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Abstract

Background: Serotonin is a neurotransmitter that has been linked to a wide variety
of behaviors including feeding and body-weight regulation, social hierarchies,
aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and
affective disorders. Full understanding of serotonergic systems in the central nervous
system involves genomics, neurochemistry, electrophysiology, and behavior. Though
associations have been found between functions at these different levels, in most
cases the causal mechanisms are unknown. The scientific issues are daunting but
important for human health because of the use of selective serotonin reuptake
inhibitors and other pharmacological agents to treat disorders in the serotonergic
signaling system.

Methods: We construct a mathematical model of serotonin synthesis, release, and
reuptake in a single serotonergic neuron terminal. The model includes the effects of
autoreceptors, the transport of tryptophan into the terminal, and the metabolism of
serotonin, as well as the dependence of release on the firing rate. The model is
based on real physiology determined experimentally and is compared to
experimental data.

Results: We compare the variations in serotonin and dopamine synthesis due to
meals and find that dopamine synthesis is insensitive to the availability of tyrosine
but serotonin synthesis is sensitive to the availability of tryptophan. We conduct
in silico experiments on the clearance of extracellular serotonin, normally and in the
presence of fluoxetine, and compare to experimental data. We study the effects of
various polymorphisms in the genes for the serotonin transporter and for tryptophan
hydroxylase on synthesis, release, and reuptake. We find that, because of the
homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have
smaller effects than one expects. We compute the expected steady concentrations of
serotonin transporter knockout mice and compare to experimental data. Finally, we
study how the properties of the the serotonin transporter and the autoreceptors give
rise to the time courses of extracellular serotonin in various projection regions after a
dose of fluoxetine.

Conclusions: Serotonergic systems must respond robustly to important biological
signals, while at the same time maintaining homeostasis in the face of normal
biological fluctuations in inputs, expression levels, and firing rates. This is
accomplished through the cooperative effect of many different homeostatic
mechanisms including special properties of the serotonin transporters and the
serotonin autoreceptors. Many difficult questions remain in order to fully understand
how serotonin biochemistry affects serotonin electrophysiology and vice versa, and
how both are changed in the presence of selective serotonin reuptake inhibitors.
Mathematical models are useful tools for investigating some of these questions.
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Background
Traditionally, serotonin (5-HT) has been associated to a wide variety of behaviors

including feeding and body-weight regulation, social hierarchies, aggression and suicid-

ality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders[1]. In

addition, 5-HT has been linked to motor system function[2], sleep-wake cycles[3], cir-

cadian rhythms[4], respiratory stability[5], embryonic development[6], and reward pro-

cessing[7]. Not surprisingly, the 5-HT neurons in the nuclei originally classified by

Dalhstrom and Fuxe[8] project to a large variety of regions of the central nervous sys-

tem including spinal cord, cerebellum, frontal cortex, hypothalamus, hippocampus,

striatum, and a bewildering variety of 5-HT receptors have been identified [9]. A huge

body of research on genomics, anatomy, neurochemistry, electrophysiology, and beha-

vior has provided a wealth of information on serotonergic systems, but the causal

mechanisms of serotonergic function, both normal and in the presence of various dis-

orders and pharmacological agents, remain largely unknown.

Polymorphisms in the serotonin reuptake transporter (SERT) gene have been asso-

ciated with depression and other mood disorders[10-13] and may be associated with

anxiety[14], autism[15], and suicidality[16,17]. Polymorphisms in the tryptophan hydro-

xylase gene have been associated with unipolar[18] and bipolar disorder[19]. Further-

more, variations in gene expression very likely play a role in the regulation of

serotonergic systems both normally and in response to selective serotonin reuptake in-

hibitors(SSRIs). SERTs are downregulated in the presence of SSRIs [20,21], 5-HT1A

autoreceptor expression levels differ in different brain regions[22], and 5-HT1A mRNA

levels are affected by gonadal hormones [23].

Because of efforts to understand the modes of action of SSRIs, the neurochemistry of

serotonin has received much attention. Serotonin is synthesized in serotonergic term-

inals from tryptophan, which competes with tyrosine and the branched chain amino

acids for transport across the blood-brain barrier[1,24]. Autoreceptors play important

roles in the regulation of 5-HT chemistry. For example, 5-HT1B autoreceptors on

terminals decrease synthesis and release when extracellular 5-HT rises and 5-HT1A

autoreceptors affect firing rates in the dorsal raphe nucleus[25]. In addition, these reg-

ulatory mechanisms are themselves regulated by dynamic changes in autoreceptor

expression levels[26]. Serotonin acts both in one-to-one neural signaling and as a neu-

romodulator, via volume transmission, of the effects of other neurotransmitters[1,27].

Each of these facts plays an important role in neuropsychiatry and neuropharmacology.

The electrophysiology of serotonergic signaling is related both to neurochemistry and

to behavior. The classical experiments of Jacobs on cats[28] showed that the patterns

of firing of nucleus centralis superior serotonergic neurons correspond to different

sleep-wake states. 5-HT modulates motor firing patterns[2] and motor behavior[29,30].

Autoreceptors affect the inhibition of CA3 hippocampal pyramidal neurons caused by

stimulating the ascending serotonergic pathways[31,32]. 5-HT increases the firing rates

of histaminergic neurons in the hypothalamic tuberomammillary nucleus[33], inhibits

the firing of somatosensory cortical neurons[34], and can inhibit or excite neurons in

the ventromedial nucleus of the hypothalamus[35]. It has been proposed that 5-HT

activates the hypothalamic-pituitary-adrenal axis by stimulating production of cortico-

tropin-releasing hormone[36]. 5-HT influences dopaminergic signaling[37,38] and may
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affect firing in the cerebral cortex by causing the release of glutamate[39]. Tradition-

ally, dopamine was thought to be the primary neurotransmitter involved in reward

processing, but recent work suggests a strong role for 5-HT[7]. Thus, the neurochem-

istry and electrophysiology affect each other, both affect behavior, and both are

affected, of course, by neuronal morphology, which is itself changeable.

Even this brief discussion shows why understanding the casual mechanisms in sero-

tonergic signaling is a challenging problem. Not only does one have to understand

mechanism and function on four different levels, genomic, biochemical, electrophysio-

logical, and behavioral, but changes on each level affect function on the other three

levels, and this makes the interpretation of experimental and clinical results very diffi-

cult. In addition, the brain is not fixed, but dynamical changes on different time scales

are happening at all four levels. Mathematical models can play an important role

because they allow one to study explicitly the simultaneous effects of all the interac-

tions in a large complex system. Ideas and hypotheses can then be tested by in silico

experimentation, that is, by computer simulations of the mathematical model. Our

main interest is to understand how the biochemistry of 5-HT (synthesis, release, reup-

take) is regulated and how the biochemistry affects the electrophysiology and vice

versa. As a first step, we present in this paper a model of 5-HT biochemistry in seroto-

nergic terminals.

