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Abstract

Post-traumatic inflammation is formed by molecular and cellular complex mechan-
isms whose final goal seems to be injured tissue regeneration.
In the skin -an exterior organ of the body- mechanical or thermal injury induces the
expression of different inflammatory phenotypes that resemble similar phenotypes
expressed during embryo development. Particularly, molecular and cellular mechan-
isms involved in gastrulation return. This is a developmental phase that delineates
the three embryonic germ layers: ectoderm, endoderm and mesoderm. Conse-
quently, in the post-natal wounded skin, primitive functions related with the embryo-
nic mesoderm, i.e. amniotic and yolk sac-derived, are expressed. Neurogenesis and
hematogenesis stand out among the primitive function mechanisms involved.
Interestingly, in these phases of the inflammatory response, whose molecular and
cellular mechanisms are considered as traces of the early phases of the embryonic
development, the mast cell, a cell that is supposedly inflammatory, plays a key role.
The correlation that can be established between the embryonic and the inflamma-
tory events suggests that the results obtained from the research regarding both
great fields of knowledge must be interchangeable to obtain the maximum
advantage.

Introduction
Inflammation is considered the fundamental scientific principle underlying the practice

of surgery [1]. Although nowadays the main role of the inflammatory response is due

to its close relationship with illness and therefore is pathological, maybe the origin of

these mechanisms have a different meaning, even physiological. Thus, we have pre-

viously proposed that the evolutive phases of the post-traumatic inflammatory response

may have a trophic meaning for the injured tissue [2]. Based on this supposition it

would not be unreasonable to consider most of the inflammatory mechanisms as rem-

nants of ancestral times when life depended on their trophic activity [3]. Fortunately,

these mechanisms do not only represent remnants from the past in the case of injury,

but also assume their ancient phenotypes in favor of survival [2,3].

When acute tissue damage is produced by a mechanical or thermal harmful stimulus,

both types of energy are etiologically involved, either in tissue injury production,

usually a wound [4], or in triggering an inflammatory response [5]. Cellular lesions are

irreversible in the wounds produced by mechanical and thermal energy since necrosis

is produced [5]. Until recently, necrosis has often been viewed as an accidental and

uncontrolled cell death process. Nevertheless, growing evidence supports the idea that
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necrotic cell death may also be programmed [6]. Cellular signaling events have been

identified to initiate necrotic destruction that could be blocked by inhibiting discrete

cellular processes [7].

The most relevant mechanisms culminating in cell necrosis correspond to mitochon-

drial dysfunction and ATP depletion; loss of intracellular ion homeostasis, with osmo-

tic swelling and oxidative stress; activation of degradative hydrolases, and degradation

of cytoskeletal proteins with disruption of cytoskeletal integrity [8]. Surprisingly

enough, this list of mechanisms also correspond to what occurs in the acute inflamma-

tory post-injury response [2,3]. It seems that, in response to injury, cells can develop

mechanisms that would play a defensive role, i.e. inflammation, and which could favor

reversing the alterations until their inadequate expression would make them harmful, i.

e. cell death [9]. Hence, at a specific moment in time, the pathophysiological mechan-

isms, i.e. cellular response to injury, become a pathogenic mechanism, i.e. producers of

cell death [3]. Thus, it could be considered that the cells can “escape” death in attacked

tissues. Taken all together these mechanisms would in turn constitute the post-injury

inflammatory response [2,3,10].

Wounds and Inflammation

The skin is protecting the organism against physical, chemical and microbial impacts

of the environment [11,12]. It represents the second largest organ in adult humans,

only surpassed by the vascular system [12]. The skin, consists of an outer squamous

epithelium, the epidermis and its appendages (sweat glands, pilosebaceous follicles and

nails) and two inner layers of connective tissues, the dermis and the hypodermis

[11,13]. Therefore, a wound that includes the three layers of this organ would injure

its parenchyma, or epidermis, and the stroma, which is made up of dermis and hypo-

dermis (Figure 1).

The inflammatory response expressed by this organ after a wound can have exogen-

ous and endogenous inducers [9]. Noxious mechanical or thermal stimuli as exogenous

signals and cellular necrosis, as endogenous signals, can initiate the inflammatory

response [14,15]. Thus, mechanical or thermal energy, as an exogenous damage/alarm

signal [14,15], have the ability to produce a wound, i.e. damage, as well as initiate an

inflammatory response, i.e. alarm.

Today, the role that inflammation “per se” plays in cutaneous wound repair is most

likely very limited. Thus, it is accepted that inflammation is only another component

of the repair process. Thus, the common description of wound repair evolution

includes three classic types: Inflammation, new tissue formation and remodeling

[16-19]. However, some authors describe four healing phases: Hemostasis, inflamma-

tion, repair and remodeling [20] and even five phases: Hemostasis, inflammation, cellu-

lar migration and proliferation, protein synthesis and wound contraction and

remodeling [21].

Nowadays, we need integrative pathophysiology to integrate all the new knowledge to

understand the inflammatory response because the distance between new molecular

knowledge and every day patient care is increasing. Now we need to understand cell

biology and genetics of inflammation better to identify gene and metabolic targets in

order to modulate aspects of the inflammatory response [22]. We have therefore
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proposed that the inflammatory wound response recapitulates ontogeny and phylogeny

through trophic mechanisms of increasing complexity to the injured tissue [2,10].

Phases and phenotypes during wound repair

The inflammatory response that is induced in the injured tissue could be described as

a succession of three overlapped phases, during which the phenotypes of metabolic

progressive complexity related to the use of oxygen are expressed. Each one of these

phases emphasizes the trophic role of the mechanisms developed in the damaged tis-

sue. Hence, nutrition by diffusion predominates the first phase; trophism is mediated

by inflammatory cells in the second phase; and finally blood circulation and oxidative

metabolism play the most significant nutritive roles in the third phase [10].

Since these trophic mechanisms are of increasing complexity, progressing from

anoxia to total specialization in the use of oxygen to obtain usable energy, it could be

speculated that they represent the successive reappearance of the stages that took

place during the evolution of life without oxygen on Earth from ancient times. In this

sense, the inflammatory response not only could recapitulate phylogeny, but also onto-

geny, through the successive expression of phenotypes that have a trophic meaning for

the injured tissue [2,3,10] (Figure 2).

The successive inflammatory phenotypes are expressed mainly in the interstitial

space. Therefore, the interstitial space always seems to be the battlefield for inflamma-

tion, whether it is due to trauma [2,3], infection [3] or tumors [23-25].

Figure 1 Consequences of noxious -mechanical and thermal energy- over the skin organ, that is
formed by epidermis (parenchyma), and dermis and hypodermis (stroma). A: Adipocyte; F: Fibroblast;
K: Keratinocyte; L: Lymphatic capillary; M: Macrophage; MC: Mast cell; N: Neuron; V: Post-capillary venule;
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In the first or immediate phase of the inflammatory response, interstitial hydroelec-

trolytic alterations stand out. This phase has been referred to as the nervous phase,

because the sensory (pain and analgesia) and motor alterations (contraction and

relaxation of smooth and skeletal muscle fibers) respond to the injury. Particularly, the

vasomotor response -with vasoconstriction and vasodilation- is responsible of the

ischemia-reperfusion phenomenon, with the subsequent excessive production of reac-

tive oxygen and nitrogen species (ROS/RNS) that causes oxidative and nitrosative

stress in the injured tissue. In this phase, during the progression of the interstitial

edema, the space between epithelial cells and capillaries increases, and the lymphatic

circulation is simultaneously activated (circulatory switch) [2,10].

In the following intermediate or immune phase of the inflammatory response, the

tissues which have undergone ischemia-reperfusion suffer an immunological activation.

In addition, they are infiltrated by inflammatory blood-born cells, particularly leuko-

cytes. In order to infiltrate the interstitial space, bacteria takes advantage of the chemo-

tactic call, which activates and induces the recruitment of blood cells. In the tissue

which suffers oxidative and nitrosative stress, symbiosis of the leukocytes and bacteria

Figure 2 The inflammatory response which is developed after skin injury is divided into evolutive
vascular phenotypes and phases. Ischemia-reperfusion (I/R), leukocytic (L) and angiogenic (A)
phenotypes are successively expressed during the vascular inflammation. The injured tissue losses its
normal structure and acquires functional autonomy during ischemia-reperfusion and leukocytic phenotype
expression. Then, when the angiogenic phenotype is progressively expressed, the tissue is re-structured
and specialized. In the immediate nervous phase, depolarization and repolarization of cell membranes
would be the key pathophysiological mechanism. During the immune phase, the transient synthesis of
adhesion molecules favors cellular and bacterial translocation. Lastly, in the endocrine phase the skin tries
to recover its parenchymatous structure, or epithelium (regeneration), as well as its stroma or connective
tissue (scarring).
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for extracellular digestion by enzyme release, i.e. fermentation, and by intracellular

digestion, i.e. phagocytosis, produces enzymatic stress. Furthermore, macrophages and

dendritic cells take advantage of the lymphatic circulation activation, and migrate

through it until reaching the lymph nodes, where they activate lymphocytes [2,3].

