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Abstract

Background: The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from
the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PVWV).
The PWYV increases during the course of a number of diseases, and this increase is often attributed
to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does
the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave.
The rate of blood flow ahead of the wave decreases with distance because the pressure gradient
also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length
in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the
artery. As a result, the tension in the wall increases, and this results in an increase in the pressure
of blood in the artery.

Methods: An expression for the PWYV is derived from an equation describing the flow-pressure
coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial
increase in force of the fluid in the tube is described by an increasing exponential function of time.
The relationship between force gradient and fluid flow is approximated by an expression known to
hold for a rigid tube.

Results: For large arteries, the PWV derived by this method agrees with the Korteweg-Moens
equation for the PWYV in a non-viscous fluid. For small arteries, the PWYV is approximately
proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small
arteries is also predicted to increase when the specific rate of increase in pressure as a function of
time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation
for the observation that an increase in the PWYV is a predictor of future myocardial infarction. The
derivation of the equation for the PWYV that has been used for more than fifty years is analyzed and
shown to yield predictions that do not appear to be correct.

Conclusion: Contrary to the theory used for more than fifty years to predict the PWYV, it speeds
up as arteries become smaller and smaller. Furthermore, an increase in the PWV in some cases
may be due to decreasing force of myocardial contraction rather than arterial stiffness.
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Introduction

Following the opening of the aortic valve in early systole,
blood pressure in the aorta rises rapidly as does the veloc-
ity of blood flow. This increase in blood pressure and
momentum travels the length of the aorta and is also
passed on to blood in arteries that branch from the aorta
(e.g. carotid, brachial and mesenteric arteries). The phe-
nomenon of rapidly increasing pressure and velocity
spreading from the aortic root to distal arteries is termed
the pulse wave.

The pulse wave is an example of a traveling wave in a
fluid. Other examples are tsunamis and sound waves
including sonic booms. In each of these, momentum
moving in the direction of the wave increases pressure
ahead of the wave's peak, and this increased pressure
increases momentum ahead of the wave's peak. The speed
at which the peak of a shock wave moves depends on
physical properties of the fluid, dimensions of the space
that bounds the fluid and physical properties of the
bounding material. For a tsunami moving through a
region of ocean of depth d, the assumptions that sea water
is incompressible and that viscous forces are negligible
lead to the predicted speed (gd)!/2, where g is the acceler-
ation due to gravity [1]. For a shock wave moving through
an incompressible, non-viscous fluid of density p in a
cylindrical elastic tube of wall thickness h and elastic mod-
ulus E, the speed, denoted ¢, predicted by Korteweg [2]
and Moens [3] is

co= [(ER)/(2pR)]'/2, (1)

The product Eh is the ratio of tension in the tube's wall to
the fractional amount of circumferential stretching, and R
is the radius of the tube measured from the central axis to
the inner face of the wall.

The speed of the arterial pulse wave is commonly termed
the pulse-wave velocity (PWV). It has been shown to
increase during the course of certain diseases, and this
increase has generally been attributed to "arterial stiff-
ness" [4-7]. This interpretation is consistent with Equa-
tion (1), the Korteweg-Moens Equation, which is based in
part on the assumption that the fluid is not viscous.

Lambossy [8] introduced a model for arterial blood flow
in which viscosity results in shear force on the inner wall
of an artery and the pressure gradient is a simple har-

monic function of time, A ei'. In this model, A is a con-
stant, and @ is the frequency of oscillation. Other
constants in the model are he viscosity of blood, denoted

4, and the density, denoted p. The arterial wall is a
straight, rigid cylindrical tube of radius R.
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Womersley [9] gave the solution for the Lambossy model.
In addition, Womersley incorporated the elastic modulus
into the description of the wall of the model artery.
Assuming that the change in the tube's radius is small,
that the tube is tethered to surrounding structures and that
the mass of the tube's wall is negligible, the expression for
the PWV for the Lambossy-Womersley model is

c2)c2 =1, (i3 %) ] J,(i* %a), (2)

where a = R(wp/u)V/2, and J,,(i%/2) is the Bessel function
of order m and variable i3/2q:

anz(_l)n(i3/2a/2)m+2n/[(m_i_n)!n!].