The model includes (see Figure 1): uptake of tryptophan across the blood-brain bar-

rier and transport into terminals; synthesis of 5-HT by tryptophan hydroxylase (THP)

and aromatic amino acid decarboxylase (AADC); transport of 5-HT into a vesicular

compartment by the monamine transporter (MAT); release of 5-HT into the extracel-

lular space depending on firing rate; reuptake via the SERTs; regulation by the autore-

ceptors. As much as possible, the model is based on real physiology that has been

determined experimentally. It is worthwhile to say at the outset that there is no such

thing as “the serotonergic terminal"; important parameters (like SERT and autoreceptor

densities) vary in different projection regions and this variation is likely to be related to

function. Our main purpose is to use the model as a platform for in silico experimen-

tation that sheds light on the complex regulatory mechanisms of serotonergic signal-

ing. Some results of some simulations with the model have previously appeared

elsewhere [40].

Mathematical methods have been used by a variety of authors to understand seroto-

nergic signaling. The serotonergic model presented in this paper is conceptually similar

to the dopaminergic model presented in [41]; both models were inspired by the origi-

nal model of Justice et al. [42] for a dopaminergic terminal. Many studies use statistical

methods to identify associations between variables on different levels of the serotoner-

gic system. Cohen and colleagues used theoretical and experimental methods to show

how 5-HT modulates the frequency and phase lag of bursting in lamprey spinal cord

[2,43]. Butera showed by modeling how 5-HT affects the bursting behavior of neuron

R15 in Aplysia [44]. Waggoner and colleagues introduced a three state stochastic

model for the serotonin dependence of egg laying in a nematode[45]. Bunin et al.[46]

and Daws et al.[47] used mathematical models and data to compute apparent values of

the Michaelis-Menten constants Km and Vmax for the SERTs in different projection

regions. Venton et al.[48] used experiments and mathematical models to show that the

extracellular space is well-mixed during tonic firing but not during burst firing. Kim
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et al.[4] used a mathematical model to explain why the rhythmic degradation of the

mRNA of serotonin N-acetyltransferase is essential for its circadian rhythm. Tanaka

et al.[49] used a mathematical model to show that 5-HT controls the time scale of

reward prediction by differentially regulating activities in the striatum. Dayan and Huys

[50] used a Markov model to study the effects of 5-HT on how the predictions of

future outcomes lead to behavioral inhibition, suppression, and withdrawal and created

a computational model to investigate 5-HT in affective control[51]. Stoltenberg and

Nag[52] used a dynamical systems model to go directly from genes to behavior.

Methods
The mathematical model consists of nine differential equations for the variables listed

in Table 1. The differential equations corresponding to the reactions diagrammed in

Figure 1 follow in Table 2. Reaction velocities or transport velocities begin with a

Figure 1 Steady state concentrations and fluxes. The figure shows the reactions in the model. The
rectangular boxes indicate substrates and blue ellipses contain the acronyms of enzymes, transporters, and
autoreceptors; steady state values in the model are indicated. Full names of the substrates are given in
Table 1. Names of enzymes and transporters are as follows: Trpin, neutral amino acid transporter; DRR,
dihydrobiopterin reductase; TPH, tryptophan hydroxylase; AADC, aromatic amino acid decarboxylase; MAT,
vesicular monoamine transporter; SERT, 5-HT reuptake transporter; auto, 5-HT autoreceptors; MAO
monoamine oxidase; ALDH, aldehyde dehydrogenase. Removal means uptake by capillaries or glial cells or
diffusion out of the system.
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capital V followed by the name of the enzyme, the transporter, or the process as a sub-

script. For example, VTPH(trp, bh4, e5ht) is the velocity of the tryptophan hydroxylase

reaction and it depends on the concentrations of its substrates, trp and bh4, as well as

e5ht (via the autoreceptors). Below we discuss in detail the more difficult modeling

issues and reactions with non-standard kinetics. Table 3 gives the parameter choices

and references for reactions that have Michaelis-Menten kinetics in any of the follow-

ing standard forms:
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for unidirectional, one substrate, unidirectional, two substrates, and bidirectional, two

substrates, two products, respectively.

Table 1 gives the abbreviations used for the variables throughout. We use lower case

italic abbreviations in the differential equations and other formulas so that they are

easier to read. Full names for the enzymes appear in the legend to Figure 1.

Tryptophan and the tryptophan pool

Serum tryptophan concentrations have been measured in humans and other mammals

both before and after meals with different protein composition. A range of 53-85 μM

was found in [53] and a range of 61-173 μM was found in [54]. We take as our base-

line the value of 96 μM found by Fernstrom in fasted rats [24]. During the experiments

with our model in Results A, the serum values of tryptophan were varied correspond-

ing to meals.

Tryptophan is transported across the blood-brain barrier by the L-transporter and is

then taken up by serotonergic neuron terminals [55]. We simplify these two steps into

Table 1 Names used for Variables

in equations in text full name

bh2 BH2 dihydrobiopterin

bh4 BH4 tetrahydrobiopterin

trp Trp tryptophan

btrp serum Trp serum tryptophan

5htp 5-HTP 5-hydroxytryptamine

c5ht cytosolic 5-HT cytosolic serotonin

v5ht vesicular 5-HT vesicular serotonin

e5ht extracellular 5-HT extracellular serotonin

5hiaa 5-HIAA 5-hydroxyindoleacetic acid

trp–pool the tryptophan pool the tryptophan pool
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Table 2 The Differential Equations
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a single step with the kinetics of the L-transporter. Choosing the right Km for the L-

transporter is complicated by two issues. First, the majority of tryptophan in the serum

is not free but bound to albumin. Second, the other neutral and branched chain amino

acids compete for the same transporter, so the effective Km depends on the concentra-

tions of these other amino acids. Partridge [56] measured a Km = 190 μM with respect

Table 3 Kinetic Parameters (μM, μM/hr,/hr)

velocity parameter model value literature value references

VAADC aromatic amino acid decarboxylase

km 160 160 [121]

Vmax 400 *

VSERT serotonin transporter

km .17 0.05-1 [1,46,47]

Vmax 8000 *

VDRR dihydropteridine reductase

Kbh2 100 4-754 [122,123]

KNADPH 75 29-770 [124-126]

V f
max

5000 *

Kbh4 10 1.1-17 [125,127]

KNADP 75 29-770 [124-126]

V b
max

3 *

VMAT vesicular monoamine transporter

Km .198 .123-.253 [65,66]

Vmax 3500 *

kout 40 *

VTPH tryptophan hydroxylase

Ktrp 40 40 [64]

Kbh4 20 20 [64]

Vmax 400 *

Ki (substrate inhibition) 1000 970 [64]

Vtrpin neutral amino acid transporter

Km 64 64 [55]

Vmax 400 *

trp ↔ trp-pool

k1 6 *

k-1 0.6 *

catabolism and diffusion

ktrp
catab 0.2 *

Vmax
catab c ht( )5 1000 *

Km
catab c ht( )5 95 94-95 [81,82]

Vmax
catab e ht( )5 1000 *

Km
catab e ht( )5 95 94-95 [81,82]

khiaa
catab 1 .82 [83]

ktrp pool
catab

−
0.2 *

krem 400 *

* see text
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to total serum tryptophan and Smith [57] measured Km = 15 μM with respect to free

serum tryptophan. We will use the effective Km = 330 μM in the presence of other

amino acids given in Kilberg [55]. We choose Vmax = 700 μM/hr so that, in our

model, the rate of transport into the brain (159 μM/hr) closely matches that found by

Kilberg (159 μM/hr).