During the third phase of the inflammatory response, angiogenesis permits numerous

substances, including hormones, to be transported by the blood circulation. For this

reason, it has been considered that the predominance of angiogenesis during the last

phase of the inflammatory response would allow for calling it the endocrine phase.

Although the final objective of the angiogenic phenotype is to form new mature vessels

for oxygen, substrates and blood cells, other functions could be carried out before the

new mature vessels are formed. Thus, angiogenesis could have antioxidant and antien-

zymatic properties, favoring the resolution of the inflammation as well as wound repair

by epithelial regeneration and scarring. Therefore, in this phase the new formed tissue

is structured, specialized and matures by remodeling [2,3,10] (Figure 2).

The three overlapped trophic phases of the post-traumatic inflammatory response

could also be named, by their corresponding length, as acute, subacute and chronic,

respectively. The acute phase is characterized by the quick molecular infiltration of the

interstitial space that would for favoring the establishment of a trophic axis based in

the interstitial fluid flow. In the following or subacute phase, the cellular infiltration of

the interstitial space predominates. In this phase, the invasion of the interstitium by

blood cells would create another trophic axis based on a hypothetical enzymatic diges-

tive ability that is assumed by the leukocytes in the injured tissue. Finally, it could be

interpreted that through the confluence in the interstitial space of both trophic axes,

molecular and cellular, the appropriate metabolic conditions would be generated so

that tissue repair takes place during the last so-called chronic phase of the inflamma-

tory response.

Embryonic bases of inflammation: The amnion and the yolk sac

The inflammatory response could recapitulate ontogeny through the expression of the

two hypothetical trophic axes, molecular and cellular, in the interstitial space of the

injured tissue.

We have previously proposed the hypothesis that inflammation would represent the

debut during post-natal life of ancestral biochemical mechanisms that were used for

normal embryonic development. The re-expression of these old mechanisms, with a

prenatal solvent path, are perhaps inappropriate and hard to recognize since they are

anachronistic during post-natal life and because they are established in a different

environmental medium [3,26].

The early mammalian embryo already has the ability to manage fluids in the intersti-

tial space. In the human blastocyst, the inner cell mass or embryoblast, differentiates

into two layers, the hypoblast and epiblast. The epiblast is the source of all three germ

layers and develops within a small cavity named amniotic cavity [27]. At the early

stages of pregnancy, amniotic fluid consists of a filtrate of maternal blood. That is why

in this period drugs taken by the mother can enter the amniotic fluid by diffusion

across the placenta [28]. Amniotic fluid is an essential component for fetal develop-

ment and maturation during pregnancy [29]. During these stages, amniotic fluid is a
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bioactive medium actively secreted by the cells lining the amniotic cavity and as gesta-

tion progresses it includes significant volume of fetal urine [30] (Figure 3).

Body fluid is distributed among three major fluid spaces: Intracellular fluid, intersti-

tial fluid and plasma. Nevertheless, the fluid distribution in each of these compart-

ments is dramatically different in the fetus compared to the adult. Particularly, the

amniotic fluid that surrounds the fetus may be considered an extension of the extracel-

lular space of the fetus [31]. Thus, the lymphatic system plays an essential role in the

regulation of fluid distribution between the plasma and the interstitial fluid and, prob-

ably with the amniotic fluid [31]. It could also be hypothesized that similar functions,

i.e. development and maturation, that the amniotic-lympathic-interstitial fluid axis has

in the embryo, could have interstitial edema and activated lymphatic circulation (circu-

latory switch) in the traumatized tissue.

The yolk sac is the final destination of migrating visceral endoderm cells, that in turn

are derivatives of the hypoblast (Figure 3). The yolk sac begins to form during gastrula-

tion [32]. The visceral yolk sac expands and blood islands -structures consisting of

hematopoietic progenitors surrounded by a loose network of endothelial cells- appear

[32]. Endothelial cell precursors associated with blood islands differentiate and coalesce

Figure 3 Schematic representation of the early mammalian embryo during gastrulation . The
extraembryonic mesoderm (EM) is represented surrounding the amniotic cavity (A) and the yolk sac cavity
(Y). Between the epiblast (E) and the hypoblast (H) the mesoderm internalizes (IM) by epithelial-
mesenchymal transition. On top of the figure, some of the characteristics of the amniotic axis are
summarized. On the other hand, on the bottom, some of the characteristics of the yolk sac axis are
exposed.
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to form a primitive circulation bed, which later connects to the embryo via the vitelline

vessels [32,33].

Mammalian development requires the rapid de novo formation of embryonic blood

cells to support embryonic and fetal growth prior to the establishment of the adult

hematopoietic system. The very first blood cells to appear in the embryonic circulation

arise in the extraembryonic yolk sac [34]. Particularly, primitive macrophages first

develop in the yolk sac [35]. As the embryo develops, newly formed hematopoietic

stem cells are found in the aorta-gonad-mesonephros region, then in the fetal liver,

thymus and spleen and lastly, for adult hematopoiesis, in the bone marrow [36]. The

yolk sac suffers a rapid involution following completion of their hemopoietic and

angiogenic functions [37] (Figure 4).

Thus, the yolk sac-hematopoietic-angiogenic axis coordinates blood cell differentia-

tion and vessel formation and plays an essential role supporting embryonic and fetal

growth [32]. It could also be hypothesized that a similar trophic cellular axis is devel-

oped by the traumatized patient.

The confluence during mammalian development of the amniotic-interstitial fluid axis

and the yolk sac-hematopoietic-angiogenic axis could be one essential factor to drive

gastrulation (Figure 5). Although the details of gastrulation differ among different spe-

cies, the cellular mechanisms involved in gastrulation are common to all animals. After

induction of the germ layers, the blastula, composed by pluripotent stem cells, is trans-

formed by gastrulation movements into a multilayered embryo, including ectoderm,

endoderm and mesoderm with head, trunk and tail rudiments [38]. During the interna-

lization process, cells of the mesoderm move through the blastopore under the ecto-

derm. Mesoderm, the middle or interstitial germ layer, gives rise to hematopoietic,

endothelial, heart, skeletal muscle and connective tissues [38].

In the current review we suggest that in the traumatized tissue both rudimentary and

hypothetical trophic axes could be re-expressed with a similar aim: the creation of a

specialized tissue once again. If so, probably during damaged tissue repair, a similar set

of morphogenetic cell behaviors are used as in gastrulation, including a series of

Figure 4 Schematic representation of the gastrulating embryo under the hypothetical influence of
an amniotic-interstitial fluid-neurogenic axis (A) and yolk sac-hematopoietic-angiogenic axis (Y).
EM. Extraembryonic mesoderm. IM: intra-embryonic mesoderm.
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changes in cell motility, cell shape and cell adhesion. This post-traumatic recreation of

embryonic processes in the adult tissues is a hypothesis that would be supported by

the recent findings about pluripotent stem resident cells in specialized tissues [36,39].

Stem cells with pluripotent/multipotent capacity were thought to be restricted to the

early embryonic stages. However, recent evidence challenged this idea by confirming

the presence of pluripotent/multipotent stem cells in adult tissues and organs. These

cells may participate in cellular turnover and the rebuilding pool of the tissue circum-

stances such as tissue injury [39]. However, their expression in the post-natal body

under the influence of multiple anomalous environmental factors could induce patho-

logical actions associated with tissue reparation.

It has been accepted that the impairments or pathologies associated with wounded

tissue repair during post-natal life have an interstitial origin because it is supposedly

in this space, which is successively occupied by the mesoderm and then, by the con-

nective tissue, where the hypothetical embryonic trophic axes are re-expressed after

trauma. Maybe, this is the reason why the alterations are common in terms of those

structures that occupy the tissue space equivalent to the interstitial space, known as

the stroma. Particularly, the vascular, blood and lymphatic, and nervous inflamma-

tory alterations stand out. These inflammatory changes have been grouped for their

study in pathological axes that are predominantly expressed in the interstitial space

(Figure 6).

