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Abstract
Background: The comprehension of the gene regulatory code in eukaryotes is one of the major
challenges of systems biology, and is a requirement for the development of novel therapeutic
strategies for multifactorial diseases. Its bi-fold degeneration precludes brute force and statistical
approaches based on the genomic sequence alone. Rather, recursive integration of systematic,
whole-genome experimental data with advanced statistical regulatory sequence predictions needs
to be developed. Such experimental approaches as well as the prediction tools are only starting to
become available and increasing numbers of genome sequences and empirical sequence annotations
are under continual discovery-driven change. Furthermore, given the complexity of the question,
a decade(s) long multi-laboratory effort needs to be envisioned. These constraints need to be
considered in the creation of a framework that can pave a road to successful comprehension of the
gene regulatory code.

Results: We introduce here a concept for such a framework, based entirely on systematic
annotation in terms of probability profiles of genomic sequence using any type of relevant
experimental and theoretical information and subsequent cross-correlation analysis in hypothesis-
driven model building and testing.

Conclusion: Probability landscapes, which include as reference set the probabilistic
representation of the genomic sequence, can be used efficiently to discover and analyze
correlations amongst initially heterogeneous and un-relatable descriptions and genome-wide
measurements. Furthermore, this structure is usable as a support for automatically generating and
testing hypotheses for alternative gene regulatory grammars and the evaluation of those through
statistical analysis of the high-dimensional correlations between genomic sequence, sequence
annotations, and experimental data. Finally, this structure provides a concrete and tangible basis for
attempting to formulate a mathematical description of gene regulation in eukaryotes on a genome-
wide scale.

Background
The approximately 6,000 to 100,000 genes encoded in
different eukaryotic genomes display complex patterns of
activity according to the physiological state of the cell and

the organism [1]. The resulting cell and cell-state specific
transcriptome profiles result from a combination of
tightly controlled regulatory events in response to intra-,
extra-, and inter-cellular signals [2]. These transcription
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programs are blurred by different stochastic influences,
however, they define the cellular state and activity [3-5].
Almost all known disorders including cancer, genetic syn-
dromes, and pathogen induced diseases are characterized
by altered transcriptome profiles [2,6]. Often the molecu-
lar basis for pathology is found in affected gene regulatory
signaling [6]. Understanding gene regulation therefore
required not only for comprehending an organism's phys-
iology but also for developing novel strategies for interfer-
ence with physiopathology [1,2,6,7]. Since the discovery
of DNA as the carrier of genetic information, much
progress has been made in the experimental identification
of protein coding sequences. Since the genetic code has
been elucidated such sequences can be predicted with rel-
atively high fidelity. On the other hand, non-protein cod-
ing genes and especially small RNAs are much harder to
identify on the basis of sequence information alone [8].
Even more challengingly, many attempts are currently
being made to improve the predictive power of sequence
statistics for regulatory processes, but we are only just
beginning to understand the sequence structures of regu-
latory sites [3,9,10]. In view of the fact that all the protein-
coding genes in eukaryotes in toto make up as little as two
percent of the entire genomic sequence we are far from
having an understanding of the genome [2]. The vast
majority of the eukaryotic genome is involved in various,
often non-understood processes such as sequence buffer-
ing or evolutionary experimentation, but most impor-
tantly in the control of gene regulation [1,2]. Gene
regulatory control has been a focus of attention since the
1970s because it is the key to understanding the intricate
interplay among genes under various physiological and
pathological conditions. [11]. Numerous insights have
been gained into the identity and function of individual
transcription regulatory molecules, as well as the regula-
tory sequences to which they bind [12]. However, today
only about three hundred transcription factors with an
average of about twenty regulatory sequence elements
have been well characterized experimentally for e.g. the
human genome [13]. It is estimated, however, that the
human genome encodes some 3,000 sequence specific
transcription factors and at least 100,000 regulatory ele-
ments [2,12,13]. Despite this enormous discrepancy, five
fundamental properties of gene regulatory coding have
been established [1]. First, the gene regulatory code is bi-
fold degenerate. Hence, and in striking contrast to the
genetic code, even a complete knowledge of all transcrip-
tion regulatory molecules and all regulatory sequence ele-
ments would not allow those elements to be mapped
unequivocally in the absence of further information. Sec-
ond, the gene regulatory code is interpreted in a context-
dependent manner by the cellular machinery. Depending
on either the sequence environment or the physiological
environment the very same regulatory element has drasti-
cally different regulatory activities. Third, the gene regula-

tory code is combinatorial. Any regulatory signal in
eukaryotes is conveyed by at least three but up to more
than ten sequence specific DNA binding activities. The
individual contributions of those regulatory factors act
synergistically such that the activity AB ≠ A+B and even AB
≠ BA. Fourth, the gene regulatory code is distributed. Reg-
ulatory sequence elements are often found hundreds of
kilobases away from the site of gene transcription initia-
tion, are non-continuous, and are sometimes even shared
among different genes. And finally, the gene regulatory
code is composed of DNA sequence and DNA-associated
protein sequence elements. During the past two decades
increasing evidence has accumulated that covalent post-
translational modifications to DNA-associated proteins
contribute significantly to the design and properties of the
gene regulatory code. Here especially the histone and
non-histone nucleosomal proteins play a major role [2].
The eukaryotic genome is at any moment in time tightly
packed into the chromatin structure, with histone-con-
taining nucleosomes being the fundamental building
block [2,14]. About one nucleosome is associated with
every 160–200 basepairs of DNA, and participates in the
regulation of gene activity by influencing for example
access to regulatory DNA sequences [2,14]. On the basis
of these observations a histone- or chromatin-code
hypothesis has been developed that places chromatin at
the heart of gene regulatory control [1,2,15].