Intracellular tryptophan is used in a large number of biochemical pathways and, of

course, in protein synthesis, which accounts for about half the use of tryptophan [58].

Protein breakdown and a variety of biochemical pathways are intracellular sources of

tryptophan. Overall, about 2% of ingested tryptophan is used for the synthesis of sero-

tonin [59,60]. These numbers give some crude upper and lower bounds for the percen-

tage of intracellular tryptophan that goes to the synthesis of serotonin, but accurate

estimates are not known. In dopaminergic neurons about 90% of tyrosine goes to pro-

tein synthesis and other pathways and about 10% to dopamine synthesis [61-63], so it

seems reasonable to make a similar estimate for tryptophan. We let the variable trp-

pool represent all the other intracellular sinks and sources of tryptophan and assume

that intracellular tryptophan, trp, and trp-pool can be interconverted into each other:

trp trp poolk
k

1

1−
← →⎯⎯ ⎯ . (4)

We choose the rate constants k1 = 6 μM/hr and k-1 = .6 μM/hr so that trp-pool is

approximately 10 times as large as trp:

Tryptophan hydroxylase

Tryptophan (trp) and tetrahydrobiopterin (bh4) are converted by tryptophan hydroxy-

lase (TPH) into 5-hydroxytryptamine (5htp) and dihyro-biopterin (bh2). The velocity of

the reaction, VTPH, depends on trp, bh4, and extracellular 5-HT (e5ht) via the autorecep-

tors. We take the basic kinetics from [64] with Ktrp = 40 μM, Kbh4= 20 μM. TPH exhibits

substrate inhibition but it is quite weak, Ki = 1000. The second term in the velocity

equation below, which represents the effect of extracellular 5-HT on synthesis rate, is

discussed in detail below under “autoreceptors.” The constants are chosen so that at the

normal steady state (e5ht = .000768 μM) this factor is equal to one, so the normal steady

state is the same with and without the autoreceptors. This allows us to compare how the

system changes with and without the autoreceptors when we perturb the system by

changing enzyme properties, neuron firing rates, or transporter properties.
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Storage, release, and reuptake of serotonin

The 5-HTP produced by the TPH reaction is rapidly decarboxylated by the aromatic

amino acid decarboxylase (AADC) to produce cytosolic serotonin. We take the
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parameters of AADC from the literature; see Table 3. The monoamine transporter,

MAT, rapidly transports 5-HT into vesicles. We take the Km of the transporter to be

0.198 μM as found in [65], which is consistent with the values in [66]. We choose the

Vmax so that the concentration of cytosolic serotonin is very low. The experiments in

[67] and the calculations in [68] in the case of dopamine suggest strongly that there is

transport from the vesicles back into the cytosol, either dependent or independent of the

MAT and it is likely that the same is true of serotonin [69]. We assume this transport is

linear with rate constant, kout, chosen so that the vast majority (i.e., 98%) of the cellular

serotonin is in the vesicular compartment. For simplicity we are assuming that the vesi-

cular compartment is the same size as the non-vesicular cytosolic compartment. This

assumption is unimportant since we take the cytosol to be well-mixed and we are not

investigating vesicle creation, movement toward the synapic cleft, and recyling where

geometry and volume considerations would be crucial. Of course, if we took the volume

of the vesicular compartment to be much smaller than the volume of the cytosolic com-

partment, say 1 to 100, then the ratio of vesicular 5-HT concentration to cytosolic 5-HT

concentration would approach the value of 104 suggested in [69].

In our model, vesicular 5-HT (v5ht in the equations) is removed from the vesicles

and put into the synaptic cleft, where it becomes e5ht, by the term release(e5ht) fire(t)

vda(t) in the differential equations for v5ht and e5ht (see the differential equations

above). fire is a function of time in some of our in silico experiments, for example in

Results B and C where we investigate pulse experiments and in Results E where we

consider the effects SSRIs. However, for determining our baseline steady state we take

fire = 1 μM/hr, which means that vesicular serotonin is released at a constant rate

such that the entire pool turns over once per hour. The term release(e5ht) represents

the effect of e5ht on release via the autoreceptors and is discussed below. The pro-

cesses by which vesicles are created, move to the synapse, and release their serotonin

are complicated and interesting [67,70-72], but are not included in this model.

Extracellular serotonin has three fates. It is pumped back into the cytosol by the

SERTs; it is catabolized; it is removed from the system. The Km = .17 μM for the

SERTs is taken from [46]. As we will discuss later, the Vmax will vary considerably

from one projection region to another because the density of SERTs varies by at least

a factor of 5. For our baseline case, we take Vmax = 4700 μM/hr which is in the middle

of the range, 2052-6480 μM/hr, found in [46]. The function fluox(t) that multiplies the

term VSERT in the differential equations for the variables v5ht and e5ht is the fraction

of SERTs that remain unblocked in the presence of an SSRI. In the absence of SSRIs,

fluox(t) = 1. Catabolism and removal are discussed below.

Autoreceptors

It has been understood since the 1970s and 1980s that terminal autoreceptors (5-

HT1B) sense the extracellular 5-HT concentration (e5ht in the equations). When e5ht

goes up, they inhibit both the synthesis of 5-HT and the release of 5-HT from the vesi-

cles into the synaptic cleft and when e5HT goes down they facilitate synthesis and

release [9,25,73]. Thus e5ht provides a kind of end-point feedback for the entire sero-

tonergic system from tryptophan in the serum to e5HT in the extracellular space. It is

also known [74] that autoreceptors modulate reuptake, but this effect is not included

in the model. Extracellular 5-HT or autoreceptor agonists can decrease synthesis by
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50% [75-77] and by perhaps as much as 80-90% [78]. And, autoreceptor antagonists

can increase synthesis by as much as 40-60% [77,79]. These and many other experi-

ments are often conducted with large amounts of agonists or antagonists, which leaves

open the question of what range of extracellular 5-HT causes these effects. Experi-

ments on rats [76,80] showed that cocaine administration elevates extracellular 5-HT

by factors of 2 to 5 and that such elevation has a large depressive effect on 5-HT

synthesis, so it is reasonable to assume that synthesis is significantly affected by

changes in e5ht over less than an order of magnitude. The second term in the formula

for VTPH above contains the effect of e5ht on synthesis. When extracellular 5-HT has

its steady state value of 0.768 nM the factor is equal to 1. As extracellular 5-HT

declines towards 0, the factor increases to 1.5 and as extracellular 5-HT increases the

factor declines to 0.5 (almost reaching that level when e5ht = 3 nM). Thus facilitation

of synthesis can be as much as 50% and inhibition of synthesis can be as much as 50%

and most of the effect is between 0-3 nM of extracellular 5-HT.

