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Abstract

Recent experimental studies suggest that tissue stem cell pools are composed of
functionally diverse clones. Metapopulation models in ecology concentrate on collec-
tions of populations and their role in stabilizing coexistence and maintaining
selected genetic or epigenetic variation. Such models are characterized by expansion
and extinction of spatially distributed populations. We develop a mathematical fra-
mework derived from the multispecies metapopulation model of Tilman et al (1994)
to study the dynamics of heterogeneous stem cell metapopulations. In addition to
normal stem cells, the model can be applied to cancer cell populations and their
response to treatment. In our model disturbances may lead to expansion or contrac-
tion of cells with distinct properties, reflecting proliferation, apoptosis, and clonal
competition. We first present closed-form expressions for the basic model which
defines clonal dynamics in the presence of exogenous global disturbances. We then
extend the model to include disturbances which are periodic and which may affect
clones differently. Within the model framework, we propose a method to devise an
optimal strategy of treatments to regulate expansion, contraction, or mutual mainte-
nance of cells with specific properties.

Background
The promise of therapeutic applications of stem cells depends on expansion, purifica-

tion and differentiation of cells of specific types required for different clinical purposes.

Stem cells are defined by the capacity to either self-renew or differentiate into multiple

cell lineages. These characteristics make stem cells candidates for cell therapies and tis-

sue engineering. Stem cell-based technologies will require the ability to generate large

numbers of cells with specific characteristics. Thus, understanding and manipulating

stem cell dynamics has become an increasingly important area of biomedical research.

Genomic and technological advances have led to strategies for such manipulations by

targeting key molecular pathways with biological and pharmacological interventions

[1-3], as well as by niche or microenvironmental manipulations [4].

Recent conceptual and mathematical models of stem cells have been proposed [5-9]

that extend the relevance of earlier ones [10] by focusing on the intrinsic properties of

cells and effects of the microenvironment, and address new concepts of stem cell plas-

ticity. Sieburg et al have provided evidence for a clonal diversity model of the stem cell

compartment in which functionally discrete subsets of stem cells populate the stem

cell pool [11]. In this model, heterogeneous properties of these clones that regulate

self-renewal, growth, differentiation, and apoptosis informed by epigenetic mechanisms

are maintained and passed onto daughter cells. Experimental evidence supports this
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notion that tissue stem cell pools are composed of such functionally diverse epigenetic

clones [11]. Roeder at al, by extending their previous model to include clonal heteroge-

neity, have demonstrated through agent based model simulations that clonally fixed

differences are necessary to explain the experimental data in hematopoietic stem cells

from Sieburg [12].

Metapopulation models concentrate on collections of populations characterized by

expansion and extinction and the role of these subpopulations in stabilizing coexistence

and maintaining genetic or epigenetic variation. The canonical metapopulation model

[13] for the abundance of a single species p, with colonization rate c and extinction rate

m, is described by the equation dp/dt = cp(1-p) - mp. Both the single species model

[14,15] and multispecies models have been extensively studied [16-19], identifying var-

ious conditions under which effects such as stochasticity of the demographics or the dis-

turbance patterns, spatial effects, habitat size, and asynchronicity, may have theoretical

and practical implications, for instance in managing disturbed ecological systems.

The important and influential model of habitat destruction by Tilman [20] extended the

multiple species models by including the incorporation of fixed disturbance, conceived as

loss of habitat. In the present work, we modify the basic ecological framework from Til-

man to model individual cells. Previous metapopulation modeling of individual cellular

populations have been proposed. For example, Segovia-Juarez et al, have explained granu-

loma formation in tuberculosis infections by using simple metapopulation models [21].

The hierarchical structure of the Tilman model is based on a collection of a large

number of patches. Each patch can be empty, or inhabited by species i. The species

are in competition for space and ranked according to their competitive ability. When a

cell expands to another patch, it can colonize either if that patch is empty or it is

inhabited by species j having a lower rank. Analytical studies of the Tilman model

have demonstrated that under certain conditions, the species will go extinct according

to their competitive ranking. For instance, in the limiting model in which all species

have equal mortalities, in the presence of fixed niche destruction, extinction will take

place first for the strongest competitors.

We explore the outcome of the interactions of these components using mathematical

models. Disturbances in the ecological models refers to externally caused deaths, In the

cellular context, they could include the possibility of drug treatments or environmental

toxicity. These models are also studied by simulation. In our model the role of indivi-

dual species is based on individual clones with clonally fixed differences. Increasing

evidence is accumulating that cell fate decisions are influenced by epigenetic patterns

(such as histone methylation and acetylation status) which may distinguish various

clones. Specific gene patterns render different cells uniquely susceptible to differentia-

tion-induced H3K4 demethylation or continued self-renewal [11,22,23].

Unlike the Tilman model, our model treats the generalized case in which each dis-

tinct clone can have differing growth and death characteristics. Thus, the strict order-

ing of extinction does not occur. The model assumes competition for space within a

niche among cells with differing growth and self-renewal characteristics.