When a2 8, -,(i3/2a)/],(i3/2a) = 1, and c¢/c, is approxi-
mately 1. When o2 << 8, -J,(i3/2a)/J,(i3/?c) ~ ic?/8, and ¢/
¢, is approximately proportional to R. For many years, the
result of Womersley has been accepted as a good approx-
imation for the PWV in relatively small arteries where -
J,(13/2a)/],(i312) differs significantly from 1 [10-12].

Some features of arterial blood flow are not well described
by the Lambossy-Womersley model. For example, the rel-
ative rate of increase in the pressure gradient that results
from the power of myocardial contraction is not described
accurately by the simple harmonic pressure gradient
assumed in the model. Furthermore, Womersley did not
incorporate damping of the pressure wave in his model
before solving for wave velocity. Womersley also intro-
duced a number of approximations before arriving at the
expression for the PWV. Therefore, we investigate the PWV
in a model that (1) contains a parameter that describes the
relative rate of rise of the pressure gradient, (2) includes
an expression for damping of the pressure wave and (3)
requires fewer assumptions and approximations in the
derivation of an expression for the PWV.

A model for the leading part of the pulse wave

We start with the solution for the rigid-tube model of
Lambossy. A rigorous derivation of the solution for blood
volume flow rate, flow velocity and shear force has been
published by Painter et al. [13]. The velocity of flow at dis-
tance r from the central axis of the artery is

i =[A/(pio)le [1-Jo(i* {op | 1} 1) | To(i*?a)].

The volume flow rate is

Q =[7AR%™" [(iwp)|[-1,(i**a) [ Jo(i*?a)].  (3)

We define I(i3/2a) = |-],(i3/2a)/],(i3/2a)]/ (iwp) and write
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Q = rAR%™1(i*%a). (4)

We define P(i3/2a) as J,(i*2@)/[(i32a)?/8] and note that
as R goes to zero the imaginary part of P(i%/2a) vanishes
and |Py(i3/2@)| goes to 1. Substitution now gives

Q=[7AR" /(81)]e" Py(i*/%a) 1o (i*?cr).  (5)

Therefore, I(i3/2) is approximately R?/(8.) when o2 << 8
and is approximately 1/(iwp) when o2 > 8.

The shear force (per unit area) at the inner wall of the tube
is

- [ouforl, = -1 A (pia) w2 fR)T, (#2a) (20,
where 3/2(a/R)] ,(i32a) = dJ (32| wp/ u]}/?r)/dr|, _ z. We
note that -J ;(i3/2a) = J,(i3/2a), which is written as (i3/2¢/
2)P¢(i3/2a). Substitution now gives the expression for the
shear force (per unit area), [ A ei®R/2]Pg(i312a)/J,(i3/2cx).

This expression is further simplified to

—pfou/or| _, =[AR/ 2] +i0rs =100

r=R

Py(i* %) | 1| 1o(* %)
(6)

The ratio of shear force per unit length, -2 zRu|ou/or|, _ g,
to volume flow rate is denoted K.

We now replace the harmonic pressure gradient by the
exponential gradient Ae?. A solution for this exponential
pressure-gradient model is generated by substituting A for

A and a for i in Equations (4), (5) and (6). Note that,
with these substitutions, the Bessel functions become real-
valued series in which each term is a positive real number.
The solutions for flow rate and shear force per unit area in
the exponential pressure wave model are, respectively,

Q = [7AR*/(81)]e*'Pq(iR)/]o(iR) (7)
and
-0 ufor]|, _r = [AR/2]e*P(iiR)/]o(iBR), (8)

where B =(ap/u)'/2. The function I(ifR) is equal to Q
divided by the force gradient zR2Ae®. When

apR?[u << 8, 9)
Pq(ipR), Ps(ifR) and J,(iR) are approximately equal to 1,

I(ifR) is approximately R?/(84), and the function K is
approximately equal to 8y/(pR%). When apR2/u > 8,
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I(ifR) is approximately equal to 1/(ap), and K is approxi-
mately equal to 0.