Similarly, many experiments have shown that release of vesicular serotonin can be

inhibited by increased e5ht via the autoreceptors or facilitated if e5ht goes down. For

example, Gothert found that release can be inhibited 65% and facilitated by 50-60%

[77]. It is not certain from the experiments over what range of e5ht this effect takes

place. We will assume a modest effect over a relatively small range. The factor release

(e5ht) descends linearly from 1.5 at e5ht = 0 to 1.0 at e5ht = .000768 μM, the normal

steady state. Then the factor descends linearly from 1.0 at e5ht = .000768 μM to 0.4 at

e5ht = .0023 μM. For e5ht > .0023, release(e5ht) remains constant at 0.4. Thus, the

maximal facilitation is 50% and the maximal inhibition is 60% and the effect takes

place over the range 0 - 2.3 nM of extracellular 5-HT.

Metabolism and removal of serotonin

Serotonin is metabolized by monoamine oxidase (MAO) and aldehyde dehydrogenase

(ALDH) to 5-hydroxyindoleacetic acid (5 - hiaa). In our simple model we are not

investigating the details of catabolism, only in how c5ht and e5ht are removed from

the system, so we combine these two steps into one and use the Km = 95 μM deter-

mined in [81,82]. The rate constant for the removal of 5hiaa was measured to be 0.82

± .06 in [83]; we take it to be 1/hr. This results in a model steady state concentration

of 5hiaa = 5.22 μM. The ratio of 5-HIAA to 5-HT was measured to be around 1 in

[84] and in the range 1-3 in [85]. Since tissue content of 5-HT in different brain

regions is roughly 2-3 μM [86-88], the concentration 5hiaa = 5.22 μM is reasonable.

In our model the extracellular space is a single compartment. One should think of it

as the part of the entire extracellular space corresponding to this particular synapse.

Of course, if we had many model synapses, the e5ht from one will diffuse into the

extracellular compartment of another (volume transmission). We are assuming for

simplicity that the extracellular space is well-mixed, that is, we are ignoring diffusion

gradients between different parts of the extracellular space. Venton et al. [48] have

shown in the case of dopamine, using a combination of experiments and modeling,

that the extracellular space is well-mixed during tonic firing but that substantial gradi-

ents exists between “hot spots” of release and reuptake and the rest of the extracellular

space during and just after episodes of burst firing. The term krem(e5ht) in the differen-

tial equation for e5ht represents removal of e5ht though uptake by glial cells, uptake by
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the blood, and diffusion out of the tissue. This will vary from tissue to tissue; for the

base case, we chose krem = 400/hr. At steady state in the base case (see Figure 1), 21.4

μM/hr of v5ht is put into the extracellular space, 21.1 μM/hr is put back into the cyto-

sol by the SERTs, 0.1 μM/hr is catabolized in the extracellular space, and 0.3 μM/hr is

removed. Thus the effect of the removal term is small at steady state but it plays a big-

ger role when large amounts of v5ht are dumped into the extracellular space, for

example in the pulse experiments described in Results B.

Fluoxetine dosing

In part E of the results we use the model to investigate the results of giving a dose of

the SSRI fluoxetine. The dose is represented in the model by changing the fraction of

SERTs that are unblocked at any given time. The resulting function, fluox(t), multiplies

VSERT in the differential equations for c5ht and e5ht. Since we give the dose at 1 hour,

fluox(t) = 1 if t ≤ 1, and for t ≥ 1,

fluox t
t

t
e t( )

(. )( )

. ( )
.( )= − −

+ −
⋅ − −1

95 1 2

04 1 2
1 37 (6)

The half-life of fluoxetine is quite long; 1-4 days is reported in [89]. The number 37

appearing in the exponential corresponds to a half-life of fluoxetine of a little more

than a day.

Steady state concentrations and velocities

Figure 1 shows the concentrations of all of the variables and the reaction and transport

velocities at steady state.

The rate of tryptophan uptake from the serum is 159 μM as found by [55]. The cel-

lular tryptophan concentration, 20.6 μM, is in the range found in most studies [86,90].

The rate of the TPH and AADC reactions, which must be equal at steady state, is in

the middle of the range of values for 5-HT synthesis reported in the literature, 2.4

μM/hr [91] to approximately 13 μM/hr [83,92].

It is known that the cytosolic concentrations of 5-HTP and 5-HT are quite low.

Fernstrom [86] measured 2 μM for 5-HTP and it is 2.26 μM in the model. It is very

diffcult to get reliable estimates for cytosolic 5-HT since tissue measurements include

the vesicles where the concentration is known to be very high [69]. In our model cyto-

solic 5-HT = 0.5 μM at steady state, a very low value since cytosolic 5-HT is rapidly

pumped into the vesicular compartment by the monoamine transporter where the con-

centration is 21.45 μM. The vesicular compartment turns over once an hour at steady

state releasing 21.45 μM/hr into the extracellular space. There, 21.13 μM/hr is put

back into the cytosol by the SERTs, 0.3 μM/hr is removed from the system by uptake

by glial cells or blood vessels or simply diffusion out of the tissue, and 0.008 μM/hr is

catabolized.

Most catabolism of 5-HT happens in the cytosol since the extracellular concentra-

tions of 5-HT are so low. Of course, the cytosolic and extracellular catabolism rates

plus the rate of removal must add up to the synthesis rate 5.6 μM/hr. As explained

above, the concentration of 5hiaa = 5.22 μM is reasonable [84,85].
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In all cases, steady states or curves showing the variables as functions of time were

computed using the stiff ODE solver in MATLAB.

Results
A. The effect of meals on dopamine and serotonin

Since the early work of Fernstrom [93,94] it has been generally thought that dopamine

synthesis is not very sensitive to tyrosine availability but that serotonin synthesis is sensi-

tive to the availability of tryptophan [1]. We have previously constructed a model of

dopamine (DA) synthesis, release, and reuptake in dopaminergic terminals [41], so we

can compare and contrast the effects of meals on synthesis in dopaminergic and seroto-

nergic terminals. The model results are displayed in Figure 2, where Panel A shows the

blood amino acid concentrations, Panel B the cellular DA and 5-HT concentrations,

Panel C the rates of the TH and TPH reactions, and Panel D the concentrations of DA

and 5-HT in the extracellular space, during a 24 time period with three meals. In each

case the y-axis indicates percent of normal. The overall conclusion is clear: there is

much more variation in the 5-HT than the DA concentrations and synthesis rates. To

explain why the curves look the way they do, we shall discuss each panel in turn.

It is known that blood amino acid concentrations vary dramatically depending on

meal content [53-55] and also on the sequence of meals with different content [24].

During a 24 hour period the plasma amino acid concentration can vary as much as a

factor of 6 but more typically varies by a factor of 2 to 4 [54]. The amino acid curves

in the blood in Panel A of Figure 2 were produced by a simple model that assumes

three hours of input corresponding to each meal and a relaxation time back to normal

of about 6 hours after the beginning of each meal [53]. For the purpose of these model

experiments we assume that the amino acid in the blood is either tyrosine or

tryptophan.