Therefore, the gene regulatory code and its cellular inter-
pretation entail multilevel, distributed, context- and his-
tory-dependent information processing [1,2,15]. These
facts, taken individually or together, preclude any brute
force statistical approach to breaking the gene regulatory
code. Likewise, given the sheer size of a eukaryotic
genome and the impracticality of fully exploring the
sequence space using mutagenesis and subsequent phe-
notypical analysis, a brute force experimental approach is
also excluded. Only a combination of advanced statistical
analysis with high-throughput whole-genome experimen-
tal data might pave the way to deciphering the regulatory
code. This assertion is today widely acknowledged in the
literature and different research programs have emerged
that try to achieve such an integrated analysis [16-19].
Such approaches are challenged by different constraints.
The increasingly available genomic sequences are still not
finalized as different regions of the eukaryotic genome are
difficult to sequence or assemble. More importantly, as
many genes, especially non-protein coding genes, still
need to be identified [8], the sequence annotations of
eukaryotic genomes are under continual discovery-driven
change. Experimental methods for analyzing DNA-based
events on a genome-wide scale and in a high-throughput
manner are not only very expensive but also just in their
infancy in terms of sensitivity, robustness, and coverage
[20,21]. Methods for measuring the same biological proc-
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ess or object are often heterogeneous in their technical
design and in the absence of independent standards and
controls lead to similarly heterogeneous data. Many excit-
ing and urgently required new technologies are on the
horizon, such as massive parallel sequencing, but are still
far from routine use in the laboratory. Finally, the combi-
natorial complexity of the question (105 genes making up
at least a thousand distinct genetic programs in some
1012–1014 individual cells of a typical higher eukaryote),
requires multi-laboratory and probably decades-long
coordinated efforts. Any framework for achieving inte-
grated experimental and sequence statistical analysis must
therefore not only be systematic and coherent, but also
portable and evolvable to accommodate future advances
in genome biology. The challenge here can be compared
to the development of open-source, portable, and extend-
able digital data formats for the long-term storage of infor-
mation, which is currently a major concern for the
computer science community [22], and will need to be
combined with a similar open, portable, and extendable
set of analysis tools. We present here a concept for such a
framework. We show how any type of existing and future
experimental data, theoretical predictions and models, as
well as sequence information may be coherently inte-
grated. The proposed strategy thereby satisfies all the
above criteria.

Results
Genome probability landscapes
The different genome sequences at our disposal today are
characterized by several important limitations: (i) they are
average sequences obtained by sequencing several (not
necessarily many) individuals that may not be representa-
tive and may differ from one another [23,24]; (ii) they
contain gaps of regions that are either resistant to the
sequencing chemistry or simply not present in a signifi-
cant sub-population in the sequenced individuals
[23,24]. Those gaps are of various or unknown length.
(iii) In some cases two or more bases occur with similar
frequency in the sequenced individuals, and averaging
does not produce an unambiguous result. Those positions
are often indicated simply by an 'N' in the linear sequence
[23,24]. (iv) Genome sequences from different sources for
the same organism may differ [23,24]; (v) true errors in
the sequence and wrong sequence concatenation are still
quite frequent [23,24]. The currently used format for rep-
resenting genomic sequences is a letter code that mostly
does not indicate of the location of gaps. On average, doz-
ens of new genome releases with ever increasing quality
are published during the course of a year.

Owing to ever-increasing sequence throughput together
with a decrease in cost per base-pair, we can very soon
expect to see genome sequences that take account the base
frequency at each position through the concurrent

sequencing of many representative individuals [25]. As
there is significant non-random variation in the occur-
rence rate of a given nucleotide at some positions, as well
as non-negligible random variation at other positions, we
will for the first time obtain a glimpse of the sequence var-
iability on a genome-wide scale. Such represented
genomes will thus contain information on e.g. single
nucleotide polymorphisms (SNPs) [25].

In the long term future one can also expect that it will
become feasible to sequence a large number of individu-
als of a given species separately [25]. Individual sequences
then can be compared, clustered into sub-populations,
and analyzed for correlations in the base frequencies at
given positions. Such genomic sequences would thus also
contain complete information on e.g. haplotype variation
between sub-populations and region copy number
[25,26].

Formalisms for systematic gene regulatory research have
to be able to accommodate today's genome sequence rep-
resentations as well as possible future formats. Further-
more, new releases in any given format have to be
handled. For the former, a solution adapted to frequency
distribution representations is used. Most importantly,
treating genomes as nucleotide frequency distributions is
equivalent to casting a genome as a probability profile.
We argue that for efficient integration of experimental or
theoretical data (hereafter also referred to as features) from
heterogeneous sources and their correlation with
sequence statistics all information has to be converted
into similar nucleotide-based probability profiles. The
entire problem is thus converted into a homogeneous
genome probability multilayer landscape in which any
individual feature is annotated using a separate profile.
Furthermore, as the quality of the observation or predic-
tion at each nucleotide does vary, a second measure is pro-
vided, amounting to a probability density defining the
quality of the initial probability value, to capture this
inhomogeneity (Figure 1). In the following paragraphs we
discuss how this can be achieved. The resulting structure
can be used to apply Rényi entropy-based high-dimen-
sional correlation functions for efficient hypothesis test-
ing in the context of gene regulatory control.