Now consider the fluid motion when the force function, F
= 7R?P, is

F - feute-bzl

where a, b and f are positive real-valued constants. At time
t, this expression defines the force function of distance z
along the tube. A point defined by a particular value of z
can be traced backward in time to a point at z = 0 on the
force function at time t-z/c. In the absence of damping as
a result of shear forces, the value of the force function
would be identical for these two points. Therefore, fedeb=
= fea(tz/c), so that b = z/c in the absence of damping.

It is assumed that the ratio of flow rate to force gradient is
constant in our model of a segment of an artery that does
not contain a branch. An equivalent assumption is that
the value of R2 does not vary significantly with decreasing
pressure along the segment. As a consequence, it follows
that flow rat, Q, is proportional to e*(*?/<) in the absence of
damping, i.e. the flow wave is described by Qea(+#/¢),
where Q, is the flow rateat t = 0 and z = 0.

In the absence of damping, there is no loss of momentum
per unit length in the velocity wave. When there is damp-
ing, Equations (7) and (8) imply that the point on the
velocity wave at z = 0 at t = 0 loses momentum at specific
rate -K as it travels distance z = t/c in time t. Therefore,
momentum, velocity and flow rate are reduced by the fac-
tor e’Ke/c as the flow wave moves a distance equal to z, and
volume flow rate is proportional to Q,e(t%/¢) ¢-Kz/c. By anal-
ogy to the rigid-tube model where flow rate is propor-
tional to the force gradient -0F/0z for small R, it is
assumed that, in the model where small changes in R are
allowed, force gradient is also proportional to volume
flow rate (for small R). Therefore force is likewise propor-
tional to ea(+2/¢) eXz/c, and we write

F = feate=(a+ K/c, (10)
The force gradient is
-0F/0z = [(a + K)/c|fette=(a+ K)/c, (11)
Substitution into Equation (7) gives
Q = [(a + K)/c|ferte=@z+K)/eI(ifR). (12)

For an incompressible fluid in a cylindrical elastic tube,
conservation of mass requires that

-0Q/oz = 27R(OR/0Y). (13)
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Substitution into Equation (12) gives

[(a + K)fclfese=ta 0L I(ifR)- [(a + K)elfesetoz+
<(31(ifiR)/OR)(OR/3z) = 27R(OR/3Y). (14)

For an elastic tube with wall thickness equal to & and elas-
tic modulus equal to E,

P = Eh(R-R,)/R2. (15)
Consequently, F = zEh(R - R,)), and 0F/0z = #Eh(0R/0z),
which is rewritten as

-[(a + K)/c]feate=(a + K)c = zER(OR/0z). (16)

Similarly,

afet e=(az+K)jc = zEh(OR/0t). (17)
Combining Equations (16) and (17) with Equation (14)
gives a description of the flow-pressure coupling (FPC)
associated with the pulse wave. The FPC equation will be
solved for the PWV. This will be simplified by considering
two cases. The first is when apR?/u << 8. I(ifiR) is approx-
imated as R2(84), and the function K is approximated as
84/(pR?). Combining Equation (16) and (17) with Equa-
tion (14) leads to

Eh/(2pR) + 2feste=az+K)/c/( 7pR2) = c2aK/(a + K)2.
(18)

Equation (18) is rewritten as
Eh/(2pR)[1 + 4ferte=la+K)/c/(zRER)| = c2aK/(a + K)?,

and combining this equation with Equations (10) and
(15) leads to

Eh/(2pR)[1 + 4(R-Ry)/R] = c2aK/(a + K)2.  (19)
When
4(R-Ry)/R << 1, (20)
the above equation is approximated as
¢~ [ERJ(2pR)](a + K)?/(ak). (21)
which is rewritten as
c?/cd=a/K+2+K]/a (22)

Because a/K = apR?/(8u) is assumed to be much smaller
than 1,

http://www.tbiomed.com/content/5/1/15

¢~ ¢y [2+844/(apR?) |1 (23)
This result is not in agreement with Womersley's predic-
tion that the PWV is approximately proportional to ¢,
multiplied by R when apR?/u << 8.