Given the confluence of the two rudimentary trophic axes in the injured tissue, we

have supposed that the underlying intention is to carry out a similar phenomenon to

gastrulation. Therefore, it is possible that the resulting vasculo-nervous inflammatory

Figure 5 Hypothetical embryonary interstitial confluence of amniotic and yolk sac trophic axis to
induce gastrulation.
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alterations represent morphogenetic processes related to this crucial step in early

embryogenesis.

Pathological axes of inflammation

The inappropriate expression of the inflammatory phenotypes induces evolutive post-

traumatic complications. Normally, the abnormal post-traumatic inflammatory pheno-

types are predominantly expressed in the vasculo-nervous structures and, for this rea-

son, their pathophysiological mechanisms play the main role in the study of wound

repair complications.

Pathological axis of vascular inflammation

The concept of the inflammatory response as distributed in the successive phases of

ischemia-reperfusion, leukocytic infiltration and angiogenesis [40], is based on the nor-

mal microcirculatory, lymphatic and blood changes suffered by the injured tissue. Con-

sequently, the inappropriate expression of these vascular inflammatory phenotypes,

either by excess or by defect, is an obligatory reference (Figure 6).

* Edema The abnormal expression of the ischemia-reperfusion phenotype during

repair can produce disturbances in ion transport associated with cellular dysfunction.

There is increasing evidence that conditions characterized by an intense local inflam-

matory response are associated with abnormal ion transport [41]. Inflammatory media-

tors which influence ion transport are bradykinin, leukotriens, cytokines, thrombin,

and transforming growth factor (TGF). They trigger the release of specific messengers,

like prostaglandins, nitric oxide and histamine which alter the ion transport function

through specific receptors, intracellular second messengers and protein kinases [41].

Figure 6 Schematic representation of the pathological axes expression during vascular
inflammation, which is developed in the interstitial space of the injured tissue. c: capillary; ec:
epithelial cell; eo: eosinophils; f: fibroblast; l: lymphatic vessel; leu: leucocytes; lym:lymphocyte; mc: mast cell;
mØ: macrophage; p: platelets and fibrin; pe: pericyte; sc: stem cell; v: post-capillary venule.

Aller et al. Theoretical Biology and Medical Modelling 2010, 7:37
http://www.tbiomed.com/content/7/1/37

Page 9 of 32



It has been stated that small fluctuations in cell hydration or cell volume act as a

potent signal for cellular metabolism and gene expression [42]. Also, the exposure of

cells to higher osmolarity results in the secretion of pro-inflammatory cytokines and

extends normal macrophage half-life [43].

Interstitial edema causes a steady separation of the cells from the capillaries and

widens the diffusion distance for oxygen and nutrients, favors the insufficiency of the

lymphatic circulation and reduces tissue defense mechanisms leading to susceptibility

to infections [3]. Also, interstitial flow is important for lymphangiogenesis [44]. The

interstitial fluid flow associated with edema, even though it can be extremely slow, can

have important effects on tissue morphogenesis and function, cell migration and differ-

entiation and matrix remodeling, among other processes [45,46]. Insights into the

mechanisms linking mechanical forces to cell and tissue differentiation pathways are

important for understanding many diseases, including inflammation [46]. Abnormally

increased interstitial flow rates can occur during inflammation and can also trigger

fibroblasts to differentiate or remodel the extracellular matrix, contributing to the

development of tissue fibrosis [44,45].

The impaired function or formation of lymphatic vessels after trauma, could be asso-

ciated with lymphedema, which is characterized by interstitial fluid accumulation. Lym-

phedema can lead to increased susceptibility to infections, impaired wound healing and

chronic swelling [47].

Limiting swelling is extremely important because the injured area cannot return to

normal until swelling is gone. In musculoeskeletal injuries this is best accomplished

with the “RICE” technique, which involves Rest, Ice, Compression and Elevation [48].

* Coagulation When post-capillary venular membranes become permeable to complex

molecules, including coagulation factors, the extravasation of fluids lead to interstitial

coagulation. Cellular interstitial infiltration of the injured tissue is favored by the action

of intrinsic and extrinsic components of the coagulation cascades. This results in the

production of thrombin, which catalyzes the conversion of fibrinogen of intravascular

origin to fibrin [21,49]. In most pathophysiological situations, it seems that the activa-

tion of both coagulation and complement cascades occurs simultaneously [50]. Com-

plement and coagulation systems are organized into proteolytic cascades which are

composed of serine proteases belonging to the chymotrypsin family. An explanation

for the structural and functional similarities between the clotting and complement sys-

tem is that they originate from a common ancestral developmental-immune cascade

[51]. Thus, the functional linkages between development, hemostasis and immunity in

vertebrates would be explained [50,51].

Mechanical and thermal injuries are conditions predisposed to thrombosis [21]. The

mechanisms underlying this increased tendency for thrombus formation are, in part,

related to the procoagulant properties of the inflammatory mediators produced and

released as a response to injury [50]. The complement system contributes significantly

to thrombosis by directly enhancing blood clotting properties, by augmenting the

inflammatory response, which in turn potentiates inflammation [52].

Inadequate fibrin formation is associated with impaired wound healing. Any process

that removes fibrin from the wound will disrupt the formation of the extracellular

matrix and consequently will also delay wound healing [53]. Mast cells strategically

located in the vicinity of blood and lymph vessels as well as nerve fibers, are among
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the first responders to the stimuli that initiate inflammation [50,54]. While initially

mast cells were identified as only participating in allergic responses, it is now clear that

they participate in other phenomena such as wound healing and fibrosis [54,55]. Parti-

cularly, they contribute to hemostasis through the expression of tissue plasminogen

activator and heparin production, thereby preventing uncontrolled local activation of

the coagulation system [50].

* Exudation Chronic wound fluid is biochemically different from acute wound fluid.

Chronic wounds may produce large amounts of exudate as a by-product of inflamma-

tion that contains elevated levels of enzymes. Exudate from chronic wounds has been

shown to impede or block the proliferation of key cells in the wound healing process,

such as keratinocytes, fibroblasts and endothelial cells [56].

* Suppuration The formation of yellow, milky-yellow, greenish yellow or white-yellow

pus characterizes suppuration or purulent wound inflammation [5]. In addition to the

enzymes released by granulocytes during the process of phagocytosis and bacterial kill-

ing, the bacteria themselves produce a number of exoenzymes that cause tissue

destruction as well as infection localization. Particularly, almost all Staphylococcus aur-

eus strains have the ability to secrete an array of enzymes including nucleases, pro-

teases, lipases, hyaluronidase and collagenase [57]. Matrix metalloproteases would also

collaborate in the development of enzymatic stress in the acute inflammatory tissue

injury [58]. Pus mainly contains necrotic tissue debris and dead neutrophils. When the

collection of pus is localized, an abscess is established [57].

Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately

promotes the resolution of infection [59]. Although neutrophil apoptosis is critical for

granulocyte homeostasis and the resolution of inflammation, many pro-inflammatory

molecules extend the survival of polymorphonuclear leukocytes during the initial stages

of the inflammatory response. However, some bacterial pathogens alter neutrophil

apoptosis to survive and thereby cause disease [60].

Colonization is defined as the presence of replicating bacteria and adherent microor-

ganism without tissue damage. However critical colonization is a novel concept that

states that the bacterial burden in the chronic wound does not elicit the typical symp-

toms of an infection, but delays healing [61,62].

Acute lymphangitis is often the consequence of a purulent wound inflammation. It is

mostly caused by Staphylococcus pyogenes or Streptococci. Acute lymphangitis is recog-

nizable as linear erythematous streak extending from the primary lesion, i.e. wound,

toward the regional lymph nodes [63,64].

Lymph nodes are essential for the initiation of immune responses by creating an

environment in which lymphocytes and antigen-presenting cells can optimally interact

[65]. Antigen-presenting cells as dendritic cells, macrophages and mast cells, first reach

the subcapsular sinus and then, move into the paracortex where they aggregate around

high-endothelial venules [65,66]. These venules allow the active immigration of T and

B lymphocytes from the blood into the paracortex compartment of the lymph node

[65,67]. However, wound infection by pyogenic bacteria frequently causes nodular lym-

phangitis with nodular subcutaneous swelling along the involved lymph nodes [63].

* Granuloma Within hours of wounding, neutrophils are attracted to the wound site,

followed by monocytes, which mature into macrophages as they invade tissues [68]. In

some invertebrates, mesenchymal cells, endothelial cells or fibroblast-like cells can
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transform into macrophages [35]. In vertebrates, macrophages are involved in modulat-

ing the inflammatory process during the pathogenesis and resolution of tissue injury

and inflammation [59,69,70].