Sequence annotations
Sequence annotations, even more than the genomic
sequence itself, undergo frequent revisions. Many genes
remain to be identified or confirmed experimentally in
various eukaryotic genomes. As discussed in the introduc-
tion, this is especially true for small RNA coding genes
where research is still at a very early stage [8]. In order to
map gene-bound experimental data correctly to the
genome sequence one has to use gene annotation infor-
mation. Furthermore, gene-transcript based experimental
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data must first be mapped to a gene annotation and then
subsequently to the genomic sequence. As a single gene
can produce a multitude of different transcripts through
alternative splicing, alternate promoter usage and other
biological processes, this two-level mapping is a challenge
in itself [27,28]. When considering proteomics data the
problem is less complicated in principal as the expressed
protein information can either be mapped directly back to
the genomic sequence using so called proteogenomic
mapping or be mapped to transcript information and
then via gene information to the genomic sequence.
Again, owing to post-translational modifications and
processing and the degeneracy of the genetic code, this is
far from trivial and often not possible to achieve unequiv-
ocal. Therefore, a probability based annotation approach
almost imposes itself.

Many different features characterize a gene within the
genome. The initiation region with the first translated
nucleotide (INR), the exon-intron structure, 5' and 3'
untranslated regions (UTR), and also information on the
structure and stability of its transcript, or a possible pro-
tein translated from the transcript, can be taken into con-

sideration [29]. For many of those features we still do not
have a very good picture on a genome-wide scale. How-
ever, for sake of future hypothesis testing, the formalism
of sequence annotation should be able to account consist-
ently for any possible feature one might choose in the
future. We again think that this is best achieved by using
probabilities. This contention is further supported by the
observation that foregoing features are neither necessarily
present nor necessarily unique; for instance, alternate pro-
moter usage often also leads to alternate transcription
start-site selection, or alternative splicing to the presence
or absence of a exon sequence in the transcript. As shown
in Figure 2 such information can be translated into prob-
ability profiles along the genome, and can be readily gen-
erated from existing sequence annotation databases [30-
32]. In order to account for varying levels of quality those
annotation data should also be associated with a quality
probability (Figure 1). The need to create probability pro-
files for gene features is more readily appreciated when
the different experimental data and their structure are con-
sidered in relation to these sequence annotations.

The principle of genome probability profilesFigure 1
The principle of genome probability profiles. Annotation of genome sequence probability profiles with feature probabil-
ity profiles.
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Experimental data
Although there are problems associated with their hetero-
geneity in design, scope, exhaustiveness, and quality, or
between different technologies, two main issues need to
be addressed with respect to experimental whole-genome
data. First, the nature of the data is drastically different
from one data source to another. Some directly concern
the DNA structure itself, others such as protein levels
apply to the DNA sequence only indirectly. Both have to
be treated separately to begin with and then integrated
into a single coherent formalism. The other concern is
that most functional genomics data do not provide abso-
lute quantification of the objects under study but rather
relative quantities between different objects and even
more often for a single object between two different exper-
imental conditions. Therefore, inter-assay normalization
and standardization has to be resolved [33].

Nature of experimental data
Despite sequence information, functional genomics today
creates data for gene expression (transcriptomics), protein
expression (proteomics), comparative genome-region
amplification/loss (CGH), single nucleotide polymor-
phism (SNP), chromatin and chromatin factor DNA asso-
ciation (ChIP-on-chip), chromatin domains (e.g. telo-/
centromeres, PEV, MAR), haplotype mapping, cytosine
methylation status, chromosomal aberrations, spatial
chromosome and chromosome domain localization [34].
It is likely that many others, such as high resolution muta-
tion analysis, chromatin fiber structure and dynamics
analysis, or local sub-nuclear ionic strength measure-
ments coupled to chromatin domain sub-nuclear locali-
zation will be developed in the future. These methods
have drastically different resolution ranging from single
nucleotide (SNP, cytosine methylation) to entire chromo-
somes (108 nucleotides, spatial chromosome localiza-

Generating feature probability profiles from gene and gene transcript annotationsFigure 2
Generating feature probability profiles from gene and gene transcript annotations. INR: initiator region (transcrip-
tion start-site); INR2: alternate transcription start-site; EoT: end of transcript; {A, B, C, D}: exon; C*: alternative spliced exon; 
UTR: untranslated region; {a, b, c}: intron.
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tion) [34]. To integrate such data coherently they have to
be remapped to the single nucleotide level. Furthermore,
as experimental data only represent snapshots of a
dynamic molecular reality in the cell, and because these
snapshots are further biased through the technology itself,
combined with the fact that they are often generated
under non-identical conditions, and finally also possess
varying time resolution, they need to be translated into
probabilities for events or objects to occur. Thereby the
same probabilities and the corresponding quality meas-
ures for lower-resolution experiments are simply attrib-
uted to all the nucleotides in the region concerned, as in
the case of gene feature annotation (Figure 2). The result-
ing probability profiles can then be co-analyzed regardless
of the resolution and quality of the contributing data.
Only by using such a systematic and coherent approach to
data annotation can the genomic sequence questions of
whether for instance a given cytosine methylation event
correlates with the chromatin fibre dynamics in a given
spatial chromosome location be addressed.