Expansion and contraction of stem cell populations and the possibility for manipula-

tion of these dynamics will be different for molecular perturbations which target intrin-

sic growth differentiation or apoptotic pathways or non-specific perturbations. The

source of such perturbations is outside of the stem cells themselves, whether from the
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local microenvironment or from distal locations within the organism such as inflam-

mation, hormonal, cytokine or cell type specific signals (anemia, thrombocytopenia). A

related area is the study of subpopulations of cells within tumors that drive tumor

growth and recurrence, termed cancer stem cells [24], and which may be resistant to

many current cancer treatments [25]. This has led to the hypothesis that effective

treatment for such cancers may require specific targeting of the stem cell population.

In this paper, we develop a mathematical framework derived from metapopulation

models that can be used to study the principles underlying the expansion and contrac-

tion of heterogeneous clones in response to physiological or pathological exogenous sig-

nals. In Section 2, we present closed-form expressions for the basic model. We are able

to provide closed form analysis of the model near equilibrium states. Combined with

numerical simulations, this can provide novel insights and understanding into the

dynamics of the phenomena that can be tested experimentally. In Section 3, we explore

the effects of both intrinsic cellular characteristics and patterns of exogenous distur-

bances. In Section 4, we extend the model to include disturbances which may differ

quantitatively for different clones. We also extend the analysis from fixed to periodic dis-

turbances. In Section 5, we propose a method to devise an optimal strategy of applying

deliberate disturbances to regulate expansion, contraction, or mutual maintenance of

specific clones. Finally, in Section 6, we discuss the model and its potential applications.

A cellular metapopulation model
To start, we explore a model of the dynamics of a heterogeneous collection of stem cell

clones. Extrapolating from multi-species competition models as well as metapopulation

models, our model assumes that clones interact within a localized niche in a microenvir-

onment, and that niches may be linked by cell movements. As in many ecological mod-

els, niche occupancy itself, rather than individual cells, is the focus. Figure 1 depicts the

cellular metapopulation process in which niches are represented by large ovals, each

potentially populated by different clones. Arrows depict the movement of clones by

migration, extinction, differentiation, and recolonization, within the microenvironment

Let R(ij), i i j j= =1 1,..., , , ..., be the occurrency matrix of cell type j in niche i. For

example in Figure 1, number the niches from 1-5, starting in the upper left-most niche

(so that i = 5 in this case). The species are numbered 1-4 with #1 annotated with

cross hatches, #2 with diagonal bricking, #3 with diagonal stripes and #4 with speckles

(so that j = 4 in this case). Then the corresponding occurrency matrix is

R ij( ) =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
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be the number niches containing species j j= 1,..., .

We now present a continuous version of this model in Equation (2.1). For the case of

a non-specific perturbation, the dynamics are described by the following differential

equations:

dp

dt
c p D p m p c p p ii
i i j

j

i

i i ij i j

j

i

= − −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

− − ≥
= =

−

∑ ∑1 1
1 1

1

, (2:1)

Here the pi denote the number of niches occupied by the i-th clone. The ci denote

expansion (or growth) rates, and the mi extinction (or death) rates. The cij represent

interactions between pairs of clones. Non-specific niche perturbations, D, represent

exogenous disturbances which may include pharmacologic, physiologic, or pathologic

causes. We extend this, in Section 4, to include clone-specific disturbances, di, repre-

sent disturbances which have different effects on the various clones.

The behavior of the model is complex; see for example Tilman [20] and Nee [26] for

analyses of specific aspects of similar ecological models. We consider a number of sim-

plifications in order to focus on the role of disturbances as deliberate manipulations

that alter the expansion and contraction of clones with different fixed characteristics.

Figure 1 Metapopulation Concept: Collections of local populations of different clones interact in a
niche-matrix view of a microenvironment via dispersal of individuals among niches (large ovals).
The niches are numbered from 1-5, starting in the upper left. Each niche can be empty, or inhabited by on
or more clones i, represented by small shaded ovals. The clones are numbered 1-4 with #1 annotated with
cross hatches, #2 with diagonal bricking, #3 with diagonal stripes and #4 with speckles. Arrows depict the
movement of clones by migration, extinction and recolonization, as the case may be, within the
microenvironment. Despite local extinctions the metapopulation may persist due to recolonization. Suitable
niches can be occupied or unoccupied. Metapopulation models are based on niche occupancy over time.
Distinct clones with fixed growth characteristics are in competition. Exogenous disturbances (D in Equation
2.1) which deplete specific clones may influence proportions of the surviving clones.
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We consider that each niche is fully connected to all other niches, so that spatial

effects are not directly modeled. Similar to the ecological models, we make the hypoth-

esis that clonal lineages have a ranked order in which the abundance of clone i within

a niche is not affected by clone j, but clone j is affected by clone i (where i <j). Cells

may be removed by either death or by differentiation.