Macrophages have remarkable plasticity that allows them to efficiently respond to

environmental signals and change their phenotype [35,70,71]. Three macrophage popu-

lations based on three different homeostatic activities have been proposed: Host

defense, wound healing and immune regulation [71]. Foreign bodies are indigestible

particles and the macrophages form a granuloma around it. In some cases macro-

phages can fuse with each other to form “giant cells” that encapsulate the foreign body

[9].

* Granulation tissue and remodeling Angiogenesis is closely associated with granula-

tion tissue formation and remodeling as the newly forming cellular complex must be

supplied with oxygen and nutrients [72]. Excessive angiogenesis participates in the for-

mation of granulation tissue, starting about three or four days after injury. The main

cell types driving the excessive generation of the new tissue are macrophages, endothe-

lial cells, fibroblasts and keratinocytes [17]. Mast cells also play a role in coordinating

neovascularization in the wound [54].

Angiogenesis is regulated by numerous “classic” factors: Vascular endothelial growth

factor (VEGF), fibroblast growth factor-2 (FGF-2), transforming growth factors (TGFs),

angiopoietins, platelet-derived growth factor (PDGF), and thrombospondin-1 and

angiostatin. “Non classic” endogenous stimulators of angiogenesis include erythropoie-

tin, angiotensin II, endothelins, adrenomedullin, adipokines (leptin, adiponectin), neu-

ropeptide-Y, vasoactive intestinal peptide (VIP) and substance P [73,74]. They act in

synergy to stimulate endothelial cell function during angiogenesis in tissue repair [74].

As granulation tissue forms in the healing wound, the vascular cells, intermingle with

the provisional matrix, which is composed mainly of fibrin, fibronectin and vibronectin

[74]. Then, the new blood vessels associated with fibroblast and macrophages replace

the fibrin matrix with granulation tissue, which forms a new substrate for keratinocyte

migration [17,21].

Remodeling begins two to three weeks after injury and lasts for a year or more. A

framework of collagen and elastin fibers replaces the granulation tissue and produces

progressive tissue sclerosis [75,76]. Finally, most of the endothelial cells, with macro-

phages and fibroblasts undergo apoptosis, leaving a mass that contains few cells and

consists mostly of collagen and other extracellular-matrix proteins [21].

Pathological axis of neuronal inflammation

The inflammatory mechanisms also develop a fundamental role in the production of

post-traumatic pain.

* Inflammatory pain Inflammatory pain is associated with sensitization of the noci-

ceptive system. Central sensitization represents an enhancement in the function of

neurons and circuits in nociceptive pathways caused by increases in membrane excit-

ability and synaptic efficacy. It also reduces inhibition and is a manifestation of the

remarkable plasticity of the somatosensory nervous system in response to inflammation

[77]. To induce central sensitization, the noxious stimulus must be intense, repeated

and sustained. Peripheral tissue injury is not necessary, although the degree of noxious

stimulation that produces frank tissue injury almost always induces central sensitiza-

tion [77,78].
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Peripheral inflammation induces a phenotypic switch in primary sensory neurons

that comprises a change in their neurochemical character and properties due to altera-

tions in transcription and translation [77]. However, it could be considered that the

inflammatory pain pathogeny is phase-specific. Thus, after the initial electrical phase,

with upregulation of ionic channel expression in the nociceptive circuits, which causes

spontaneous neural firing [78,79], the following would be an immune phase. The lead-

ing role of this phase would be played by the cytokines and immune cells acting as

pain mediators and modulators [80,81]. Lastly, in an endocrine phase, neurotrophic

factors, including nerve growth factor (NGF), brain-derived neurotrophic factor

(BDNF) and neurotrophins 3 and 4, would be associated with structural neural remo-

deling [77,82].

An immediate component of the stress response to pain is the efferent nervous

response, which is mediated by the somatic motor and autonomic nervous system [83].

The somatic motor response usually consists in the withdrawal of the affected part of the

body from the source of irritation. Withdrawal reflexes are the simplest centrally orga-

nized response to painful stimuli [77,84]. Furthermore, the fight-or-flight response is the

behavioral response to a threat, in which the somatic motor response stands out [83].

With respect to the autonomic nervous system, both the sympathetic and parasym-

pathetic nervous systems, participate in the acute inflammatory response [83]. Catecho-

lamines are found in adrenergic neurons, but their highest concentration is found in

the peripheral presynaptic nerve terminals. After depolarizing the stimulation of these

nerves, rapid secretory release of stored catecholamines occurs. Besides the adrenome-

dullary chromaffin cell and neuron derived catecholamines, lymphocytes and phago-

cytes represent a third category of catecholamine-producing cells [85].

In addition, the inflammatory reflex of Tracery is a pathway in which the autonomic

system detects the presence of inflammatory stimuli and modulates inflammation. Par-

ticularly, afferent signals are transmitted to the brain, via the vagus nerve, which acti-

vates a reflex response that culminates in efferent vagus nerve signaling termed the

“cholinergic anti-inflammatory pathway” [86].

Also, by anterograde inflammatory signals, neural cells contribute to local tissue

responses. Noxious stimuli cause nerves to release neuropeptides in the injured tissue, i.

e. substance P and Calcitonin gen related peptide (CGRP). When released into injured

tissues, neuropeptides contribute to the pro-inflammatory responses against injury. The

evidence that neuropeptides contribute to inflammation includes changes in endothelial

cell shape, leading to capillary leak, smooth muscle cell relaxation leading to vasodilata-

tion, mast cell degranulation leading to histamine, serotonine, proteolytic enzymes and

growth factor release, induction of inflammatory cell chemotaxis, increase expression of

adhesion molecule and increase cytokine and growth factor production [87-90]. Experi-

mental and clinical research has shown that excessive neuropeptide activity induces exu-

berant inflammation in hypertrophic scars [89]. Moreover, the functional impotence of

the somatic motor system, which controls voluntary movements, i.e. functio laesa, favors

vascular blood and lymphatic stasis and interstitial edema [48].

* Complex Regional Pain Syndrome type I Complex Regional Pain Syndrome type I

is formerly identified as “reflex sympathetic dystrophy”. This syndrome is the new term

for “causalgia” that always coexists with documented nerve injury [91]. Complex Regio-

nal Pain Syndrome type I causes chronic pain, skin hypersensitivity, vasomotor
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instability with hyperemia, swelling and trophic alterations. It develops in the extremi-

ties mostly after minimal injury and it has been proposed that most of their features

are explicable by small-fiber dysfunction [92]. Ectopically generated ongoing activity in

afferent fibers conducted antidromically could generate neurogenic inflammation in

the peripheral tissues, consisting of arteriolar vasodilation by release of CGRP and sub-

stance P, and postcapillary venular plasma extravasation by release of substance

P [93,94]. Nonetheless, these peripheral inflammatory changes cannot be seen indepen-

dently of the changes in the central nervous system, including the spinal cord. Both,

the central and peripheral nervous system interact with each other via afferent and

efferent signals, some of which may not be electrical but hormonal signals or by

changes of axoplasmic transport [94].

The inflammatory mesenchyma: A round-trip ticket

Fetal wounds heal by regenerating normal epidermis and dermis with restoration of the

extracellular matrix architecture, strength and function [22,95]. Also adult partial-

thickness wounds are repaired by regeneration, i.e. replication of similar cells. In con-

trast, however, adult full-thickness wounds repair by connective scar tissue [56]. There-

fore, the prognosis of extensive and deep wounds is not entirely satisfactory because of

scar formation and the loss of normal function and skin appendages [96]. As a result,

reducing the formation of scars and reestablishing the normal anatomy and function of

the skin and its appendages have become the aim of regenerative medicine research

[95,96] (Figure 7).

Figure 7 Influence of the pathological axis of neuronal and vascular inflammation in the skin
parenchyma (keratinocytes) and stroma (fibroblast). C: Arterial capillary; ECM: Extracellular matrix; F:
Fibroblast; K: Keratinocyte; MC: Mast cell; MØ: Macrophage; N: Neuron; V: Vein;
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The spectrum of scarring includes normal scars, hypertrophic scars and keloids [97].

Hypertrophic scars are often red, inflamed, itchy and even painful. They generally

regress spontaneously within one month to years after the initial injury [97-99]. Keloid

scars are also raised, erythematous and often pruritic, however, they extend beyond the

original wound boundaries and rarely regress over time [97,98,100].

Recently, the role of mast cells in wound repair and the remodeling process have

been attracting attention. Mast cell proteases may provoke matrix degradation; hista-

mine stimulates fibroblast migration and thus may contribute to wound healing regula-

tion [101]. Particularly, keloids and hypertrophic scars have a fourfold increase in the

number of mast cells compared with normal skin. In addition, hypertrophic scar mast

cells release more histamine than normal skin mast cells after stimulation by substance

P [102].