Data normalization
The problem of normalization between experimental data
generated using different technologies or under different
experimental conditions vanishes if probabilities are
used. Translating experimental data into probabilities is
not trivial but can be achieved in the following manner.
Again the nucleotide resolution of the technology sepa-
rates two cases. SNP and similar single nucleotide resolu-
tion data can be interpreted, similarly to the sequence
data themselves, as frequency distributions. The quality
measure for each probability at a given nucleotide thereby
directly reflects the confidence that the true frequency dis-
tribution has been faithfully represented, and can be
determined by standard statistics on basis of the concrete
data (see paragraph 3).

In the second case, for lower resolution at the genomic
sequence level, and comparative technologies that do not
provide absolute object/process quantification, several
considerations become pertinent. We discuss them here
for sake of clarity in detail only for the example of tran-
scriptome data; however, they apply similarly to any type
of experimental setup falling into this second category.

Transcriptome profiles are thought to provide a measure
for the expression level, or expression-level change
between two experimental conditions, of a large number
of gene transcripts simultaneously [20]. Currently, the
main limitations of these transcriptome profiles are: (1)
no absolute quantification, (2) no complete reference
data-sets available, (3) probes or probe-sets do not cover
the entire transcript length, (4) probes are not isoform
specific, (5) known and unknown probe cross-reactivity,
and (6) relative low precision [20,28,34].

No absolute quantification of transcripts can be achieved
because on the one hand no satisfactory physico-chemical
models for the hybridization of two nucleic acids exist. As
such, differences between probe and target sequences
between individual probe-target sets, which lead to dis-
tinct hybridization kinetics for such sets, can neither be
analyzed for absolute quantification nor be normalized
amongst each other. This could partially be overcome if
complete reference datasets were available. Such a refer-
ence dataset would be a catalogue of all probe-target sig-
nal intensities in all available physiological cell types and
tissues. In consequence the reference dataset then pro-
vides a reference signal under physiological condition to
which any experimental biological sample intensity could
be compared. Since not all tissues have been well identi-
fied and characterized such a reference dataset is still far
from availability. However, significant efforts are being
made in this direction [35]. Until those efforts have been
completed, signal intensities obtained for a given probe-
target set are an unknown nonlinear function of absolute
target concentration, and comparable probe-target inten-
sities for two different sets do not necessarily reflect simi-
lar target concentrations. Therefore, only probe-target
signals for the very same probe-target set can be directly
compared between different experimental conditions.
This is similarly true for other high-throughput functional
genomics technologies such as proteomics approaches
[34]. While one can expect that ever better physico-chem-
ical models for the hybridization process will emerge [36]
and in the future contribute to solving the problem of
non-absolute quantification, any attempt to couple such
experimental data with genomic sequences today needs to
account for this insufficiency. The way to achieve this is by
defining a probability of maximal signal-intensity indi-
vidually for every probe-target sequence. This probability
is rescaled whenever new experimental data indicate that
under different experimental conditions a given probe-
target set can generate an even higher signal intensity
within the dynamic range of the technology such that the
highest signal intensity ever observed for a given probe is
the unity probability event (see paragraph 3).

The reasons for alternate transcripts from a single gene
have been addressed briefly above. Because knowledge of
the mechanisms leading to alternate transcripts and the
sequences concerned in such processes is incomplete, one
can not systematically predict where probes need to be
placed to discriminate the occurrence of alternate tran-
scripts [20,34]. Furthermore, for technical reasons it is not
yet possible to construct probe-sets for a single gene that
would cover any possible combination of alternate tran-
scripts as the combinatorics of the problem simply lead to
too high numbers [20,34]. Again, much effort is currently
being devoted to achieving complete transcript coverage
for some model organisms. However, even optimistic esti-
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mates indicate that it will take another several years before
such isoform-specific arrays become available. Today's
strategies in probe design are directed towards probe sets
covering as many alternate transcripts as possible without
being able to distinguish between them [28]. Therefore
probe sets are often found in the 3' region of genes, which
are assumed to be less variable then the 5' regions and
therefore common to more alternate transcripts. Annota-
tions of signal intensities on a genomic sequence need to
take this particular probe design into account. As a general
rule the measured signal intensity for a given probe
should only be directly annotated to the very same nucle-
otide sequence in the genome. In most cases the probe
intensity measure can be assumed to reflect the relative
abundance of the entire targeted exon; however, the iden-
tical abundance estimate should not necessarily or auto-
matically be assigned to other non-covered exons. For
genes covered with a single probe-set this strategy does
not create any difficulty for downstream correlation anal-
ysis. However, it has to be kept in mind that the gene
activity estimate might be severely biased as for instance
the existence of yet undiscovered alternate transcripts par-
ticipating in the signal estimate, or not being covered by
the probe-set, is not deducible from the data [28]. There-
fore, the validity of the estimation can not be self-consist-
ently assessed.