Panel B shows the intracellular tyrosine and tryptophan concentrations in the dopa-

minergic and serotonergic terminals. These large swings in substrate availability corre-

spond to what is seen experimentally; for example, Fernstrom found [95] that brain

tyrosine can double after a meal. But why are the oscillations of tryptophan larger than

the oscillations of tyrosine? In our model, the tyrosine input into the DA terminal is

241 μM/hr and the tryptophan input into the 5-HT terminal is 159 μM/hr correspond-

ing to the experiments reported in [55]. However, the steady concentrations of tyrosine

and tryptophan are 126 μM and 21 μM, respectively. Thus the tryptophan concentra-

tion is much smaller and has a much larger input and removal rate relative to its con-

centration than does tyrosine. This is why the percentage change due to meals is much

larger in the case of tryptophan. This also explains why the tyrosine peaks increase

from meal to meal, while the tryptophan peaks are all the same height because trypto-

phan returns almost to baseline before the next meal.

Panel C shows the velocities of the TH and TPH reactions during the 24 hour per-

iod. Despite large swings in tyrosine availability, the TH velocity remains almost con-

stant over the 24 hour period because the reaction is running at near saturation due to

the fact that the normal tyrosine concentration is well above the Km for tyrosine,

which is 46 μM in our DA model. In fact, as is clear from the graphs, the rate of the

TH reaction actually goes down as tyrosine rises beyond about 100 μM. This is

because TH shows substrate inhibition [96]. In contrast, the oscillations in the TPH

Best et al. Theoretical Biology and Medical Modelling 2010, 7:34
http://www.tbiomed.com/content/7/1/34

Page 12 of 26



curve are large because the normal tryptophan concentration (21 μM in the model) lies

well below the Km of TPH for tryptophan (40 μM in the model). Thus the rate of the

TPH reaction is very sensitive to tryptophan availability. TPH also shows substrate

inhibition but it is quite weak and only has an effect at very large (perhaps

Figure 2 The effect of meals on brain DA and 5-HT. Panel A shows the blood concentration over a 24
hour period of either tyrosine or tryptophan due to three meals at 7 am, 12 pm and 6 pm. Panel B shows
the tyrosine and tryptophan concentrations in dopaminergic and serotonergic synaptic terminals. Panel C
shows the velocities of the TH and TPH reactions over the same 24 hour period. Panel D shows the
extracellular DA and 5-HT concentrations. The vesicular stores of DA and 5-HT (not shown) vary like the
extracellular concentrations in Panel D. All calculations for DA were done using the mathematical model
described in [41] and the calculations for 5-HT were done using the mathematical model in this paper.
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unphysiological) tryptophan concentrations. We have discussed the functional signifi-

cance of substrate inhibition elsewhere [40,97].

Panel D shows the extracellular concentrations of DA and 5-HT over the 24 hour

period. The DA concentration varies very little while the 5-HT concentration varies by

about 10%. The vesicular stores of DA and 5-HT (not shown) vary similarly in the

terminals; since most DA and 5-HT is in these stores, this is what one would see if

one measured brain DA or brain 5-HT. Note that we assume in these model calcula-

tions that both the dopaminergic and the serotonergic neuron are firing at their tonic

rates. Thus these curves give the background concentrations due to tonic firing; burst

firing for short periods of time will give significant temporary deviations. Since 5-HT is

thought to be an appetite suppressant [1], it makes sense that extracellular 5-HT

should rise during and after meals.

B. Release and Reuptake

A number of studies have examined the release of serotonin and reuptake from the

extracellular space. Bunin et al. [46] use cyclic voltammetry and Daws et al. [47] use

high speed chronoamperometry. Bunin et al. studied release and reuptake of 5-HT in

rat brain slices after stimulation with electrical pulses at different frequencies. After sti-

mulation for 1/5 of a second at 100 Hz, the extracellular 5-HT concentration in the

dorsal raphe nucleus (DRN) rises to about 1.8 μM and then declines rapidly back to

baseline with half life of about 1 second (their Figure six). In the presence of 10 μM

fluoxetine, the extracellular 5-HT rises slightly higher and declines to baseline with a

half-life of 2 seconds. We represent their stimulation in our model neuron by raising

fire from 1 to 5000 for 1/5 of a second. The results can be seen in Figure 3. Extracellu-

lar 5-HT rises to 2 μM and then decays back to baseline with a half-life of 1 second

(blue curve). We modeled the presence of fluoxetine by blocking half the SERTs. In

that case the extracellular 5-HT curve rises slightly higher and decays back to baseline

with a half-life of about 2 seconds. Notice that the decay curves do not look exponen-

tial. In fact, they are linear until the concentration of extracellular 5-HT gets fairly low.

This is because at 1-2 μM the extracellular 5-HT concentration is well above the Km of

the SERTs so the SERTs are saturated and pumping at a constant rate. The same effect

can be seen in Figure six of [46]. The decay time back to baseline depends of course

on the Vmax of the SERTs, which in turn depends on the SERT density that is quite

different in different brain regions. Daws et al. [47] examined several different brain

regions and found much longer half-lives than reported in [46], probably because

those regions have much lower SERT densities. This difference may also be due to the

fact that 5-HT is applied exogenously in the brains of anesthetized rats in [47] while in

[46] tissue slices are stimulated by electrical pulses.

C. SERT Knockouts

A large number of studies have examined the pharmacological and behavioral charac-

teristics of mice that have the SERT gene knocked out. Such knockouts are of particu-

lar interest because they are an (extreme) model of what one could expect with high

doses of SSRIs that block the SERTs. Table 4 shows steady state concentration and

velocities for WT mice (left column) and steady state concentrations and velocities for

SERT knockout mice (right column) in the model. Each column shows the steady state

Best et al. Theoretical Biology and Medical Modelling 2010, 7:34
http://www.tbiomed.com/content/7/1/34

Page 14 of 26



values if a certain fraction, f, of SERTs are functional. Thus, for WT mice, f = 1, and

for SERT knockout mice f = 0. The intervening columns corresponds to the effects of

progressively higher doses of SSRIs as one moves from left to right.

It is known that 5-HT tissue levels are down both in knockouts [98] and in WT

mice treated with fluoxetine [99]. Homberg et al. [98] found that tissue levels of 5-HT

drop by 50-70% and Bengel et al. [100] found decreases of 60-80%. In our model, vesi-

cular 5-HT (the main determinant of tissue 5-HT) drops from 21.5 μM in WT to 6.41

μM in SERT knockouts corresponding well to these experimental results. Homberg

et al. also found that 5-HIAA tissue levels decrease 45-55%; in our model, where we

have a very simple model of 5-HIAA metabolism, levels decrease by 88%.

Table 4 Steady State Values from WT to SERT KO

f * = 1(WT) f = .5 f = .2 f = .1 f = .05 f = 0(SERT KO)

trp 20.1 20.9 21.1 21.1 21.2 21.3

c5 - HT 0.5 0.39 0.3 0.25 0.19 0.05

v5 - HT 21.5 19.9 18.1 17.05 14.67 6.41

e5 - HT ** .7 1.18 1.82 2.26 3.32 6.2

5 - hiaa 5.3 4.12 3.13 2.7 1.99 0.63

VTPH 5.57 4.59 3.86 3.6 3.32 3.12

VMAT 21.4 16.7 10.7 7.09 5.87 2.56

VSERT 21.1 16.2 9.93 6.16 4.5 0.0

Vrem 0.31 0.47 0.73 0.9 1.33 2.50

Vcatab 5.26 4.12 3.13 2.7 1.99 0.63

* f is the fraction of SERTs that are functional.

