters on the CAM:s: testing
sensibility and specificity

In order to test whether the parameters are sensitive (i.e.
can correctly identify a condition of enhanced vascularisa-
tion without false positives) and specific (i.e. can correctly
identify a condition of apparent increase of vascularisa-
tion, without false negatives), we performed a drug
response analysis. The main application of the studies
reported in the literature was the investigation of CAMs
response to various proangiogenic drugs (mainly VEGF

25 4
15 i -
1 -
0'5 - T,}: ¥ E - - ||
o LIl a ol | I i
vd L Df
Figure 4

Vg4 L and D; evaluated on untreated CAMs.
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and FGF) in terms of vascular architecture variation. For
instance, when administered at concentrations between
1,25 and 2,5 pg, VEGF 165 induces increases in arterial
density and in arterial diameter. Correspondingly, D;was
shown to increase from 1,65 + 0,01 to 1,69 + 0,01 at its
maximal dose [24,25].

Another commonly used proangiogenic compound is the
Fibroblast Growth Factor 2 (FGF). Guidolin's group
showed a significant increase in D¢from 1,51 + 0,01 of the
control to 1,62 + 0,04 after treatment at day 12 at the dose
of 500 ng. On the contrary, L decreases from 0,288 + 0,02
to 0,198 + 0,02 [14]. The same group showed that, pro-
vided the angiogenetic process is antagonized with angi-
ostatic factors, the fractal dimension of the vascular
network reflects the observed decrease in branching pat-
terns (about 10% from the starting value of 1.20) [14].
Other drugs proved to be far less effective in promoting
angiogenesis. For instance Angiopoietin 1 (Ang), a ligand
for the Tie2 receptor of endothelial cells, acts as a regulator
of angiogenesis in several experimental models, although
itis not clear whether it has a pro- or anti-angiogenic effect
[26-31].

On six CAM specimens, prepared according to the proce-
dures already described above, the fractal dimension Dy
(using FracLac), the vascular density V4 and the fork den-
sity F4 (using Winrhizo) were computed after administra-
tion of FGF and Ang. Statistical analysis was performed
using the Kruskal-Wallis nonparametric test. Following
the administration of FGF and Ang, we obtained the fol-
lowing results (Figures 5a and 5b): D¢ for the control was
(1.733 + 0,006), while after administration of FGF
increased to (1,826 + 0,042, p < 0,05) and after adminis-
tration of Ang was not statistically different versus the con-
trol (1,709 = 0,061).

http://www.tbiomed.com/content/5/1/12

As far as the vascular density is concerned, in the control
Vawas (0,37 + 0,14), after FGF was (0,33 + 0,10) and after
Ang was (0,26 + 0,02), with no statistical difference
among groups. Finally we examined the third index, i. e.
the number of forks per mm?, F, finding that in the con-
trol it was (2,3 + 0,4), after FGF administration became
(8,9 + 1,2) and after Ang (8,2 + 1,3). The fork density
increased significantly for both FGF and Ang treatment
(see Figure 5c¢).

Conclusion

Fractal parameters, such as the fractal dimension and lac-
unarity, have been widely used to investigate vascular sys-
tems, particularly those formed by neoangiogenesis. In
this contribution we have at first validated several compu-
tational codes and discussed some of their possible weak-
nesses in the estimation of the fractal parameters. We then
applied the code FracLac to CAM images. We found D;=
1,733 + 0,006 at day 10, which is consistent with literature
reports. We noted that the parameter D¢ is very robust,
reproducible and reliable, in contrast with the other frac-
tal (L) and non-fractal parameters (V4 and F;) considered.

The most remarkable result of our analysis is that com-
pletely different conclusions can be drawn from the same
set of data following drug treatments depending on the
chosen parameters.

The density of forks F; showed a marked increase after
administration of both Ang and FGF, suggesting that both
drugs are equally effective in promoting branching. On
the contrary, none of the drugs affected the vascular den-
sity V4, with a surprisingly discrepancy with respect to
expectations from the literature [14,32].

Fractal dimension

Vascular density

Angiogenic index (forksimm?)

H

Figure 5

a, b, c: variations of Dy, V4and Fjaccording to different treatments (FGF, Ang).
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On the same set of data Dresolved a finer discrimination
between the pro-angiogenic effect of FGF compared to the
more controversial regulatory effect of Ang. It proved
therefore to be both sensitive for the angiogenic affect of
FGF and specific for the ineffectiveness of Ang.

According to Stoeltzing[31]Ang possibly plays a role in a
later phase of developmental angiogenesis, such as
remodelling and maturation of vessel network. Such
effect, although of great importance on a biological
ground, is not expected to modify the fractal-like structure
of the CAM microcirculation.

Our analysis refers only to 2D structures and needs to be
extended to the more realistic case of 3D microvascular
networks. It is important, however, to stress that impor-
tant applications to 2D microcirculatory systems have
already been investigated, e.g. by De Felice and colleagues
[33]. In particular, they were able to show that D¢ could
discriminate the oral vascular networks (gingival and ves-
tibular oral mucosa) from controls and carriers of heredi-
tary non-polyposis colorectal cancer (Lynch Cancer
Family Syndrome II), i.e. D;is a marker for LCFS2.

Our general conclusions is that, if caution is paid in the
selection of the images, in their handling, and in the selec-
tion of the code, the fractal dimension D can represent a
fast, reliable and robust parameter for evaluating angio-
genetic processes. After further validation and refining,
such parameters may potentially be useful in vascular and
vascular-related diagnostics, for instance in monitoring
the effectiveness of tumor anti-angiogenic therapies, anti-
proliferative treatments in autoimmune syndromes and
retinopathies and for stadiation of tumor developmental
phases. Such applications would be an interesting exten-
sion to previous results, which have been considered to be
relevant for diagnosis and therapy, i.e. that the fractal
dimension is a prognostic factor for laryngeal carcinoma
[34], for endometrial carcinoma [35] and for ovarian can-
cer [36]. Even more important, allometric scaling invari-
ance has been observed in tumor growth processes
involving lymph nodes [16], and could have a clinical
impact in the future.
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