Whenever several probe-sets are available to a single gene,
the data are likely to be of better quality; however, their
interpretation is more challenging. It is estimated today
that every gene in a higher eukaryote generates on average
four alternate transcripts [37]. Examples of genes are
known that generate many times this number of alternate
transcripts [37]. Moreover, the contribution to the signal
estimate of transcripts unrelated to the gene against which
the probe was designed is completely unknown. Further-
more, the same problem of non-absolute quantification
and hence incomparability of the different probe signal
intensities applies when comparing two different probes
for a single gene as much as when comparing two differ-
ent genes [33]. As no systematic integration of the differ-
ent probe signal intensities can be proposed, the
following strategy should be employed: Every individual
probe is considered to measure a distinct object. Correla-
tions (see below) are then calculated as if the different
probes designed to quantify a single gene were quantify-
ing individual genes. Cross-correlation analysis over large,
many-condition datasets will over time uncover correla-
tions between probes of very different genes indicating
cross-hybridization. Such information then can be used to
improve the transcript-to-probe annotation [27,28]. Sim-
ilar conclusions can be drawn for the other technologies
that produce average signals over many nucleotides. As a
matter of fact, only whole genome tiling arrays with high

redundancy (e.g. overlap of adjacent sequence probes)
would overcome some of the problems posed here [34].

Probability landscapes as a common denominator
We have discussed above three distinct types of informa-
tion, (i) genomic sequence information, (ii) sequence
annotation information, and (iii) systematic genome-
wide experimental data. We have argued that in order to
integrate these different types of information for co-anal-
ysis they need to be transformed into frequency distribu-
tions along the genome sequence, which is itself
represented by a probability distribution (Figure 3).

The proposed probability landscapes are the only system-
atic and coherent way of handling the existing various and
heterogeneous information and any kind of future infor-
mation that might become available without putting any
constraints or bias on its nature. Importantly, the proba-
bility layers will contain gaps where no information is
available. Those should not be confused with sequences
where the probability, of e.g. gene expression, is zero. We
speak here of globally non-continuous profiles, which are
nevertheless locally continuous. As can be seen, a side
effect of those gaps is to render cross-correlation analysis
more efficient. The proposed structure is homogenous as
any information is translated to probability layers. The
structure is easily updatable, as either probability layer can
be replaced with improved or more accurate information.
Both elements of a given layer, nucleotide feature proba-
bilities and probabilities of nucleotide feature probabili-
ties, can be rescaled according to new information. And
finally, additional feature probability layers can be added
at will in tune with novel technological or theoretical
advances. Taken together, the structure and the quality of
any information can easily evolve in tune with novel dis-
covery-driven insights and technical developments. The
entire landscape needs to be recalculated with every new
genome release, as argued above, as those might change
absolute position information. The requirement for recal-
culation of the entire landscape actually is not so much a
technical limitation, but rather renders explicit the notion
of local sequence-bound information across all layers
with long-range or global consequences for biological
information processing. However, this process is straight-
forward and can be automated, making it as much effi-
cient as it is portable. A more detailed description of the
constructive procedures is given in the methods section.

Discussion
We have sketched here a unified structure consisting of
probabilities and associated quality estimates – in the
form of probability densities – to integrate any type of rel-
evant genomic information into a coherent annotation.
Most importantly, we show that the genomic sequence
itself, its annotation with empirically derived features,
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Genomic probability landscapes – unified structures for genomic analysisFigure 3
Genomic probability landscapes – unified structures for genomic analysis. Genomic sequence information, empirical 
sequence annotations and whole genome experimental data are converted into probability profiles along the genome primary 
sequence. Every profile consists of a primary probability for the feature at the given position and a secondary probability cap-
turing the quality of the feature at the same position. New information can either be used to replace existing probability layers 
or added as new layer. The ensemble of information creates a probability landscape. Rescaling of probabilities can be easily 
achieved by vertical integration of the data base information.
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and any type of functional genomics data can be described
in this manner. The rationale of this probabilistic descrip-
tion is not necessarily to account for an underlying sto-
chasticity, though for some biological processes this is
indeed utilized, but rather to provide an efficient way to
formulate partial knowledge and turn relative data of very
heterogeneous nature and origin into absolute values and
a homogeneous representation of the initial observations.
Genome probability landscapes are systematic as any type
of relevant information can be correctly and sensibly pro-
jected upon sequence distributions. This projection has a
single nucleotide resolution, producing a (at least locally)
continuous profile. The proposed framework is coherent,
as any information is converted without exception into
the very same structure: probabilities with associated
probability densities for local quality estimation. While
the proposed representation of information is far from
optimal in terms of compression, it provides a direct, sys-
tematic, and coherent interface for analysis, thus render-
ing analytical calculation extremely efficient. The
systematic nature of genome probability landscapes and
their coherent structure allows easy exchange of informa-
tion between different research teams. The simple struc-
ture of the resulting data also makes the framework easily
portable between different computing environments as
there is no real need for a solid database structure to gen-
erate, store, and handle the information. Finally, as any
type of future information can also be included in the very
same manner into the existing landscapes, our proposi-
tion can evolve along with future scientific and technolog-
ical development without the need to change the
formalism of the framework. This latter point is of high
interest, as current technological developments fore-
shadow a vast array of applications for massifly-parallel,
so-called "deep" sequencing technologies. The through-
put and precision already achieved with these technolo-
gies make it very likely that within the next several years
essentially all current genomics and RNomics methods
will be sequencing-based. Additional investigations, such
as the direct sequencing and quantification of for example
small nuclear RNAs, also seem within reach. Our proposi-
tion to use probability landscapes for the integration of
such data is – as it is inspired by and organized along the
DNA sequence – a natural solution.