** concentration in nM, all other concentrations in μM. Velocities have units μM/hr.

Figure 3 Release and reuptake. The time course of extracellular 5-HT is shown for a model experiment
where the neuron was stimulated for 1/5 of a second (blue curve). In the presence of fluoxetine, the time
course goes slightly higher and the decay time back to baseline doubles (green curve). We modeled the
presence of fluoxetine by blocking half the SERTs. The curves are very similar to those in Figure six of [46].
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Extracellular 5-HT rises as more and more SERTs are blocked, as expected. Gainet-

dinov and Caron [12] report that extracellular 5-HT rises 5-6 fold in SERT knockouts

and Homberg et al. report a 9-fold increase [98]. In our model, extracellular 5-HT

rises to 6.2 μM from .768 nM, a 9-fold increase. We note that, in the model, extracel-

lular 5-HT already rises substantially when only 50% of the SERTs are active. On the

other hand, vesicular 5-HT remains almost normal when only 50% of the SERTs are

active, decreasing from 21.5 μM to 19.9 μM. This corresponds well with the finding of

Bengel et al. [100] that SERT knockout heterozygotes had almost normal tissue levels

of 5-HT.

In our model of a 5-HT terminal, we made the SERT knockout terminal by simply

setting the Vmax of VSERT equal to zero. The reality is much more complicated. SERT

knockout mice have been that way all their lives and one would expect that other

aspects of their serotonergic systems have also changed. SERT knockouts show devel-

opmental changes in neurons and brain, an impaired hypothalamic-pituitary-adrenal

axis, and desensitization of 5-HT1A and other receptors [101,102].

D. Homeostatic effects of the autoreceptors

It has been suggested that autoreceptors provide a kind of end product inhibition that

tends to stabilize extracellular 5-HT [1,103]. If extracellular 5-HT goes up, synthesis

and release go down; if extracellular 5-HT goes down, synthesis and release go up.

Indeed, Panel A of Figure 4 shows that extracellular 5-HT increases and decreases

with the tonic firing rate, but the increase and decrease is much less in the presence of

the autoreceptors. Thus the autoreceptors help to stabilize extracellular 5-HT in indivi-

duals against changes in inputs to the system like changes in firing rate or changes in

mean blood tryptophan level (not shown).

However, the autoreceptors provide another kind of homeostasis, too. The genes for

many of the enzymes and transporters in the serotonergic system have common poly-

morphisms in different human populations. Many of these polymorphisms are known

to be functional in that they change the activity of the corresponding enzymes or the

efficacy of the transporters. The autoreceptors tend to keep these serotonergic systems

functioning normally despite the polymorphisms.

Polymorphisms in the SERT gene have been associated with depression and other

mood disorders [10,11,13]. The SERT gene has a polymorphic regulatory region (the

Figure 4 Homeostatic effects of the autoreceptors. Panel A shows hows extracellular 5-HT (e5ht)
changes as the firing rate of the neuron varies above and below normal both with and without the
autoreceptors. Panel B shows how extracellular 5-HT changes with the expression level of the SERTs both
with and without the autoreceptors. s/s and l/l indicate the activities of the corresponding genotypes.
Panel C shows how extracellular 5-HT changes with the activity level of TPH both with and without the
autoreceptors. The activities of the R441 H and P449R polymorphims are indicated. In all cases, the
autoreceptors reduce the effect of changes in firing rate and polymorphisms on extracellular 5-HT.
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5-HTT gene-linked polymorphic region, 5-HTTLPR), which consists of a variable tan-

dem repeat: the short allele has 14 repeats, whereas the long allele has 16 repeats. The

short allele reduces transcriptional activity of the gene and results in decreased expres-

sion of the serotonin transporter. The transcriptional activity of the short (s) allele is

about 1/3 of that of the long (l) allele [14]. Although the level of transcription of a

gene does not necessarily correspond to the activity of its product, we will assume that

SERT activity in a s/s homozygote is 1/3 that in the l/l genotype. A study of 505 sub-

jects [14] revealed that in a population sample of 505 individuals, 19% were of the s/s

genotype, 49% were l/s, and 32% were l/l. Thus heterozygotes are the most common

genotype, and if we assume their SERT activity is 1.0, then the activity of the s/s geno-

type would be 0.5 and of the l/l genotype 1.5. Panel B of Figure 4 shows that varying

SERT activity over this range has a large effect (.5 μM to 1.6 μM) on the extracellular

5-HT concentration if the autoreceptors are turned off and a much smaller effect (.6

μM to 1.1 μM) if the autoreceptors are turned on.

There are several functional polymorphisms in the TPH2 gene and some are asso-

ciated with the risk of bipolar disorder [19]. The SNP C2755A changes the amino acid

from serine to tyrosine at peptide position 41; the tyrosine coding allele reduces the

activity of TPH2 by about 35% [19]. A genetic polymorphism of the promoter,

rs11178997, reduces TPH2 transcriptional activity by 22% [104]. The R441 H mutation

of TPH2 codes for an enzyme that has only 19% of the wild type activity and the

P449R mutation has an activity of 65% of wild type [105]. Thus genetic variation in

human populations can cause variation of TPH2 activity between 0.19 and 1.0 of nor-

mal. Panel C of Figure 4 shows that varying TPH2 activity over this range has signifi-

cant effect on the extracellular 5-HT concentration but the effect is less in the

presence of the autoreceptors.

As can be seen, the autoreceptors significantly reduce the variation in extracellular

serotonin caused by polymorphisms in TPH and SERT.

E. Interaction of autoreceptors and SERTs

Many investigators have studied the effects of doses of SSRIs on extracellular 5-HT in

different brain regions. A particular focus of these studies has been to understand the

role of the autoreceptors. We have conducted experiments with our model that corre-

spond to some of the experiments in [106-109].

Casanovas et al. [108] measured the extracellular 5-HT in the frontal cortex and the

hippocampus in the rat after applying doses of 5-HT1A autoreceptor agonists. They

found a rapid decline in the frontal cortex to about 30% of basal values and a decline

in the hippocampus to about 70% of basal values. These effects are attributed to the

stimulation of the 5-HT1A autoreceptors on cells in the raphe since it is known that

such stimulation substantially decreases the firing rate of the serotonergic neurons in

the raphe that project to the frontal cortex and the hippocampus. The dorsal raphe

(DRN) projects to the frontal cortex and the median raphe (MRN) projects to the hip-

pocampus. Casanovas et al. attribute the greater decline in the frontal cortex to the

fact the density of 5-HT1A autoreceptors is higher in the DRN than the MRN [110],

and therefore firing is reduced much more in the DRN than in the MRN.