Nested Switches

This model has been thoroughly analyzed for species abundance in the ecological con-

text of habitat destruction. In ecosystems, the value of D is constantly increased. Ana-

lytical studies have revealed conditions which define the order of extinction according

to competitive ranking. and the richness or diversity of persisting species and the order

of extinction. Such analyses have usually focused on communities with equal mortal-

ities for all species (mi = m) or equal colonization abilities (ci = c). A number of studies

have characterized richness or diversity of persisting species and the order of extinc-

tion [27-29]. Recent studies have focused on changes in abundance ranking [18]. More

recently, Chen et al [30] have assessed the effects of habitat destruction using this

model in the presence of the Allee effect. The equilibrium abundances have been stu-

died under a variety of conditions to demonstrate that it is possible, for instance, for

species which are not the best competitor to go extinct first if its colonization rate

satisfies certain conditions.

We build on these previous analyses and analyze the case allowing both different

mortalities and colonization rates for different clones. In this analysis, there is no fixed

order of extinction, but rather we demonstrate the existence of a mathematical con-

struct (2.6) that expresses the switching ability among potential states of the system

based on differences in the disturbance. Thus, the disturbance, which represented habi-

tat destruction in the ecosystem models, is viewed as a treatment, and our aim is to

understand how different treatment choices, by modifying D, can lead to different pat-

terns of clonal abundance. These switching possibilities suggest that clones with differ-

ent characteristics may, in principle, be selected for expansion through directed,

purposeful disturbances.

Introducing new variables

q c p ii i i= ≥, ,1 (2:2)

the dynamics in (2.1) become

dq

dt
q q q q ii
i i ij

j

i

i j i= − − ≥
=

−

∑ 
1

1
2 1, , (2:3)

where

 i i ic D m i= − − ≥( ) , ,1 1 (2:4)

and

 ij
i ij

j

c c

c
=

+
(2:5)
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In Appendix A, using (2.3),(2.4), (2.5), we derive the following expression that dis-

plays the nested switching.

q q ii i ji j

j
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i i i

∞ ∞
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i ≥ 1.

(2:6)

This shows that the equilibria qi
∞ have 2i states among which they might switch.

Identification of such a set of nested switches allows us to adjust the model parameters

to control expansion or contraction of individual clones. In Section 3 we examine these

switchings in terms of the original variables.

Stability

The model has been widely studied in ecology. For instance, analysis of the stability of

an earlier version of this model was provided by Nee [26], and detailed analysis of

equilibria performed by Tilman [20,31]. Tilman et al [32] expanded the analysis to a

number of variants,based on the initial abundance and different mortality rates for bet-

ter competitors. Morozov et al study the model analytically to assess changes in abun-

dance ranking over time [18]. Other variations have also been studied including Allee

effect’s influence on species extinction order [30].

Our analysis of the model includes some minor modifications from previous analyses:

each clone may have a different mortality and the interaction between pairs of clones is dis-

tinct (cij matrix). In the Appendix B we show that the steady state solutions qi, i ≥ 1 of (2.3)

are unconditionally asymptotically stable with the equilibrium values given in (2.6). This sta-

bility combined with the pattern of nested switches suggests that within the scope of the

model, we can define predictable interventions either untargeted (based on alterations of

non-specific exogenous disturbances) or targeted (based on the growth and death properties

of specific clones). Moreover, the nature of the nested switches suggests that clones with

different patterns of potential for self-renewal or differentiation may in principle be selected

for expansion or contraction by intervening to modify specific or non-specific targets.

Simulation of the dynamics

Numerical solutions of (2.3), displayed in Figure 2, affirm both the equilibrium values

(2.6) as well as the unconditional stability. Thus, the model predicts the distribution of

the clonal populations given functional characteristics of growth and death rates and

interaction parameters of a set of clones and a given exogenous disturbance state.

Figure 3 shows the different routes to the same limiting equilibrial values and confirms

the asymptotic stability in a four clone model.

Dynamics in terms of the cellular parameters
We now describe the dynamics in terms of the original variables of growth and death

rates. In the simplest case of a single clone, the survival of the clone in isolation is
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determined by the value of a1 = c1(1-D) - m1 - see the schematic in (3.1). In the

absence of disturbance D, this is simply the canonical single species Levins model, dp/

dt = cp(1 - p) - mp, in which the metapopulation will persist only if m < c. In case a

disturbance is present, we see that the clone will survive if the death rate m < c(1-D)

(shown as the region I of a1 in (3.1)).

(3:1)

From (A.4) we have

q
I

II1 1
1 1

10
∞ += [ ] =

∈
∈

⎧
⎨
⎩


 


,

, .
(3:2)

The situation in which there are multiple clones with different growth and death

characteristics is a direct extension of this (Figure 4). Note that the straight line segment

a2 = b21a1 in Figure 4 is derived from the switching state [a2 - b21a1]+ = 0 (see (2.6)).