Conclusion
Probability landscapes, which include as reference set the
probabilistic representation of the genomic sequence, can
be used to discover and analyze correlations efficiently
amongst the initially heterogeneous and un-relatable
descriptions and genome-wide measurements. Further-
more, this structure is usable as a support for automati-
cally generating and testing hypotheses for alternate gene
regulatory grammars and the evaluation of those through
the statistical analysis of the high-dimensional correla-

tions between the grammar to be tested, genomic
sequence, sequence annotation, and experimental data.
Finally, this structure provides a concrete and tangible
basis for attempting to formulate a mathematical descrip-
tion of gene regulation in eukaryotes on a genome-wide
scale. Interestingly, our propositions concerning the
decomposition of genome annotation information is con-
sistent with novel ideas concerning the understanding of
the nature of genes recently published [38].

Methods
Constructive measures for feature probability layers
We have introduced the concept of a unified probability
landscape for functional annotation of genomic
sequences. Now we shall discuss how such probability
layers are constructed in concrete terms. As shown, three
principal types of information have to be treated. The
main difference between these three types of information
is not to be found in their specific nature, which is ulti-
mately directly or indirectly derived from experimental
observations, but rather, as we will see below, in the
nature of the quality of estimation. Whereas the partition
into three types is rigorously based on this difference,
their denominations are only circumstantial and do not
reflect exact boundaries. For each type we discuss how the
feature probability layer is derived and how associated
quality measures of the probability of feature probability
can be computed.

Genome sequence
This is the trivial case. As discussed above the ensemble of
observed nucleotide sequences for a population, and
later, sub-populations, is directly converted into a nucle-
otide frequency distribution, which is nothing but a prob-
ability distribution. Computation of the probability of
feature probability is not yet state-of-the-art, but is none
the less intuitive. Consider the case where Nn observations
kα, n of the nature X = {A, G, C, T, -} of nucleotide n are
given by Nn experiments labeled α = 1..Nn. The estimated
fraction of nucleotide X at position n is thus given by:

This quantity is a random variable normally distributed in
the limit of Nn going to infinity. Its mean represents the
true probability of observation. Its standard deviation
describes the quality, or probability density, of observing
this nucleotide frequency, and is given by:

ˆ
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Hence, the quality of a nucleotide probability measure in
the genomic sequence scales directly and in an inverse
square-root fashion with the number of independent
observations at location n. Obviously, any new sequence
information covering n can be used to update both the
feature probability (eq. 1) and its quality (eq. 2). It is
because of the high technical quality of today's different
sequencing methods generating discrete observations
with negligible error that we do not have to consider the
technical contribution to the variance, which would be
method specific.

Sequence annotation
The type of sequence annotations is very variable, so is
their quality. However, sequence annotation information
is mainly based directly or indirectly on sequencing infor-
mation as well. Consider for instance how gene annota-
tions are obtained. On the one hand direct measures for
expressed sequences are gathered by sequencing cDNAs
and expressed sequence tags (ESTs). Such information is
combined on the other hand with bioinformatical analy-
sis of the genomic sequence such as open-reading frame
mapping by translating the genomic sequence into all six
possible reading frames and comparing those to known
cDNA, EST and protein sequences. Other types of infor-
mation that are considered in generating a gene annota-
tion concern plausible or measured start and termination
signals, plausible or measured exon-intron boundaries
and so forth [30-32]. Even when considering predicted or
measured secondary and tertiary protein structures, this
information is ultimately derived from DNA sequence
information or is superposed upon such information.
Similar considerations apply to physical features of DNA
such as intrinsic bend or elasticity, to telomere and centro-
mere annotation, repeat and variable region annotation,
and all other information that is today routinely gathered
in sequence annotation databases [30-32]. Therefore, the
same considerations as for genomic sequence apply. The
main difference between genomic sequence and genome
sequence annotations with respect to the feature probabil-
ity layers lies in the fact that sequence annotations mostly
concern sets of nucleotides rather than individual nucle-
otides. For example, the probability of observing an exon
is not only the probability resulting from regarding a set
of nucleotides jointly but is then also attributed uniformly
to this entire set, creating a step, or more generally a piece-
wise constant, function at the genome level. Every observ-
able considered thereby will be used to generate an inde-
pendent probability profile/layer over the genome
sequence. Hence, a separate layer for each kind of
sequence annotation is generated as illustrated in Figure
2.

When considering genome sequence annotations two
general cases have to be distinguished in the calculation of

feature probabilities. First, as in the genomic sequence,
the technical variability of the underlying experimental
method does not prevent discrete observables being
obtained. In this case the estimated fraction of feature x of
the nature X = {feature is present, feature is absent} is cal-
culated according to (eq. 1) and its quality according to
(eq. 2), where kα,n equals unity if the feature is present at
genome position n. A feature can be any biological infor-
mation or prediction that can be annotated to the
genome. Second, the alternate case of continuous observ-
ables is a generalization of (eq. 1) and (eq. 2) where the
methodological contribution to the variance is consid-
ered. Consider the case of Nx,n observations kx, α, n at
genome position n of continuous feature x labeled α =
1..Nx, n. The estimated probability that feature x takes is a
value between k and k + ∆k is given by:

where χ denotes the step function taking value 1 inside
the interval [k, k + ∆ k] and 0 elsewhere. ∆k is an arbitrary
step ideally corresponding to the resolution of the infor-
mation generating method, and in practice controlled by
the number Nx, n required to get a good statistics for this
normalized histogram (eq. 3). The probability that the
summand χ [k,k+∆k](kx, α, n) equals unity is given by some
value px,α,n(k)∆k including now the α-dependent method-
ological contribution in addition to the biological varia-
bility. The probability-density of feature probability thus
remains a Gaussian for sufficiently large Nx,n, fully charac-
terized by its mean:

and variance:

The actual choice of ∆k will reflect the compromise
between a good sampling of the distribution, small ∆k, see
(eq. 3), and a good statistical quality, see (eq. 5).