In Figure 4, we see that, in the model, a reduction of fire to 58% of normal causes a

reduction of extracellular 5-HT at steady state to 70% of normal. Therefore, to
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simulate the effect of a dose of a 5-HT1A agonist on the extracellular 5-HT in the hip-

pocampus we lowered fire in a time-dependent manner to 58% of normal and then let

it recover. Similarly, a reduction of fire to 20% of normal causes a reduction of extra-

cellular 5-HT at steady state to 30% of normal. Therefore, to simulate the effect of a

dose of a 5-HT1A agonist on the extracellular 5-HT in the frontal cortex we lowered

fire in a time-dependent manner to 20% of normal and then let it recover. The effects

on extracellular 5-HT in the frontal cortex and hippocampus can be seen in Panel A

of Figure 5. These curves are very similar to those in Figure one (a, b) of Casanovas et

al.[108]. The extracellular concentrations of 5-HT decrease in the frontal cortex and

hippocampus because the firing rates in the DRN and the MRN are reduced due to

the binding of the agonist to the autoreceptors on cell bodies. The concentrations of

5-HT in the frontal cortex and hippocampus begin to recover after the initial decline

because the terminal autoreceptors in the frontal cortex and hippocampus increase

synthesis and release of 5-HT.

Malagie et al.[106] administered fluoxetine to anaesthetized rats and measured

extracellular 5-HT in the frontal cortex and hippocampus. This is a very interesting

experiment because fluoxetine blocks SERTs in the DRN and MRN and thus extracel-

lular 5-HT will rise, stimulating the 5-HT1A autoreceptors and decreasing firing as in

the experiments Casanovas et al.[107,108]. This effect will tend to lower extracellular

5-HT in projection regions. However, fluoxetine will also block SERTs in the projec-

tion regions, which tends to raise extracellular 5-HT there. Thus, in the projection

regions the level of extracellular 5-HT reflects a balance between these two effects. To

see what the balance is in our model, we represent a dose of fluoxetine as described

under “fluoxetine dosing” in Methods, and assume that fire drops as a function of time

in the DRN and MRN as indicated above in the discussion of the experiments of Casa-

novas et al.. The results are shown by the blue (frontal cortex) and green (hippocam-

pus) solid curves in Figure 5B. Hippocampal extracellular 5-HT rises by approximately

147% and frontal cortex extracellular 5-HT rises approximately 63%. These curves are

very similar to the analogous curves in Malagie et al., Figure one (the 10 mg/kg dose),

where extracellular 5-HT rises about 110% in the hippocampus and 60% in the frontal

cortex. In a second study, Malagie et al.[109] performed similar experiments with

Figure 5 Effects of 5-HT1A agonists and fluoxetine. Panel A shows the change in extracellular 5-HT in
the hippocampus and the frontal cortex computed by the model after a 5-HT1A agonist is given. The
curves are similar to those in [108]. Panel B shows model computations of the extracellular concentrations
of 5-HT in the hippocampus and the frontal cortex after a dose of an SSRI (fluoxetine or paroxetine); the
solid curves are wild type and the dashed curves are 5-HT1B knockouts. These curves should be compared
to Figure one (10 mg/kg dose) in [106] and Figure one (a, b, c, d) in [109]. For discussion, see the text.
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paroxetine on mice whose 5-HT1B autoreceptors on the terminals had been knocked

out. They saw a large increase in hippocampal extracellular 5-HT and a smaller rise in

frontal cortex extracellular 5-HT compared to wild type. In the model we make a 5-

HT1B knockout by simply turning off the terminal autoreceptors. The results can be

seen in the blue (frontal cortex) and green (hippocampal) dashed curves in Figure 5B.

The model hippocampal extracellular 5-HT concentration rises 369% in the knockout,

compared to 147% in wild type mice. The model frontal cortex extracellular 5-HT

rises 82% as compared to 63% for the wild type. The model curves should be com-

pared to those in Malagie et al. (Figure one,a,b,c,d ). They gave two doses (1 mg/kg

and 5 mg/kg). Our model results are simlar to their results but with larger changes

than those induced by their 1 mg/kg dose and smaller changes than than those

induced by their 5 mg/kg dose. This indicates that our “dose” is between their doses.

As they saw, we also found that the knockout induced smaller changes in the frontal

cortex than in the hippocampus. Notice that in all cases, there is an increase in extra-

cellular 5-HT caused by the blockage of SERTs. But this effect is then moderated by

the increased rate of removal and catabolism, which slowly bring the extracellular con-

centrations back to equilibria (that are higher than prior to the dose of fluoxetine).

Discussion
We have presented a relatively simple and straightforward model of synthesis, release,

and reuptake of 5-HT in a serotonergic terminal. The kinetics for individual reactions

and the values of constants were chosen as much as possible from the experimental lit-

erature. The purpose is to create a model that can be used, here and in future investi-

gations, as a platform for exploring various hypotheses about serotonergic homeostasis

and serotonergic signaling. Some results and predictions of the model have already

appeared in [40]. We note that we have not altered parameters and kinetics to fit any

particular set of experimental data. The parameter values remain the same in all the

model experiments in the Results sections, except as indicated for changes correspond-

ing to the particular experimental situations that we were examining.

Any model includes many oversimplifications. We have not included the details of

the use of tryptophan in other metabolic pathways. The processes by which vesicles

are created, move to the synapse, and release their serotonin are complicated and

interesting [67,70-72], but are not included in this model. In our model the SERTs put

released serotonin back into the terminal, but we do not include leakage of cytosolic

serotonin through the SERTs into the extracellular space. We include in the model the

effects of the terminal autoreceptors on serotonin synthesis (via TPH) and on seroto-

nin release, but we do not include effects of autoreceptors on reuptake [74]. In this

first model we have not included the soma explicitly, so the effects of the somatic

autoreceptors are modeled by directly affecting firing rate and thus release in the

terminal.

In Section A of Results we use the model to give reasons for the well known obser-

vations that dopamine synthesis is relatively insensitive to tyrosine availability, but ser-

otonin synthesis is quite sensitive to tryptophan availability[1,93,94]. First, at the

normal intracellular concentration of DA, the TH reaction is already running close to

saturation, however the normal intracellular concentration of tryptophan is well below

the Km of TPH, so changes in availability cause big changes in synthesis rate. Second,
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the flux into and out of the intracellular pool is much larger(relative to the pool size)

in the case of tryptophan than in the case of tyrosine. We showed (Figure 2) the con-

sequences of these differences for the time-dependent behavior of extracellular DA and

5-HT due to meals. In our model calculations, for simplicity, we assumed that the

transport of the amino acids tyrosine and tryptophan across the blood brain barrier are

independent of each other. In fact, both tyrosine and tryptophan compete for the L-

transporter [55] with many other amino acids including the branched chain amino

acids (BCAA). The protein composition of meals affects how much tyrosine and tryp-

tophan is imported into the brain and thus how much brain DA and 5-HT change

[54,95,111,112]. Even more interesting, Fernstrom[24] has shown that the order of

meals affects how much tryptophan gets into the brain. The reason is that carbohy-

drate meals stimulate insulin production and this tends to transport amino acids into

skeletal muscle, but tryptophan is partially protected from this transport because it is

bound to serum albumin. A mathematical model for these competitive transport pro-

cesses is in preparation.