Although after the traumatism, vascular and neuronal inflammation are the main

clinical manifestations, it must not be forgotten that the principal cells that constitute

the skin organ, or parenchyma, are the keratinocytes, and the fibroblasts, whose pri-

mary function is to establish, maintain and modify the connective skin stroma [103]

(Figure 7).

In the human body the fibroblasts form a heterogeneous collection of mesenchymal

cells [103-105] and they are the principal cellular constituents of connective tissues

[103]. Skin fibroblasts constitute a heterogeneous population of contractile (myofibro-

blasts, pericytes, smooth muscle cells), pro-inflammatory, highly proliferative, proangio-

genic and profibrogenic cells [103,106]. Also, in the hypodermis the connective tissue

has the ability to accumulate lipids, i.e. adipose cells [103].

Fibroblasts are mesodermal-derived cells and perhaps this embryonic origin could

justify their great postnatal plasticity. The mesodermal cells of the embryo participate

in the extraembryonary structures, including the corion, the amnios and the yolk sac

[36]. Also, in the embryonic mesoderm “blood islands”, develop. They consist of ery-

throid cells and surrounding endothelial cells which are formed in the vascular plexus

of the yolk sac [36,107]. The differentiation of amnion from the epiblast occurs before

gastrulation and the specification of the three germ layers and cells from the amniotic

fluid show stem cell characteristics although most of the properties reported suggest

that these cells are more similar to mesenchymal stem cells than to amnion epithelial

cells [27]. The major role of the mesodermal cells and their ability to differentiate

from the first stages of embryonic development allow for considering them as the cell

protype that should be resorted to when the repair of any tissue in the body is needed

[36]. And for this reason, perhaps the post-traumatic inflammatory response has the

same intentions, namely, to use the embryonic mesodermal phenotype with a thera-

peutic objective.

If the post-traumatic tissue repair is based on the re-expression of metabolic, histolo-

gic and functional conditions that made the first stages of embryo development possi-

ble, then the fibroblast would play a fundamental role in this repair process. In fact,

this cell is recognized as a mesoderm or embryonic trace and perhaps the most quali-

fied cell for re-expressing this original phenotype [108] (Figure 8).

Local fibroblasts residing in the skin are considered the most prominent source of

myofibroblasts [106,109]. However, a variety of other precursor cells contribute to the

myofibroblast population, depending on the nature of the injured tissue and the
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particular microenvironment [106]. Activated myofibroblasts are generated from a vari-

ety of sources, including resident mesenchymal cells, epithelial and endothelial cells via

the epithelial/endothelial mesenchymal transition as well as from circulating fibroblast-

like cells called fibrocytes, derived from bone-marrow stem cells [103-112]. In addition

circulating monocytes have the capacity to differentiate into non-phagocyte i.e.

mesenchymal cells and endothelial cells [113].

The reason why the myofibroblast is attractive to a broad scientific and clinical audi-

ence is due to the large panel of cells that can develop this phenotype upon activation.

It appears that myofibroblasts can be recruited from whatever local cell type and it is

suitable for rapidly repairing injured tissue [106]. Fibroblast can be induced to acquire

Figure 8 Main role of the mesenchymal cells in the inflammatory interstitium.
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the myofibroblast phenotype during wound repair. Then, the myofibroblast, by virtue

of its ability to express high levels of a-smooth muscle actin, cytokines and extracellu-

lar matrix, is expected to play key roles in the post-traumatic inflammatory skin

response [104].

Several days after injury a subset of wound fibroblast can differentiate into myofibro-

blast which are responsible for repopulating the wounded area in parallel to angiogen-

esis, thus forming the granulation tissue [2,21,99]. Also, myofibroblast are responsible

for wound contraction. However, to highlight the fact that contractile cytoskeleton is

not a feature of normal tissue fibroblast, Boris Hinz introduced the term “proto-myofi-

broblast” for stress fiber-containing, but a-smooth muscle actin-negative fibroblast that

would consist of the early granulation tissue and preorganize the provisional extracel-

lular matrix [106].

Gastrulation is the first major shape change of the developing embryo and cell-direc-

ted mechanical forces have a critical role [114]. Contraction of the actin cytoskeleton,

driven by nonmuscle myosins and regulated by the Rho family GTPases, is a recurring

mechanism for controlling morphogenesis throughout development, from gastrulation

to cardiogenesis [115-117]. Visualizing the location of nonmuscle myosin by immunos-

taining strongly suggests the role of myosin in regulating tension and compression

during gastrulation [116]. The presumed mechanical effect is that myosin is causing

the outer or apical surface to contract. Individual mesoderm cells constrict apically and

leave the epithelium in a process known as ingression. Simultaneously, a loss of ten-

sion around the inner surface is produced. This causes the cell layer to buckle inwards

leading to invagination [115,116].

Granulation tissue is then repopulated with fibroblasts to produce a more densely

collagenous extracellular matrix which is more akin to the matrix found in interstitial

stroma [118]. Recently, it has been demonstrated that subcutaneous granulation tissue

induced by a large foreign body is a source of adult stem cells. This granulation tissue

is derived from a local resting stem cell pool, particularly from dedifferentiate pericytes

[119].

Tissue remodeling requires the removal of granulation tissue and maturation of col-

lagen is oxygen dependent. Indeed increasing wound oxygenation results in increased

collagen deposition and tensile strength [120]. However, hypoxia benefits the expan-

sion, differentiation, adhesion, growth factor secretion and regenerative potential of

mesenchymal stem cells derived from subcutaneous adipose tissue [121].

The synthesis and deposition of extracellular matrix largely occurs in response to

mechanical signals mediated via cell receptors [115,116], cytokines and growth factors

[118]. Particularly, the extracellular matrix can bind to and release certain growth fac-

tors, i.e. FGF-2, VEGF and PDGF, thereby exerting direct control over their activity

[118].

The notochord is an embryonic structure that could be a candidate for comparison

with this phase of tissue remodeling. This anatomical structure of the embryo domi-

nates early morphogenesis as a source of molecular signals i.e. growth factors, and

later as a mechanical structure [122].

Degradation and remodeling of the extracellular matrix by proteases, particularly

matrix metalloproteases (MMPS) is a key feature of re-epithelialization and tissue

remodeling [17]. Interestingly enough, the differentiation of an antifibrotic
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myofibroblast phenotype in response to tissue injury could inhibit collagen production

as well as fibroblast proliferation. The fact that fibrosis may be due to a loss in antifi-

brotic properties rather than due to the activation of a fibrotic process suggests that, in

normal tissues, active mechanisms to suppress fibrosis may be constitutively important

in maintaining tissue homeostasis [104].

The phenotypic changes suffered by the keratinocytes during re-epithelialization sug-

gest a partial epithelial-mesenchymal transition (Figure 7). Following the completion of

wound-repair, keratinocytes revert to their mesenchymal-like phenotype to epithelial

phenotype [18,123]. During the immediate keratinocyte response to the injury, one of

the principal transducer signals can be electrical, by depolarization and hyperpolariza-

tion of the plasma membranes. Free ion movement occurs suddenly through mem-

brane pores, which can either be opened or closed in response to a great variety of

gating mechanisms, including voltage gating [124].

A cut in the skin produces a current that can be detected. This “injury” potential

represented the short circuiting of a transepithelial potential that generated electrical

field vectors as current flowed from areas of high resistivity, namely, with intact tight

junctions, to the cut, where resistivity is low. Thus, the short circuiting of transepithe-

lial potentials can be sensed over 1-2 mm from the wound and will persist until repair

and re-epithelialization is complete [124,125].

One to two days after injury, the migration of keratinocytes from the epidermis at

the wound edge and from injured appendages is produced [18,21]. Epithelial cell

migration requires the disassembly of desmosomes and hemidesmosomes, which pro-

vide anchorage of the basal keratinocytes with neighboring epithelial cells and the

underlying basement membrane respectively [126]. This disassembly and keratinocytes

migration require cross-talk between growth factors, MMPs, integrins and structural

proteins. In addition to lamellipodia extension, basal keratinocytes leapfrog over the

basal cell near the wound [126].