It can easily be shown that any type of genomic sequence
annotation information can be translated to feature prob-
abilities and probability density estimates as quality
measures of the feature probabilities according to these
formalisms.
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Experimental data
Functional genomics experimental data are very different
in nature from sequence annotations, which ultimately
are also experimentally derived. Most importantly, the
former are in general specific to a biological condition or
state [34]. A transcriptome profile for instance is a snap-
shot of the transcriptional activity of a given cell in a
given, and often ill-defined, cellular state. In consequence,
the space of possible states that the system can adopt is
not necessarily entirely defined, which is not the case for
sequence information and sequence annotation informa-
tion [2]. As defined above, the possible system states for
sequence information are simply {A, C, T, G, -}. In the
case of sequence annotation information, let us here for
illustrative purposes consider the annotation of a genomic
sequence with a probability of forming an α-helical pro-
tein structure, which is continuous for the interval [0,1].
The intrinsic state for this type of information is exclu-
sively a function of the sequence itself (which is available,
defined) and not the cellular state (which is not well
defined). Note that obviously this probability of forming
an α-helical structure can then be modulated by the cellu-
lar state (interacting factors, ionic strength and so forth).
However, this is a discrete observable that would be anno-
tated in our scheme as an independent feature probability
layer resulting from experimental observation (amount of
interacting factor present, etc.). Therefore, in the sequence
annotation case, the boundaries of the space of possible
states are defined as a function of the sequence, can be
exploited in the calculation of the feature probability pro-
file, and do not need any revision unless the sequence
information is revised (see our discussion above). Func-
tional genomics data, however, by themselves provide
knowledge on neither the discrete number of possible sys-
tems states, nor the boundaries of a continuous distribu-
tion of systems states. Only a complete map of all possible
cellular states using the defined technology would provide
such a definition for this technology. Consider again the
case of transcriptome profiles, where we measure the rela-
tive transcription activity of a large set of genes simultane-
ously under a single given condition. There is no way to
know whether a gene G that has been determined to have
some relative activity AG,C1 under condition C1 could not
have a higher absolute activity AG,C2 under another condi-
tion C2. Only if we had complete knowledge of the gene's
activity under all possible conditions could we determine
its absolute maximal and minimal expression activity and
use it to scale any experiment once-for-all. Since this is
principally not achievable, the probability feature maps
for experimental data of a given technology will have to be
reevaluated entirely and subsequently rescaled with every
new experimental data set. The problem is thus that the
boundaries of the possible system states are unknown and
have themselves to be experimentally observed. This
holds although no absolute quality assessment can be

obtained. For this reason the constructive methods for cal-
culating feature probability profiles and feature probabil-
ity quality profiles are different from those used to obtain
the sequence probability and sequence annotation proba-
bility profiles. In effect, whereas the latter two are calcu-
lated using the frequency of observation as a basis, for
functional genomic data we need to employ a Bayesian
probability calculation [39].

As outlined in Figure 4, the reevaluation and rescaling of
all feature probability profiles stemming from a single
technology T can be achieved based on the assumption
that such data are always lognormally distributed by inte-
grating over a lognormal distribution constructed from
the observed weighted means, weighted variances and
detection limits DL for each probe [40]. Calculation of the
feature probability quality profile, however, becomes very
complex because different technologies are often being
used to measure a priori the same biological event, but
given a large heterogeneity in both absolute and relative
(between individual probes) quality return very different
measures for what is supposed to be the same observable
[28]. The feature probability quality profile is conse-
quently a function of the observable itself (the probe asso-
ciated signals), the biological condition, and the
technology used. As the feature probability profiles are
being recalculated with every new dataset stemming from
the same technology, the associated feature probability
quality profiles also need to be recalculated at the same
time. Since the feature probability quality profiles in the
case of experimental data do not only associate a quality
variance estimate over the probability calculated from an
existing observation and its biological variance, but
directly influence the calculation of the feature probability
profile, the entire process thus consists of three consecu-
tive steps:

Step 1
In fact the measures for a given probe i obtained under
different biological conditions might, and usually do, dif-
fer markedly in accuracy and faithfulness; the value Ai,Cq
has thus to be supplemented with a quality variance esti-
mate σ 2i,Cq. This variance effectively quantifies the quality
of the observation, hence the value it should be given in
subsequent calculations and analysis. In particular, the
statistical parameters <Ai> and sdi involved in the rescaling
function F(T)

i, and defined above (Figure 4B) as the mere
average and standard deviation of the observations (Ai,C1..
Ai,CN), have to be reevaluated and turned into weighted
average and weighted standard deviation:
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Feature probability profile construction for experimental dataFigure 4
Feature probability profile construction for experimental data. Functional genomics experimental data are obtained 
associated with probes spanning and representing the entire genome at various resolutions (currently from some fifty base-
pairs to hundreds of kilobases). The conversion of experimental data into probabilities requires the distinction of two cases. 
(A) In the trivial case only one experimental/biological condition has been investigated. In the absence of any additional infor-
mation, the assumption that any probe returning a signal above its detection limit (DL) returns the maximal signal strength has 
to be made. Hence, any probe with a signal above its probe-specific threshold of detection will be assigned a probability of 
unity, whereas any probe-signal below the detection limit is set to zero. As discussed in the main text, all nucleotides covered 
by the probe are assigned the corresponding probability. For biological analysis this trivial case has little relevance. (B) For any 
thorough analysis several biological conditions Cq will be investigated using the same technology T. As discussed, the boundaries 
of the possible system states are unknown. With every new experimental dataset the probability layers for each condition 
need to be rescaled. For this, as biological data are generally assumed to follow lognormal distributions, we use the integral 
over a lognormal distribution as the rescaling function F(T)

i. Obviously, any associated signal variance stemming from technical 
replicates is accordingly rescaled together with the probe probability.