Figure 2 a-d: Solutions for (2.3) are displayed for three clones (black: clone 1, red: clone 2, green:
clone 3). A different value of a1 is used in each panel (a: 0.10, b: 0.50, c: 0.75, d: 1.0). A fixed value a2 = 1
is used throughout, and a range of values (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) is used for a3. b21 = 0.1,
b31 = 0.1, and b32 = 0.2 throughout.
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Figure 3 Solutions of the basic model for four clones (represented by the four different colors)
with varying initial values (1,2,3,4) in the different panels. Fixed values of a1, a2 , a3 , a4,
(0.3,0.5,0,2,0,3) and bij = (0.3,0.5,0,2,0,3, 0.1, in lexigraphic order with j <i < 4) ) are used throughout.

Figure 4 This schematic shows the plot of a1 versus a2 for the two clone model. For the population
pairs ( p p1 2

∞ ∞, ): both clones will survive in domain I, only one ( p1
∞ ) survives in domain II, only one ( p2

∞ )
survives in domain III, and neither survives in domain IV.
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In particular, referring to Figure 4, the case of two clonal populations is

c p c p

I

II
1 1 2 2

1 2 21 1 1 2

1 1 2

2

0

0
∞ ∞( ) =

−( ) ( ) ∈
( ) ( ) ∈

,

, , ,

, , ,

,

     
  
(( ) ( ) ∈

( ) ( ) ∈

⎧

⎨
⎪
⎪

⎩
⎪
⎪

, ,

, , ,

 
 
1 2

1 20 0

III

IV

(3:3)

We see that for the population pairs ( p p1 2
∞ ∞, ): both clones will survive in domain I,

only one ( p1
∞ ) survives in domain II, only one ( p2

∞ ) survives in domain III, and

neither survives in domain IV. Thus we have an analytic prescription for the survival

or elimination of specific clones. (The equilibrium values in (3.3) in terms of the origi-

nal variables and the domain descriptions are given in Supplementary Materials). In

domain I, we have defined conditions for mutual survival of both clones, in domain II

and III we have the selective expansion of the first or second clone, respectively, while

in domain IV, we obtain extinction of both clones.

Mutual survival

Some cellular expansion applications might require survival and expansion of some

subset consisting of more than one clone. We begin with an example describing in

some detail the case in which there are two surviving clones with limiting populations,

p1
∞ and p2

∞ . We specify the amount of disturbance that will allow both clones to sur-

vive given the growth and death rates and the interaction parameters (the b’s). Suppose

q q1 2
∞ ∞=  , where the constant θ > 0. Then from (3.2) and (3.3), we have a1 = θ(a2 -

b21a1). In terms of the original variables this last relation becomes

c D m c D m c D m1 1 2 2 21 1 11 1 1−( ) − = −( ) − − −( ) −( )( )  . (3:4)

This equation specifies the value of the disturbance D for the survival of both clones,

with the relative proportion θ, in terms of the cellular parameters. Namely,

D
m m

c c
= −

+( ) −
+( ) −

1
1

1
1 21 2

1 21 2

 
 

. (3:5)

Note that the only acceptable parameter values are those that deliver positive values

for both p1
∞ and p2

∞ . We can extend this analysis to the situation in which there are

multiple clones by supposing that

q q ii i i1 0 1∞ ∞= > > , , . (3:6)

Using (3.3) and (3.8) this becomes

   1

1

1

1[ ] = −
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

>+ ∞

=

−
+

∑i i ij j

j

i

q i, . (3:7)
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In the case in which all the clones survive (that is, each qi > 0), we may delete the

brackets in (3.7), and solve recursively for the ai. For i = 1, the sums in (3.7) are

empty, and it yields θ1 = 0, as expected. For i = 2, (3.7) becomes

   1 2 2 21 1= −( )q , (3:8)

and since from (A.4), q1 = a1 (3.8) delivers

    2 2
1

1 21 1= +− . (3:9)

For three clones in the cellular population we find

         3 3
1

1 31 1 32 2 32 21 1= + + −− . (3:10)

(Inserting a2 from (3.9) into (3.10) would allow us to express a3 in terms of a1.)

In the general case, the condition for all of an arbitrary number of different clones to

survive (in the relative proportion θi of qi to q1) is derived by extending these argu-

ments. We find

     i i
i

ik k k k

m

i

k k in

i

i m m

n

= + −( )−

=

−

≤ < < <=

−

− +

−

∏∑1
1

1

2

11

1
1 1 1

1 1

,


11

1∑ ≥i , (3:11)

where b’s with undefined subscripts are to be set to unity. Inserting (2.4) into (3.11)

we may find the value of the disturbance D that accomplishes the exact degree of

mutual survival.

Oscillations and clone specific disturbance
The model described thus far is limited in that a disturbance to the stem cell microen-

vironment affects all clonal lineages similarly and does not vary with time. In fact, dif-

ferent disturbances, such as specific cytokine concentration, inflammatory states,

proliferative or apoptotic signals from the environment will differentially affect hetero-

typic cells that are in a particular state at a particular time point. Such perturbations

are expected to vary in time with different intensities, durations, and intervals. This

scenario could occur in a physiological setting, in which disturbances would occur at

different periods over time and in which cell types with different characteristics or in

different states of cell cycle, for instance, would respond differentially to these

disturbances.