The keratinocytes that are behind the leading edge in larger wounds proliferate and

mature and finally restore the barrier function of the epithelium [18,21,49]. This could

involve the proliferation of epidermal stem cells [18]. The proteins involved in re-

epithelialization include various extracellular matrix proteins and their receptors,

proteases and cytoskeletal proteins. Growth factors that are known to stimulate wound

re-epithelialization include hepatocyte growth factor (HGF), FGF, TGF-a and heparin-

binding epidermal growth factor (HB-EGF). The signaling pathways initiated by these

growth factors activate the transcription factor signal transducer and activator of

transcription 3 (STAT 3) and activator protein (AP)-1, which help to regulate wound

re-epithelialization [18].

It has long been known that chronic wounds are at risk for neoplastic progression.

Chronic inflammation is a major risk for various types of cancer [127]. The risk of

squamous cell carcinoma is markedly increased, suggesting that keratinocytes are espe-

cially vulnerable to malignant transformation [17]. The main difference between the

migration of wound keratinocytes and cancer cells is the complete epithelial-mesenchy-

mal transition that is frequently seen in cancer cells [128]. The epithelial-mesenchymal

transition that is associated with cancer progression is considered a type 3 epithelial-

mesenchymal transition [123]. Carcinoma cells undergoing a type 3 epithelial-

mesenchymal transition lose all cell-cell contacts, acquire a fibroblast-like morphology
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and express mesenchymal marker proteins. These processes resemble those that are

activated during early embryogenesis (type 1) [123], and after skin injury (type 2)

[123,128].

There is now broad evidence that tumor cells depend on metabolic alterations for

their continued growth and survival, and that these changes make cancer cells pecu-

liarly addicted to the rapacious uptake of glucose and glutamine [129,130]. This means

that glucose and glutamine supply most of the carbon, nitrogen, free energy and redu-

cing equivalents needed to support cell growth and division [124,131]. Proliferating

cells during tumor progression, immune response or wound repair, have a similar

metabolic regulation that allows for maximizing their rate of anabolic growth and pro-

liferation [131]. This type of cell metabolism directed at growth and proliferation, is

also efficiently used during mammal embryogenesis [129]. This is why it has been pro-

posed that the alterations in metabolic control during wound repair and tumorigenesis

may result from reverting to an embryonic program [131]. If so, inflammation, a com-

mon process to wound repair, tumorigenesis and embryogenesis could have a trophic

purpose for the cells [2,10,24,40,132,133].

When emulating gastrulation is not enough to heal wounds by regeneration

In the current review we have proposed that the inflammatory response employed by

the adult for wound repair could resemble the early phases of embryogenic develop-

ment. This hypothesis is based on the comparison of the successive phases of the

inflammatory response, particularly in the mechanisms that regulate the earliest steps,

in amniote gastrulation (Figures 3 and 4).

Gastrulation is a developmental phase that delineates the three embryogenic germ

layers: Ectoderm, endoderm and mesoderm. Haeckel coined the term gastrulation

derived from the Greek word “gaste“, meaning stomach or gut, that transforms the

rather unstructural early embryo into a gastrula with several specific characteristics:

The three primary germ layers are formed; the basic body plan is established, including

the construction of the rudimentary body axes; and the cells assume new positions,

allowing them to interact with cells that were initially not close to them [134].

In essence, gastrulation could be represented as the creation of an interstitial space

that is successively infiltrated by molecules and cells, in a similar fashion as the inflam-

matory interstitium of the traumatized tissue. Therefore, during gastrulation, the extra-

embryonary mesodermis internalizes and occupies the space located between the

amnion and the yolk sac. The primitive streak is a subpopulation of the epiblast in the

organizing center for amniote gastrulation [135]. Once the initial primitive streak is

established, germ layer formation begins. At the primitive streak, the epiblast cells

undergo the epithelial-mesenchymal transition to form the primary mesenchyma

between the amnion and the yolk sac [136]. Afterwards, this is followed by mesenchy-

mal-epithelial transitions to create secondary epithelium as part of somitogenesis and

further commitment and diversification of cells forming mesoendodermal structures

[136,137]. The concept that fibroblasts are simple residual embryonic mesenchymal

cells explains the incorrect and often interchangeable substitution of the term “fibro-

blast” for “mesenchymal cell” [137].

The vast arrangement of the mesenchyme around and between the developing

amniotic and yolk sac cavities suggests an important role of the mesenchyma in
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orchestrating embryo development. Mesenchymal stem cells are a versatile group of

cells derived from mesodermal progenitors and can be found in several fetal and adult

tissues [138]. The amnion is comprised of two layers, an epithelial monolayer and a

stromal layer. From the human amnion it is possible to isolate two cell types, amniotic

epithelial cells, derived from the embryonic ectoderm, and amniotic mesenchymal stro-

mal cells, originating from the extraembryonic mesoderm [139,140]. Mesenchymal

stem cells isolated specifically from the amniotic membrane could differentiate into

neuronal-like cells which are identified to secrete dopamine [141]. Cells derived of

amniotic fluid also have a neuronal, dopaminergic phenotype [142]. These results allow

for considering the amnion as an embrionary functional axis with strong neural poten-

tial [141,142]. In addition, mesenchymal stem cells derived from the amnion are a

transplantable cell population with therapeutic potential for multiple central nervous

system disorders, especially stroke [140]. Experimental and clinical studies have

demonstrated that amniotic membrane transplantation has important biological prop-

erties including anti-inflammatory, anti-microbial, anti-fibrosis and anti-scarring, as

well as low immunogenicity. It also favors re-epithelialization [139,140]. Amnion-

derived multi-potent progenitor cells secrete a unique combination of cytokines and

growth factors, known as amnion-derived cellular cytokine solution, which establish a

communication network between mesenchymal and epithelial cells during embryo

development. That is why using the amnion to accelerate wound healing through its

functions has been proposed, which regulates migration, proliferation and differentia-

tion of fibroblast and keratinocytes [143].

The extraembryonic visceral yolk sac in mammals is composed of two layers and the

visceral endoderm, which is active in endocytosis/digestion and has large lysosomes

and the underlying mesoderm layer [144]. In the embryonic mesoderm layer “blood

islands” develop, supporting hematopoiesis and angiogenesis [36]. Also a major func-

tion of the yolk sac is associated with the accumulation of carbohydrates, proteins and

lipids for embryo nutrition (vitellum) [145]. Particularly, the yolk sac plays a vital role

in providing lipids and lipid-soluble nutrients to embryos during the early phases of

development [145,146]. The yolk sac uses high-density lipoproteins (HDL) and very

low-density lipoproteins (VLDL) as carriers to incorporate cholesterol from the mate-

rial circulation and to transfer it to the embryonic side [145]. Interstitial lipid accumu-

lation of cholesterol, a precursor molecule of many hormones, like aldosterone,

corticoides, androgens, strogens and progesterone, may favor fluid infiltration and cell

migration, proliferation and differentiation during embryo development [147].

The molecular and cellular contribution made by both embryo structures -the

amnion and yolk sac- to the interstitial space located between them, that is the meso-

derm, are essential for organogenesis. However, both in the amnion as in the yolk sac

structures, the extraembryonic mesenchyma plays an important role (Figure 4). It

could be assumed that both cavities, which are surrounded by epithelium, are con-

trolled by an array of inductive and inhibitory signals originating from the adjacent

extraembryonic mesenchyma. If so, the amnion wall, represented by the amniotic-

mesenchymal-epithelial unit, plays the leading role in primitive interstitial hydroelec-

trolitic changes [28,31] and favors the development of a rudimentary neurogenesis

[141,142]. In regards to the yolk sac wall, represented by the vitelline-mesenchymal-
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epithelial unit, it could exert functions fundamentally associated with hematopoiesis

and angiogenesis [32,37]. (Figure 9).

It could be accepted that these primitive functions are internalized during gastrula-

tion to create the mesoderm. Thus, this germ layer would integrate the amnion- and

yolk sac-related functions and would strengthen its functional ability compared to the

extraembryonic mesenchyma (Figure 9). Therefore, the epithelial cells located near the

dorsal midline of the neural tube undergo primary epithelial-mesenchymal transition

and differentiate into many diverse derivates including neurons of the peripheral ner-

vous system, glial cells and pigment cells, i.e. melanocytes [136,148]. In turn, the meso-

derm and the endoderm contribute cells to other tissues of the developing animal.

Thus, the yolk sac is an early source of hemangioblast, a common precursor of

endothelial and hematopoietic cell lineages, and the cells of the visceral endoderm con-

stitute a subpopulation of cells within the developing gut tube and therefore, have

functions involved in digestion [149-151] (Figure 10).

In the adult organism, many pathways that play an essential role during embryo

development are inactivated later in life although some of them may be transiently

expressed during adult repair [152]. This hypothetical ability of the tissues to involute

or dedifferentiate could be an effective defense mechanism against injury since it could

make retracing a well-known route using the appropriate mechanisms for their repair.