In Section B of results we examine the time courses of extracellular 5-HT after an

electric shock both with and without the presence of fluoxetine. Our time courses are

very similar to those found in [46] for the DRN and substantia nigra reticulata. The

shapes of the curves depend heavily on the density of SERTs, which is known to vary

by a factor of 5 in different projection regions [113]. Thus, much slower uptake was

found in the dentate gyrus, the corpus callosum and the CA3 region of the hippocam-

pus [47]. This is a good reminder that there is no such thing as a single model of “the“

serotonergic terminal. Parameters, both SERT density and also expression levels of

5-HT1A receptors [22], can vary by large amounts in different projection regions,

presumably for important functional reasons.

In Section C we examined the steady state concentrations and velocities in the model

corresponding to different densities of SERTs, or, equivalently, different doses of SSRIs

that block the SERTs. The case where the SERTs are completely blocked corresponds

to SERT knockout mice. The model concentrations of extracellular 5-HT and vesicular

5-HT are similar to those found in experiments of SERT knockout mice. Extracellular

5-HT is up 9-fold and vesicular 5-HT is down 70%. Interestingly, as more and more

SERTs are blocked corresponding to higher and higher doses of fluoxetine, vesicular 5-

HT decreases fairly slowly (Table 4). It is known [99] that tissue levels of 5-HT do

decrease in the presence of SSRIs, but this decrease has not been remarked on very

much in the literature, perhaps because it is a relatively moderate effect as predicted

by our model.

In Section D we examined the steady state effects of the autoreceptors and showed

that they produce two kinds of homeostasis. First, they moderate the effects of changes

in the cell’s environment on the concentration of extracellular 5-HT. We illustrate this

by changing the firing rate (Figure 4, Panel A), but similar moderating effects are seen

with changes in tryptophan availability or MAO activity. Thus, the autoreceptors allow

serotonergic signaling to continue more or less as before in the face of a changed

environment. Second, the autoreceptors partially compensate for the effects of various

polymorphisms in the genes for TPH and SERTs (Figure 4, Panels B and C). Even

though a polymorphism reduces the activity of TPH by 50%, the vesicular and extracel-

lular 5-HT decrease by only 13% (Panel C). Thus, the autoreceptors give a kind of
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protection against the effects of polymorphisms. We have provided some of the first

calculations that show quantitatively the importance of this aspect of autoreceptor

function.

Finally, in Section E we conducted model experiments that correspond to experi-

ments in which the time course of extracellular 5-HT was measured in different brain

regions of animals after a dose of an SSRI. The purpose of many of these experiments

was to investigate functional effects of the somatodendritic (5-HT1A) autoreceptors or

the terminal (5-HT1B) autoreceptors, so the experiments were carried both in and

without the presence of autoreceptor antagonists. In general, our model calculations

correspond reasonably well to the experimental results and give some insight into the

reasons why the experimental results look the way they do. We note that autoreceptor

densities vary considerably in different brain regions [9,25,22], and this variation is

likely to have important electrophysiological and behavioral consequences.

Other results of this model have been published previously. It is known that seroto-

nergic neurons in the DRN fire tonically at frequencies of 0.4-2.5 spikes/second and

that they also fire short bursts at higher frequencies that convey sensory or motor

information [1]. In [40] we showed that the model rersponse to burst firing is very

dependent on the density of SERTs on the terminal, which is proportional to the Vmax

of VSERT. The size of this Vmax determines how long it takes to clear the extracellular

space of excess 5-HT after a spike. If this clearance time is approximately the time

between spikes during tonic ring, then even a short burst will raise extracellular 5-HT

considerably. However, if this clearance time is very short, for example, 1/3 of the time

between spikes in tonic firing, then a burst of three spikes at triple the tonic frequency

raises extracellular 5-HT little. It is known that the density of SERTs varies by about a

factor of five across different projection regions [46,47,113]. Interestingly, the frequency

of tonic firing of serotonergic cells in the dorsal raphe nucleus also varies by about a

factor of four or five [1,114,115]. This led us to predict that the SERT density in pro-

jection regions is tuned to the tonic firing rate of the DRN cells that project to that

region, where “tuned” means that the clearance time is approximately the interspike

interval for tonic firing. If it is possible to determine experimentally how the tonic

firing rates of DRN cells relate to the region they project to, this prediction can be

confirmed or refuted.

The fact that the mathematical model presented here is only for a serotonergic term-

inal limits our ability to address important issues involving mechanisms at the soma of

serotonergic cells and their influence on extracellular 5-HT at terminals in projection

regions. The serotonergic cells in the DRN and MRN release 5-HT from both the

soma and dendrites and only 70% of the release is related to firing[25,116,117]. SSRIs

block SERTs on these cell bodies as well as on terminals in projection regions, raising

extracellular 5-HT in the DRN and MRN and decreasing firing rate via the 5-HT1A

autoreceptors[107,118]. Thus, acute use of SSRIs can have two conflicting conse-

quences in terminal regions: increased extracellular 5-HT because of SERT blockage

on the terminal, and decreased extracellular 5-HT because of SERT blockage on the

cell bodies. A common hypothesis is that chronic use of SSRIs does not have a thera-

peutic effect for several weeks because it takes that long for the 5-HT1A autoreceptors

on cells bodies to desensitize[25,31,119]. While this hypothesis may have merit, addi-

tional factors such as SERTs are also likely to be involved. Studies have shown
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dramatic downregulation of SERT mRNA during chronic use of SSRIs[20,21]. It is also

possible that the dynamic time scale of such SERT downregulation may contribute to

the delay period. An increase in extracellular DA rapidly recruits more DATs to the

terminal membrane, but downregulation of DAT activity and density follows as the

increase becomes chronic[120]; similar dynamic regulation of SERTs is possible, both

at the soma and at terminals. In order to examine the interplay between 5HT1A recep-

tors and dynamic SERT regulation in the presence of SSRIs, we plan to extend our

model to include the cell body of the serotonergic cell.

It is worthwhile to keep in mind how difficult the study of the serotonergic system

really is. Though much new information is available that gives associations between

genotypes and behaviors, the causal mechanisms are mostly unknown. These casual

mechanisms necessarily involve cell biochemistry and morphology and the connections

between the biochemistry and morphology and the electrophysiology of neurons and

networks of neurons. Even more daunting is the fact that the four levels, gene expres-

sion, biochemical, electrophysiological, and behavioral, influence each other, both

chronically and dynamically. Experiments are often difficult to interpret because

changes at more than one level may be involved. In this situation, mathematical mod-

els based on real physiology can contribute to understanding, for they provide a plat-

form for testing hypotheses and investigating how changes, chronic or dynamic, at one

level cause changes at the other levels.

Conclusions
Serotonergic systems must respond robustly to important biological signals, while at

the same time maintaining homeostasis in the face of normal biological fluctuations in

inputs, expression levels, and firing rates. Our mathematical model gives insight into

how this homeostasis is accomplished through the cooperative effect of many different

homeostatic mechanisms including the special properties of tryptophan hydroxylase,

the serotonin reuptake transporters, and the serotonin autoreceptors. The model also

shows how the autoreceptors moderate the effects of polymorphisms in the genes for

the SERTs and TPH. The model calculations correspond quite well to a variety of

experimental data. Thus, the model can be useful for testing hypotheses about the rela-

tionships between gene expression, biochemistry, and serotonergic signaling.
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