To characterize this situation, we extend the model to include time dependent and

population dependent disturbances as follows.

dp

dt
c p D t p m p c p p ii
i i i j

j

i

i i ji i j

j

i

= − −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

− − ≥
= =

−

∑ ∑1 1
1 1

1

( ) , (4:1)

For clarity, we take

D t d f t ii i i( ) = − ≥ ( ), .1 (4:2)

Here di is a population dependent constant and a harmonic time dependence is

taken for the disturbance, namely
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f t u t v t ii i i i i( ) cos sin , .= + ≥  1 (4:3)

In this case the ai of (2.4) become

 


i i i i i

i i i

t c d f t m

a c f t i

( ) = − +( ) −
= − ≥

1

1

( )

( ) , ,
(4:4)

where ai = ci(1 - di) - mi. To avoid confusion, we have denoted the fixed part of ai(t)

(namely, the ai of (2.4)) by the symbol ai. We seek solutions for the clonal populations

in the form of power series expansions in ε. In particular, take

q t q t ii ik
k

k

( ) ( ) , .= ≥
=

∞

∑ 
0

1 (4:5)

In Appendix C, we obtain the following expression for the long time solution of

q t c p ti i i
∞ =( ) ( )

. The quantities Xi and Yi are specified in Appendix C.

q t q
c

b
X t Y t O ii i

i

i i
i i i i

∞ ∞= +
+

+( ) +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) cos sin ( ) ,0 2 2
21 


   ≥≥ 1. (4:6)

Switching effects in (4.6) are expressed within both the qi0
∞ and the bi. The harmonic

oscillatory effects are displayed within the parentheses in (4.6)). Then switching and

oscillatory effects characterizing q t ii
∞ ≥( ), 1 are somewhat separate to at least O(ε2).

Numerical simulations of the oscillatory dynamics for four species (Figure 5) reveal

that while the dynamics can be quite complex, the equilibria are stable.

Single and multiple component perturbation
Having examined the effect of different patterns of disturbances on clonal proportions,

we now show how the model may be used to implement clonal expansion or clonal

elimination as in cancer applications. We explore the clonal makeup of a population of

functionally diverse stem cell clones under different regimens of disturbance. Here, dis-

turbances may be deliberately applied treatments intended to lead to a specific set of

clonal proportions. The objective is to find the permissible values of the disturbance

parameter D so that any specified combination of species survives (including none). In

n-dimensions there are 2n such combinations, some of which impose constraints on

the model parameters. In Section 5.1, we address the case of a single disturbance that

affects all clones in a similar manner. In Section 5.2, we address the use of multiple

disturbances that have differential effects on the various clones. For clarity, we shall

only display the results of the one and the two species cases (one and two dimensions).

In Section 5.3, we illustrate the steps necessary to extend the analysis to three or more

species.

Single intervention, single species protocols

There are 2 possibilities in the case of a single species: (1) survival (2) annihilation.

(1) q1 0∞ >
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In this case we have from (A.4) that

0 11 1 1 1< = [ ] = − −[ ]∞ + +
q c D m ( ) . (5:1)

Equivalently

0 1 1< − +[ ]+
U D A , (5:2)

where

U c A
m

c1 1 1
1

1

1= = −and . (5:3)

Since U1 = c1 > 0, we can cancel it from (5.2). Then the single species in question

survives if the following constraint is imposed on the model’s parameters.

A1 0> . (5:4)

Figure 5 Four examples of numerical simulations of the population dynamics are displayed. Results
for four clones (different colors) are displayed in the top two panels, with the same parameters except for
different initial values. Results for two different simulations are displayed in the bottom two panels. The
dynamics can be quite complex. The steady state values in each case correspond to the mean values of
the oscillations. Dynamics with oscillating disturbances are displayed in solid lines, while broken lines are
used for fixed disturbances. bij was randomly selected for each run in the range [0, 1].
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Combining this with the requirement D ≥ 0 gives the following condition on D.

0 1≤ <D A . (5:5)

(2) q1 0∞ ≤

In this case we reverse the inequality in (5.2) to find that

A D1 ≤ . (5:6)

Since D ≥ 0, we write this condition as

A D1[ ] ≤+
. (5:7)

Single intervention protocols, two species

There are 4 possibilities for two species: (1) both survive, (2) neither survives, (3) only

the first is annihilated, and (4) only the second is annihilated.

(1) q1 0∞ > and q2 0∞ >

From the 1-dimensional case we have the constraint (5.4) and the condition (5.5) to

insure that q1 0∞ > To require that q2 0∞ > , we use (A.4) and append the following

inequality to (5.1).