However, it is possible that the great dedifferentiation reached by the traumatized tis-

sues has been underestimated. That is why in the current review we have considered

that wound repair would require the upregulation of signaling pathways characteristic

of the extraembryonic mesenchymal function, as well as of its posterior embryonary

internalization during gastrulation. If so, emulation by the wounded tissue of the extra-

embryonic mesenchymal functions perhaps requires retracing the mechanisms that

produce and distribute the extracellular fluid, including the amniotic fluid. These

extraembryonic mesenchymal functions induce and regulate the neurogenic amniotic

phenotype and activate the yolk sac-lipid metabolism associated with hemangioblast

Figure 9 The amniotic embryo. The extraembryonic mesenchyma constitutes the walls of the amnion (A)
and the yolk sac (Y). During gastrulation it could be considered that the extraembryonic mesenchyma
internalizes with its functions: hydroelectrolitic control and neurogenesis in the amniotic side and
angiogenesis and hematopoiesis in the yolk sac side. The internalization of the extraembryonic
mesenchymal functions could integrate the amnion and the yolk sac original functions into the
intraembryonic mesenchyma. Nonetheless, during the inflammatory response, the dedifferentiation process
suffered by the tissues could re-express with clarity the primitive axes of the amnion and yolk sac.
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differentiation. It could be proposed that traces of these functions, based on stem cell

lineages, are developed in the early phases of the post-traumatic inflammatory response

(Figure 2) and would be expressed mainly in the interstitial space of the tissues

(Figures 6 and 7).

As in the gastrulation process, it is possible that the primitive functions of the extra-

embryonic mesenchyma, whose re-expression is induced by the wound, would be

internalized by the adult body. But, this mechanism would produce a serious loss of its

health. So, if embryonic developmental pathways, representative of its primitive life,

would re-emerge in the adult organism, they would take the place of post-natal specia-

lized functions, impeding or hindering its actual life.

Nonetheless, according to the proposed hypothesis, the failure of adult skin regenera-

tion after a wound suggests the need of researching those factors and mechanisms that

must be upregulated and those that must be reduced or even avoided to efficiently

reproduce the early embryonic conditions for development. Understanding the process

that gives rise to early embryonic development may lead to advances in wound thera-

pies. Perhaps, the mechanisms of scarless wound healing in the fetus are related to this

supposed ability to maintain the memory of their origin while undergoing

Figure 10 Schematic representation of the gastrulation process (top) and of a skin wound
(bottom). The hypothetical functional reactivation of embryonic development axes after a tissue injury
would reproduce the embryonic biochemical pathways in the mature organism. e: epiblast; eh: endothelial-
hematopoietic cell lineages; ep: epithelium; EMT/MET: epithelial mesenchymal transition/mesenchymal
epithelial transition; f: fibroblast; HP: hyperpigmentation; m: melanocyte; my: myofibroblast; n:neuron; nc:
neural crest cell; NI:neuronal inflammation; nt: neural tube; not: notochord; p: pericyte; skm: skeletal muscle;
v:blood vessels; VI: vascular inflammation;
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reprogramming events that could allow them to re-enter the embryonic programs of

tissue formation to obtain the regeneration after injury [153,154].

Mast cells as executors of the pathological axis of inflammation: guardians when not

terrorist

Mast cells are ubiquitous in the interstitial spaces of the body and normally reside in

the connective tissue close to blood vessel nerves and epithelia [155]. Current evidence

suggests that mast cells exert their role, in all the inflammatory response phases, and

that is why they are an ideal candidate for playing a role in wound healing [156]

(Figure 10).

Particularly, mast cells could orchestrate the inflammatory response inducing the

expression of embryonic programs of tissue formation. Mast cells are derivatives of

hematopoietic progenitor cells that migrate into virtually all vascularized tissues, where

they complete their maturation. Upon activation their “plasticity” allows them greater

flexibility and diversity in term of responsiveness to meet the requirements of the

inflammatory response in which these cells are involved [155]. In this sense, activated

mast cells can induce the expression of the proposed neurovascular axes of the inflam-

mation. Thus, mast cells secrete numerous biogenic monoamines, i.e. histamine, sero-

tonin, and nociceptive molecules that can sensitize sensory neurons which further

activate mast cells by releasing neurotransmitter or neuropeptides, i.e. acetylcholine,

neurotensin, substance P and somatostatin [157,158]. Mast cells are also the source of

many biologically active mediators involved in the process of neovascularization

[155,159]. Mast cells are topographically associated with microvessels and their number

rises in angiogenesis-dependent events such as inflammation [159,160]. The role of

mast cells in angiogenesis is mediated by the release of their stored substances to a

variety of stimuli [155,160,161]. Mast cell mediators include histamine, chymases, cyto-

kine and growth factors like PDGF and VEGF, all of which exhibit pro-angiogenic

properties [159-162]. In addition, post-traumatic inflammation is a strong pro-hemato-

poietic stimulus. Mast cells are one of the cells that produce pro-inflammatory pleio-

tropic mediators that induce hematopoiesis [163]. Hematopoietic stem cells, in turn,

give rise to a hierarchically organized set of progenitors for erythroid, myeloid, lym-

phoid and megakaryocyte lineages [36]. Particularly, neutrophils, monocyte/macro-

phages and T cells from the bone marrow are always present in the interstitial

connective tissue during inflammatory response progression [17,21]. Mast cells infil-

trating injured tissues, through the release of granulocyte-macrophage colony stimulat-

ing factor (GM-CSF), can act on the bone marrow requesting the inflammatory cells

needed for repair. A polarized hematopoietic axis from the bone marrow up to the

mesenchymal interstitial space of the injured tissue would be established (Figure 10).

Mesenchymal post-traumatic dedifferentiation induced by activated mast cells could

favor the expression of extraembryonic mesenchymal associated functions. In this way,

embryonary mesenchymal functional axes are again expressed in the injured tissue,

favoring in turn neurogenesis, hematopoiesis and angiogenesis. But mast cells also

could simultaneously activate the mechanisms associated with gastrulation and this

would mean the internalization of the above mentioned mesenchymal functional axes.

In this developmental process, generation of the mesoderm from the ectoderm, that is

the epiblast, by epithelial to mesenchymal transition [164], is associated with
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mesoderm cell constriction, leading to invagination [115,116]. Therefore, it is not sur-

prising that during wound healing the excessive mesenchymal cell production and

matrix deposition predominate, as well as the coexistence of wound contraction, which

requires the presence of mast cells and contractile fibroblasts [156]. It is possible that

in the inflammatory responses in which mast cells predominate, i.e. allergic and auto-

immunes [165,166], this primitive embryonic mesenchymal response predominates.

This hypothetical comparison could help to better understand the pathophysiological

mechanisms and the histological characteristics that this type of chronic inflammatory

response develops, particularly, the type of bidirectional interactions established

between epithelial and mesenchymal phenotypes [165,167].

Mast cells could also participate in the worsening of the inflammatory response

when a noxious factor is associated [168]. Mast cells are components of the innate

immune system that acts as sentinels stationed around blood vessels, including swel-

ling, redness and leukocyte recruitment [169]. Histamine, serotonin, proteases and

VEGF stand out among the mediators released by mast cells, which cause vasodilation,

edema and exudation due to increased vascular permeability [155]. The persistence of

edema induced by mast cell mediators could maintain hypoxia in the wounded tissue

and consequently inflammation [120,169]. However, chronic interstitial edema could

also induce mesenchymal dedifferentiation. If so, mesenchymal fibroblasts embedded

in the interstitial fluid could migrate and preserve their proliferation potential.

Under conditions of long-lasting inflammation, wound healing is associated with

excessive interposition of fibrotic tissue. Prolonged inflammation in wounds contri-

butes to the development of fibroproliferative scars, in other words, keloids and hyper-

trophic scar, both with erithematous and increased mast cell density [101,102].

Interactions between mast cells and fibroblasts are paramount in the genesis of fibrosis

[168]. Fibrosis is characterized by excessive matrix deposition and reduced remodeling.

Often fibrotic lesions are associated with increased densities of mast cells [170]. It has

been shown that mast-cell secreted factors, specifically PDGF, could contribute to

inflammation-associated fibrosis, inducing the expression of osteopontin by wound

granulation tissue fibroblasts [171]. The fibroproliferative scars constitute solid cords

along the wound axis which are related to wound remodeling. This excessive stiffness

of the repair tissue resembles the notochord in the early embryo and, if so, it could be

an ancestral trace of the mesenchyme also related to gastrulation. Particularly, meso-

derm creation includes the development of a solid structure with great stiffness essen-

tial for correct morphogenesis, that is the notochord, and which is precisely what

dominates the chordates.