For the case where apR?/u > 8, I(ifiR) is approximately
equal to 1/(ap), and K is approximately equal to 0. Substi-
tution into Equation (14) leads to the Korteweg-Moens
expression,

c2~ Eh/(2pR).

The mass of the arterial wall and surrounding tissue was
not included in the above analysis. The effect of this mass
on the PWV can be assessed by writing a differential equa-
tion for its acceleration caused by the difference in fluid
pressure in the tube and the force per unit area of the inner
wall on the fluid. The solution leads to the approximation

P = (a?[R-Ro|heps + ER)(R-Ro)/R?,

where h and p, are the thickness and density, respectively,
of the wall and surrounding tissue accelerated by the
increasing arterial pressure.

There are many published estimates of the modulus E for
mammalian elastic arteries. Estimates from studies of the
change in arterial radius with changes in pressure are usu-
ally between 10° dynes/cm? and 107 dynes/cm?2 [14,15].
Therefore, the term a2R2h p, may be small compared with
Eh unless the rate of rise in the arterial pulse is very steep.

Comparison with Womersley's derivation of the PWV
Womersley [9] replaced the rigid tube of Lambossy with
an elastic tube that expands or contracts in response to
increasing or decreasing pressure of blood. If the tube is
not tethered to surrounding tissue, it also moves axially in
response to frictional force of blood on the inner wall.
Womersley denoted the radial displacement of the inner
wall of the tube by £and the longitudinal displacement by
¢ It is assumed that £ and ¢ are described by harmonic
functions:

& =D, explio(t - z/c)], (24)

¢ =E, exp [io(t-z/c)]. (25)

The pressure of the fluid p is also assumed to be a har-
monic function
p = pyexp [io(t-z/c)]. (26)

If ¢ is a positive real number, this equation imposes a
direction of flow for the pulse wave.
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In Equations (35) and (36) of the article by Womersley
[9], the boundary conditions for the fluid in contact with
the tube's inner wall are described by:

Al

iwE, =C, +—, (27)
poc
. 1 ioR A
oD, =ET{C1F10(O£)+TOIC}I (28)

where p, is the density of the fluid, C, is a constant and
Fio(@) is 2], (i32a)/|i3/2c o (i3/*)]. In Equations (37) and
(38) of the article, the boundary conditions for the wall of
the tube in contact with the fluid are described by:

A B .o  —ioE D
—0’Dy = L - (L 2Ly, (29)
hp p R* ¢ R
2 2 )
—o?E = M (€1 3,2p2 14 2R%, Be'E  oieDy
a)El—hPR{ 5 1ocRFw(a)+2p06w 52} o2 R < }
(30)

where p is the density of the tube, o is Poisson's ratio and
Bis E/(1-02).

Womersley interprets Equations (27)-(30) as a system of
homogenous linear equations with variables A,, C,, D,
and E,. Setting the determinant of coefficients equal to 0
gives the equation for c. A solution for c is easily found
when o = 0 and when the tube is tethered to surrounding
structures so that E, = 0. Combining Equations (27) and
(28) gives

1 RC
Dlz_*il{l_Flo(a)}- (31)
2 ¢
Combining Equations (27) and (29) gives
(-@*hp + Eh/R2)D, = -p,cC;, (32)

and dividing by Equation (31) gives
¢ = {-&?Rhp/(2p,) + Eh/(2poR) } {1-F (@)}
Substituting -J,(i3/2a)/] (%2 ) for 1-F,,( ) gives