0 2 2 21 1< = − [ ]⎡
⎣⎢

⎤
⎦⎥

∞ + +
q    . (5:8)

Since (5.4)-(5.5) hold, we may drop the inner plus superscript in (5.8) and rewrite it

as

0 2 2< − +[ ]⎡⎣ ⎤⎦
+

U D A , (5:9)

where

U c c2 2 21 1= −  (5:10)

and

A
m m

U2
2 21 1

2

1= − − 
. (5:11)

There are three cases here: (i) U2 > 0, (ii) U2 < 0 and (iii) U2 = 0.

(i) U2 > 0: In this case, (5.9) becomes [-D + A2]
+ > 0. Combining this with the

requirement (5.5) for one-dimension, gives the following range of permissible values

for D.

0 1 2≤ < ( )D A Amin , . (5:12)

In addition the constraint (5.4) is altered to read

0 1 2< ( )min , .A A (5:13)
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(ii) U2 < 0: In this case, (5.9) becomes -D + A2 < 0. Combining this with the require-

ment (5.5) for one-dimension, gives the following range of permissible values of D.

A D A2 1[ ] < <+
. (5:14)

This imposes the following constraint on the model’s parameters.

A A2 1[ ] <+
. (5:15)

(iii) U2 = 0: In this case, we see from (5.8) and (5.9) that q2 0∞ = directly.

(2) q1 0∞ ≤ and q2 0∞ ≤

To annihilate q1
∞ , we have the condition (5.7) from the one-dimensional case. This

requires discarding the inner bracket in (5.8). Then to annihilate q2
∞ , we have the

requirement [a2]
+ ≤ 0, or from (2.4)

c D
m

c2
2

2

1 0− + −
⎛

⎝
⎜

⎞

⎠
⎟ ≤ . (5:16)

This gives the condition

A D A
m

c2 2
2

2

1⎡⎣ ⎤⎦ ≤ = −
+

, .where (5:17)

Combining this with (5.7) gives following constraint on the model parameters.

max , .A A D1 2[ ] ⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

≤+ +
(5:18)

If c2 = 0, (5.16) shows that (5.17) is not required, and so, (5.18) reduces to (5.7).

(3) q1 0∞ ≤ and q2 0∞ >

The condition (5.7) annihilates q1
∞ . This requires discarding the inner bracket in

(5.8), from which we then see that for q2
∞ to survive, we reverse the inequality in

(5.16). This gives

0 12
2

2

< − + −
⎛

⎝
⎜

⎞

⎠
⎟c D

m

c
. (5:19)

This requires that c2 ≠ 0 and leads to the following constraint on the model’s para-

meters.

A2 0> . (5:20)

Combining the last two relations gives the condition

0 2≤ < ⎡⎣ ⎤⎦
+

D A . (5:21)
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Combining this with (5.7) gives the condition

A D A1 2[ ] ≤ < ⎡⎣ ⎤⎦
+ +

. (5:22)

This imposes the following constraint on the model’s parameters.

A A1 2[ ] < ⎡⎣ ⎤⎦
+ +

. (5:23)

(4) q1 0∞ > and q2 0∞ ≤

(5.4) and (5.5) assure that q1
∞ survives. In this case we may drop the superscript plus

on the inner bracket in (5.8). Then the annihilation of q1
∞ requires that the inequality

in (5.9) be reversed, giving

U D A2 2 0− +[ ]⎡⎣ ⎤⎦ ≤
+

. (5:24)

This reverses the two 2-dimensional cases (1)(i) and (ii), which combined with (5.5)

gives

(i) U2 > 0:

A D A2 1[ ] < <+
, (5:25)

with the following constraint on the model’s parameters.

A A2 1[ ] <+
. (5:26)

(ii) U2 < 0:

A D A2 1< < , (5:27)

with the following constraint on the model’s parameters.

A A2 1< . (5:28)

Finally, (iii) U2 = 0: (5.24) shows that q2
∞ cannot survive.

Multiple treatment, single species protocols

In the treatment of cancer as well as in expansion of stem cells, desirable results

require combinations of treatments. However, these combinations are generally

unknown. We propose that this model can be used to derive optimal combinations of

treatment, which take the role of disturbances. Although, methods to determine these

combinations are various, we demonstrate the feasibility of the approach using a linear

programming method [33].

For multiple treatments we replace the D in the definition of ai in (2.4) by Di. Then

with the vector d = (d1, ..., dg), where g is the number of treatments, we write Di, (the

inner product, scalar quantity), as

D F d f di i ij j

j

= ( ) =
=

∑, .

1
(5:29)
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Here the dj, j = 1,2 ..., g are quantities of the different treatments used and the vector

Fi = (Fij), j = 1,2..., g, where fij is the efficacy of treatment j on species i. Each treatment

quantity dj has a collective cost that we call kj. The objective is to minimize the total

treatment cost. Many expressions for the cost may be composed. For clarity, and illus-

trative purpose, we use the form (K,d) where K = (k1, ..., kg). This requires solving

min , min , ,
d d

j j j

j

g

K d k d d( ) = ≥
=

∑ 0
1

(5:30)

subject to certain linear constraints that we shall now assemble. (Such a problem is

called a linear program, i.e., minimizing a linear form by varying exogenous parameters

(such as dj in 5.30), subject to linear constraints on those parameters (such as in 5.31,

below)) 33).