A - feature probability profile of a single experimental condition for given technology T

B - feature probability profiles for multiple experimental conditions for given technology T
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and:

The quality of the measurements under different biologi-
cal conditions has thus a direct impact on the probability
profile determination. It has also an impact on the quality
assessment of the feature probability quality profile in
general. Indeed, <Ai> and sdi are determined within some
tolerance, roughly estimated as the square root of their
variance:

This shows that the natural choice for the weights is:

where the constant is such that:

In this way, each biological condition contributes equally
to the variance of the overall statistical features; in other
words, it is properly weighted relative to the other sources
of information.

Step 2
In consequence, accounting for the quality of the different
biological conditions and the uncertainty of the measure-
ment not only updates the parameters of the rescaling
function Fi, it also replaces it with a set Fi composed of all
the possible instances of Fi given the tolerance on <Ai>
and sdi. In practice, Fi is obtained by varying the values of
<Ai> and sdi in an interval of width:

The procedure for obtaining the variability of the proba-
bility profile estimate Pi,Cq is then similar to that sketched
in Figure 4B, only replacing the curve Fi by a "fuzzy" curve
Fi.

Step 3
An additional, final ingredient has to be taken into
account in order to calculate the feature probability qual-
ity profiles (see Figure 5). As discussed above, very heter-

ogeneous technologies are being used to determine the
same biological observable. The heterogeneity of the tech-
nologies (e.g. different probes for the same gene, different
surface and revelation chemistry, different chemical probe
design, etc.) leads to a situation where every single meas-
urement within, as well as the entire set of measurements,
for an experimental condition differs in its quality from
technology to technology. Furthermore, still using the
example of transcriptome profiles, some technologies
provide probes only for a subset of genes, and the differ-
ent subsets are not necessarily identical [28]. It is for such
reasons that we propose to generate independent proba-
bility feature layers for different technologies even when
the experimental conditions are identical. For down-
stream analysis, however, in the event of overlapping
information (the common subset of observables targeted
with different technologies under the same experimental
conditions), only the feature probability quality profile
will additionally allow the information to be weighted the
provided information also according to its true or experi-
mentally perceived accuracy. In the final step of construc-
tion of the feature probability layer the feature probability
quality measures have thus to be rescaled taking account
of technology-specific accuracy. Note that this operation,
in contrast to the other two steps only affects the feature
probability quality profile and not the feature probability
profile itself (Figure 5). The technology-dependent feature
probability quality profile scaling function is thereby con-
structed using again intrinsic features of the data them-
selves. However, the probabilities obtained for the same
observable (more precisely: its projections on the same
genomic location n) are compared under the same exper-
imental condition. Hence, such a quality profile rescaling
is only applicable to (i) identical observables, which have
been measured under (ii) identical biological conditions.
Note that we have also developed a global rescaling and
evaluation procedure for comparisons of data obtained by
different technologies, which is moreover independent of
the biological conditions. This type of quality assessment,
however, can only be employed during downstream anal-
ysis by using statistical sequence models and hence can
not be included to determine the PPn values.

Briefly, as the probability measures for a given genomic
location n for a given biological condition Cq from all
technologies T used are absolute probabilities in the inter-
val Pn ε [0,1], they can be directly compared even if the
original signal values were completely different in nature.
Furthermore, the associated probability densities PPn, the
quality measures, also give absolute quality assessment of
the technologies for this observable, and can be used to
weight each Pn of different technological origin for the
same observable.
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Feature probability quality profile construction for experimental dataFigure 5
Feature probability quality profile construction for experimental data. The probability assigned to genomic position 
n hereby does not only depend on the measure obtained in a given experimental condition Cq, but by the ensemble of all meas-
ures obtained for the observable located at n for a given technology (black arrows, left side of P-column). Likewise, the feature 
probability quality measures at n depend on all quality estimates (black arrows, right side of column). Those quality measures 
have a direct influence on the feature probability assigned to n, as discussed in the text (light grey arrows, right side). Finally, if 
data obtained under the same experimental condition are available for the same genomic location and where generated using 
different technologies, the Pn values can also be weighted according to their respective quality as determined by the associated 
PPn densities to account for technology dependent quality differences (dark grey arrow to the left). Please refer to the text for 
explanations.
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It can readily be appreciated that the strategy we describe
here can be used for any of the existing functional genom-
ics experimental methodologies [34]. More importantly,
its very general structure ensures that data generated with
future technologies can also be translated into the feature
probability profiles introduced here. Note that experi-
mental data generated with technologies that provide
signed measurements, such as CGH where relative over-
and under-representation of genomic sequence is estab-
lished at the same time, need to be split into their two rel-
ative components. Subsequently, two independent
feature probability profiles are generated for the same
experimental condition, one consisting of probabilities
and associated probability densities for over-represented
sequences; the other consisting of probabilities and asso-
ciated probability densities for under-represented
sequences.
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