Growth factors pivotal for repair in mammalians are PDGF/VEGF. In general, fibro-

blasts could respond in a pathological fashion to PDGF/VEGF promoting fibrotic tissue

scarring [17]. Inflammatory cells, such as activated macrophages and mast cells, can

produce inflammatory mediators that promote up-regulation of PDGF receptors on

mesenchymal cells. As a result, PDGF-mediated proliferation of mesenchymal cells

may be a hallmark of all chronic inflammation [172]. However, important developmen-

tal roles for PDGF and their receptor-like proteins have also been demonstrated in

mammalian and non-mammalian vertebrates. Several observations suggest that PDGF

has early developmental functions, particularly during gastrulation. PDGF receptors

expression occurs in the developing mesoderm, mediating mesoderm cell migration,
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thus when the PDGF receptor is inhibited, the mesodermal cell detaches from the

ectoderm and undergoes apoptosis [172,173]. PDGF signaling has an evolutionary con-

served role during gastrulation and it has been implicated in neural and functional

development as well as in the early differentiation of hematopoietic/endothelial precur-

sor [172].

If we hypothesize that during wound healing a process similar to the embryonic gas-

trulation with internalization of the primitive extraembryonic functions is developed,

we could deliberate about the original nature of these functions and their correspond-

ing mediators. Therefore, it could turn to the mast cell functions and mediators

because of its ubiquity during all the phases of the inflammatory response [156]. Mast

cells are able to take up, store and release a variety of biogenic amines through which

it is hypothesized that they participate in inflammatory reactions, mainly monoamines

like histamine and serotonin [157]. These monoaminergic systems play a variety of

roles in animals as neurotransmitters, autocrine and paracrine factors and hormones.

However, also the venoms of many different animals, i.e. coelenterates, octopus, scor-

pions, centipedes, insects, amphibians and snakes contain histamine, in addition to

other monoamines [174]. Also, the most ubiquitous effect of venoms on monoaminer-

gic systems is venom-induced release of histamine from mast cells [174,175].

Likewise, the venoms of some species of coelenterates, octopus, spiders, scorpion,

cone snails, centipedes, insects, amphibians and snakes contain serotonin [174]. It is

thought that the most common function of both histamine and serotonin in venom is

to produce pain and paralysis in the prey. Therefore, histamine and serotonin, charac-

teristic mast cells mediators, are venom developed for both offensive and defensive

purposes [174,175].

Examination of the effects of venoms on monoaminergic systems points out the great

diversity of venom effects and also the cases of evolutionary convergence. For example,

the venoms of scorpions, spiders and jellyfish cause a catecholamine storm in the vic-

tim [174,176-178].

A common feature of the Phylum Cnidaria, i.e. hydroids, anemones, corals and jelly-

fish, are tentacles with stinging cells, i.e. nematocytes or cnidocytes, which contain a

nematocyst discharge mechanism. The nematocyst neurotoxins can paralyze and often

kill the small prey, which are their food [178,179]. Both mechanical and chemical sti-

muli cause nematocysts to be discharged suggesting the involvement of both chemore-

ceptors and mechanoreceptors in the discharge process [179].

It is possible that during the evolution, these invertebrate armaments -defensive and

offensive- were internalized into in the mesenchyma. If so, an evolutive advantage was

associated with the risk of self-poisoning when the body suffered an injury that caused

the cells to be stuffed with toxic products, i.e. the mast cells. Even psychological stress

[180] because of the mutual association between mast cells and nerves [157] is a

potential cause of mast cell inflammatory activation [155]. Interactions between the

nervous system and the immune system, i.e. mast cells, are increasingly recognized as

important in the pathophysiology of inflammation, including itch [181].

Mast cells exhibit phenotypical and functional heterogeneity in different anatomical

sites [155]. Two types of mast cells have been identified in rodents, connective tissue-

type mast cells (CTMC) and mucosal mast cells (MMC) [155,182]. Particularly, fetal

skin-derived mast cells had many characteristic features of CTMC [182]. Mast cells are
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being preferentially localized at host-environment interface [155], although it is also

accepted that they occupy strategic locations with respect to the basic structural divi-

sion of the tissues and organs in the parenchyma, i.e. MMC and stroma, i.e. CTMC.

This distribution suggests the involvement of the mast cell subtypes in the differentia-

tion of the tissue structure. Perhaps thanks to these privileged locations in organs and

tissues, mast cells may participate in the pathogenesis of a wide array of diseases,

including allergic, inflammatory, angiogenic and fibrotic diseases [163,168,182]. In

these anatomical locations mast cells, as interstitial cells, could exert a key role in

modulating the epithelial-mesenchyma interaction, both in the physiological as in the

pathological status (Figure 11).

Conclusion
The ability of the tissues to involute or dedifferentiate could represent a return to early

stages of development. Therefore, it could form an effective defense mechanism to

escape death after injury since it could make retracing a well-known route possible, i.e.

the initial phases of embryonic development during the evolution of the inflammatory

response. Particularly, the up-regulation of signaling pathways during gastrulation, in

which the internalization of extraembryonary functions would be made, could help

explain the meaning of the diverse and complex mechanisms expressed by the mature

organism in response to skin injury.

If so, even the embryonary mechanisms to generate pigment cells could be responsi-

ble of the post-inflammatory hyperpigmentation with higher concentrations of melano-

cytes [183,184]. Nowadays, the underlying mechanisms and the individual variability

showed for developing post-inflammatory hyperpigmentation are not well understood

[184,185].

Figure 11 Mast cell key role in orchestrating the inflammatory axis. Upon activation, mast cells could
induce the expression of both inflammatory axes, the neurovascular axis and the mesenchymal axis.
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This amazing property of the cells to conserve a memory of their origin undergoing

reprogramming events could allow them, post-injury, to re-enter the embryonic pro-

grams of tissue formation and obtain regeneration [186]. Generally, while the monopo-

tent and tissue-committed stem cells were described in the adult tissue, stem cells with

a pluripotent/multipotent capacity were thought to be restricted to the early embryonic

stages. However, recent evidence challenged this idea by confirming the presence of

pluripotent/multipotent stem cells in adult tissues and organs [39]. Particularly, adult

human mesenchymal cell populations, such as skin fibroblasts, contain distinctly multi-

potent stem cells. These stem cells have the ability to generate the multiple cell types

of the three germ layers, like ectodermal (e.g. neural marker-positive cells), endodermal

and mesodermal lineage cells [187].

Interestingly enough, quiescent and active adult stem cells coexist in several tissues

that have the ability to renew and regenerate, like bone marrow, intestinal epithelium

and hair follicles, all of them placed in the vicinity of a mesenchymal cell [188]. This

stem cell-mesenchymal cell relation takes us back to the initial epiblast mesoderm rela-

tionship during gastrulation [36]. Thus, during vertebrate gastrulation, the cell behavior

is strictly coordinated in time and space by various signaling pathways. In vertebrates,

the non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway is a key regulator of

convergence and extension movements, also involved in the internalization of meso-

dermal cells and their migration [189]. The name Wnt is derived from a combination

of two homologous genes; Wg (the Drosophila wingless gene) and Int (the murine

homologue mouse mammary tumor virus integration site 1 gene) [190]. Wnt repre-

sents a large morphogenic family of secreted lipid-modified glycoproteins that during

embryogenesis controls multiple developmental processes [189,190] and during adult

life regulates tissue maintenance and remodeling [188,190]. At the cellular level, Wnt

signals coordinate changes in cellular metabolism favoring either a “quiescent metabo-

lism” or a “proliferating metabolism” [188,190]. This is why it is tempting to speculate

that common alterations in metabolic programming may accompany embryonic and/or

stem cell differentiation and these may also be involved in adult tissue development

and/or remodeling [190].

In summary, the post-traumatic inflammatory response could be considered a reac-

tion of the body in which the mesenchymal cell plays a leading role during which the

early events of embryonic development and particularly gastrulation are recreated. The

mesenchymal cell due to its strategic and privileged location in the interstitial space, is

able to induce the successive phases of inflammation. Therefore, the mesenchymal cell

uses the mast cell, to induce the expression of neurovascular inflammatory axes that

have an extensive corporal projection and whose activity converges in the wounded

skin.

The correlation that can be established between the embryonic and inflammatory

post-traumatic events suggests that the results obtained from the research about both

great fields of knowledge must be interchangeable to obtain the maximum advantage

in the daily care of patients’ wounds.
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