More general, cost expressions would lead to a higher dimensional optimization or a

non-linear optimization, any of which could, in principle, be dealt with computation-

ally. With a single species we carry over the constraint (5.4) and the condition (5.7) to

the following cases of (1) survival or (2) annihilation.

(1) q1 0∞ >

From (5.5) with D replaced by D1 and from (5.29) we have the condition on the

inner product (scalar quantity)

0 1 1≤ ( ) <F d A, . (5:31)

From (5.4), we carry over the following constraint on the model parameters.

0 1< A . (5:32)

(2) q1 0∞ ≤

Here from (5.7), we have the condition

A F d1 1[ ] ≤ ( )+
, . (5:33)

Multiple treatment, two species protocols

The model allows the extension to multiple species in a straightforward manner. There

are four possible states which may be attained by combining treatments for two

species.

(1) q1 0∞ > and q2 0∞ >

Condition (5.31) and constraint (5.32) insure q1 0∞ > . To deal with q2 0∞ > , write

(5.8) as

0
1 1

2 2
2

2
21 1 1

1

1

< − + −⎛

⎝
⎜

⎞

⎠
⎟ − − + −⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ +

c D
m

c
c D

m

c
 . (5:34)
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Since we have arranged that q1 0∞ > , drop the inner plus superscript and write (5.34) as

c F c F d m m2 2 21 1 1 2 21 11 1−( ) ≤ − − −( ) , . (5:35)

See Figure 6 for an illustration of the two dimensional case for mutual survival.

(2) q1 0∞ ≤ and q2 0∞ ≤

Condition (5.33) insures that q1 0∞ ≤ . Then use (5.34) with the inner bracket elimi-

nated and the inequality reversed to insure that q2 0∞ ≤ . This yields the condition

A D F d2 2 2⎡⎣ ⎤⎦ ≤ = ( )+
, (5:36)

unless c2 = 0. In this latter case, we may drop this constraint, since q2 0∞ = directly.

(3) q1 0∞ > and q2 0∞ ≤

The condition (5.31) and the constraint (5.32) insure that q1 0∞ > . Then we reverse

the inequality in (5.34) to insure that q2 0∞ ≤ . This leads to the reversal of the inequal-

ity in (5.35). Namely,

c f c f d m m2 2 21 1 1 2 21 11 1−( ) > − − −( ) , . (5:37)

Figure 6 Solutions to the linear program defined in Section 5.3 identify minimal treatment costs
for achieving the desired state of expansion. We plot the total treatment cost ((K,d) which has been
minimized by a linear program in a multi-treatment, two clone model, against a sampling of values of f11
(the efficacy of the first treatment for the first clone, on the x axis. The results for various values of f22, the
efficacy of the second treatment for the second clone are plotted in different colors. The value of f12 is set
to 0.5. The other parameters have been set to c1 = 0.5, c1 = 0.5, c2 = 0.3, m1 = 0.1, m2 = 0.3, and b21 =
0.3. The cost per treatment ki is identical for the two treatments. An alternative use of the model would be
to determine unknown parameters in an experimental setting where known doses of experimental
treatments are applied and outcomes measured in terms of cell proportions.
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(4) q1 0∞ ≤ and q2 0∞ >

The condition (5.33) insures that q1 0∞ ≤ . Then we may use (5.34) with the entire

inner bracket eliminated to insure that q2 0∞ > . This leads to the condition

F d D A2 2 2, ,( ) = < ⎡⎣ ⎤⎦
+

(5:38)

unless c2 = 0, in which case, we may drop this constraint, since q2 0∞ = directly.

In Figure 5, solutions to an example set of linear programs are plotted to identify

minimal treatment costs for achieving the desired state of expansion. The total treat-

ment cost ((K,d) which has been minimized by solving a linear program for each set of

parameters in a multi-treatment, two species model, is plotted against a series of values

of f11, the efficacy of the first treatment for the first species, for various values of f22,

the efficacy of the second treatment for the second species. Although the actual meth-

ods applied will depend on which parameters are available and which can be estimated,

this results demonstrates how the model may be used to determine how to apply spe-

cific disturbances to reach a desired outcome.