= {-aPRhp](2p0) + B (2poR)} (-1 @) T2 )}

Because @?Rhp/(2p,) is small compared to Eh/(2p,R), we
have

c?cg = —1,(i*%a) ] Jo(i* ).
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Womersley interprets the imaginary part of 1/c multiplied
by @ as the coefficient in the exponential damping func-
tion of the wave as a function of distance. The exponential
damping coefficient of time is therefore equal to the real
part of ¢ times the imaginary part of 1/c multiplied by w.
When o2 << 8, the real part of ¢ is approximately c¢,/4,
and the imaginary part of 1/c is approximately 4/(c,).
Therefore, the technique of Womersley leads to the pre-
diction that the coefficient for the damping with time is
approximately equal to ® and that this coefficient is
approximately independent of the radius in small arteries.
This does not make sense because Equations (5) and (6)
show that for a2 << 8 the damping coefficient is approxi-
mately 84/(pR?), the expression used in the exponential
pressure gradient model to describe damping of pulse
waves in small arteries.

There is another solution for the PWV in the above equa-
tions from the paper of Womersley. Combining equations
(27) and (30) for the case where o= 0 and E, = 0 leads to

2= @?/[ia?F,o(a)],

which can not be correct because it predicts that ¢ does not
approach the Korteweg-Moens velocity for large values of
R.

The equations of Womersley do not contain an expression
for the damping caused by shear force between the inner
wall of the tube and the moving liquid. If the expression
for shear force is added to the Womersley model, Equa-
tion (31) becomes

. 2
iwD; = R (lo+k)" A1 {1-Fy(a)},
iwppc

and Equation (32) becomes
(-@?hp + Eh/R2)D, = iwA,/(iw).

When @?p << E/R2, the above equations are combined
and approximated by

. 2
sz Eh (1a)+K) {1_

2p0R o Fo(a)}/(io)

When 2 << 8, {1-F,y(a)}/(iw) is closely approximated by
1/K. Furthermore, replacing {1-F,,(¢)}/(iw) by 1/K and
replacing iw by the constant a gives Equation (21). There-
fore, it appears that the difference between Equation (21)
and the corresponding expression derived by Womersely
for ¢2 in the tethered, thin-walled tube model is due
largely to his omission of the expression for damping due
to friction between the wall of the tube and blood moving
downstream in the pressure wave.
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Discussion

One possible source of errors in the analysis of this paper
is the limited consideration of changes in arterial radius.
Such changes are fully considered only when the Law of
Laplace, Equation (15), is incorporated in an expression.
For this reason, caution should be exercised when using
the above results to interpret data from arteries in which
there is a considerable change in the radius and the cross-
sectional area during the cardiac cycle. In large elastic
arteries, this change in radius may be 10% or more from
the median value [14], and this may be a source of error
that is of concern in certain contexts.

In small arteries where pressure oscillations are of low
magnitude, the above concern diminishes. In addition, as
arteries become smaller and smaller, the flow becomes
closely described by the equations for the rigid tube. Con-
sequently, the damping function approaches the damping
function calculated from Poiseuille's Equation. Therefore,
concern for errors in the analysis is less for the expression
giving the PWV in small arteries than it is for the expres-
sion giving the PWV in large arteries.

A plausible explanation for an increase in the PWV during
the course of a disease is an increase in arterial stiffness
leading to an increase in the parameter E. This explanation
is largely based on the Korteweg-Moens equation. An
increase in the elastic modulus, E, or the relative thickness
of the arterial wall, h/R, would increase the PWV. How-
ever, changes in other properties associated with arterial
walls and surrounding tissue may also increase the PWV
and may be interpreted as increasing stiffness. One source
of arterial stiffness that is not considered in the above
analysis is production of heat as the arterial wall is
stretched [14].

The above results show that the PWV can increase in small
arteries if the parameter a decreases. The parameter a
describes the rate of increase in pressure during the initial
rise as the pulse wave approaches a point in an artery. This
rise is determined by the rise in the ejection rate through
the aortic valve in early systole. A number of heart disor-
ders can affect this rate of rise. Examples include aortic ste-
nosis, myocardial ischemia and certain conduction
disorders. It appears plausible that, in certain diseases of
the heart, attributing an increase in the PWV to arterial
stiffness may not be the correct explanation. The link
between an increase in the PWV and increased risk of
myocardial infarction [7] may be due, at least in part, to
myocardial ischemia.
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