Multiple clones

It is straightforward to extend the calculations to the case of three or more clones. We

illustrate a single sample case with three clones, namely the case in which only the sec-

ond clone of three survives (i.e., q1 0∞ ≤ , q2 0∞ > , and q3 0∞ ≤ ). We use the constraints

in (5.33) and (5.38) to satisfy the first two of these inequalities. To address the third,

we use (2.6) to write

q3 3 31 1 32 2 21 1 0∞ + + + +

= − [ ] − − [ ]⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥ ≤       . (5:40)

Since we have arranged that q1 1 0∞ += [ ] ≤ , it is, in fact equal to zero and so we

may drop the terms [a1]
+ in (5.40). Then using (2.3), we write (5.40) as

c D m c D m3 3 3 32 2 2 21 1 0−( ) − − −( ) −⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

≤
+ +

 . (5:41)

This implies that

c D m c D m3 3 3 32 2 2 21 1 0−( ) − − −( ) −⎡⎣ ⎤⎦ ≤
+

 . (5:42)

The bracketed term here is q2
∞ itself, and the latter being positive allows us to drop

the superscript plus in (5.42). Thus (5.42) delivers the constraint

c m c m c F c F d3 3 32 2 2 3 3 32 2 2− − −( ) ≤ −( )  , . (5:43)
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Discussion
The therapeutic use of stem cells is one of the most promising frontiers in biomedical

research, and has led to interest in the expansion of specific cells for specific clinical

purposes. In this paper, we develop a mathematical framework derived from metapo-

pulation models that can be used to study the principles underlying the expansion and

contraction of heterogeneous clones in response to physiological or pathological exo-

genous signals. We show how strategies involving targeted interventions may be

defined to expand or contract clonal populations with specific attributes.

The primary contribution of the model is the application of an existing metapopula-

tion paradigm to a new domain. The model has been widely studied in ecology, incor-

porating the effects of exogenous disturbances. The Tilman model has been widely

studied in the ecological context of habitat destruction. Most studies focused on spe-

cies abundance. The original simplified model, in which the disturbance is fixed to

represent irreversible habitat destruction, revealed conditions which define the order of

extinction according to competitive ranking. Such analyses have usually focused on

communities with equal mortalities for all species or equal colonization abilities. A

number of studies have characterized richness or diversity of persisting species and the

order of extinction. More recently, Chen et al [30] have assessed the effects of habitat

destruction using this model in the presence of the Allee effect. The equilibrium abun-

dances have been studied under a variety of conditions to demonstrate that it is possi-

ble, for instance, for species which are not the best competitor to go extinct first if its

colonization rate satisfies certain conditions.

We build on these previous analyses and analyze the case allowing both different

mortalities and colonization rates for different clones. In this analysis, there is no fixed

order of extinction, but rather we demonstrate the existence of a mathematical con-

struct that expresses the switching ability among potential states of the system based

on differences in the disturbance. Thus, disturbances, which represented habitat

destruction in the ecosystem models, are viewed as treatments, and our aim is to

understand how different treatment choices, i.e., modification of the disturbance, can

lead to different patterns of clonal abundance. These switching possibilities suggest

that clones with different characteristics may, in principle, be selected for expansion

through directed, purposeful disturbances.

The problem of identifying treatments which will contribute to expansion of specific

lineages has not been extensively studied. Cortin et al have taken an elegant statistical

approach to identifying optimal doses for expansion of megakaryocytes (MK) using

cytokine cocktails, based on the design of optimal multifactorial experiments [34]. Per-

turbations leading to expansion of MK precursors were studied through screening

cytokines. They identified a specific set of cytokines that maximized MK expansion

and maturation. The group of cytokines included thrombopoietin, stem cell factor,

interleukin-6, and interleukin-9 as positive regulators and erythropoietin and interleu-

kin-8 as inhibitors of MK maturation. Flt-3 ligand also contributed to the expansion of

MK progenitors. The hypothesis that fixed characteristics of heterogeneous clones

could be manipulated for expansion could be tested with such a set of cytokines in the

setting of relatively purified hematopoietic progenitors or in a cell line, such as the

mouse EML which is a multipotent, stem-like cell line, already demonstrated to con-

tain different cell types [35]. Existing approaches might include isolating these
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subpopulations and expanding them directly. However, such approaches may not be

feasible in all situations, such as the requirement for in vivo manipulation as might be

required for treatment of cancer stem cells, or in cases where the phenotypic charac-

teristics of different clones might not be sufficiently understood or available to allow

isolation.

Another potential use for the model is cancer stem cells. Studies have identified sub-

populations of cells within tumors that drive tumor growth and recurrence [24]. Their

resistance to many current cancer treatments, has made targeting the contraction of

this population an area of major interest in cancer research. A recent paper from

Gupta et al is interesting for the identification of existing (etoposide) and newly identi-

fied compounds (especially salinomycin in their breast cancer model) which preferen-

tially target stem cells [36]. They also provide evidence that other compounds

commonly used in cancer therapy (such as paclitaxel) may enriching for stem cells by

targeting other classes of cells. A model in which a multispecies population of such

cells existed could be studied in cell lines by treating with different combinations of

compounds. Periodic perturbations (intermittent dosages) are common in cancer, both

for theoretical reasons of efficacy and for managing toxicity and would likely be com-

ponents of such interventions in practice.

The incorporation of perturbations as an aspect of the model provides a mechanism

for the identification of interventions which can be utilized to expand or contract spe-

cific clones with desirable or undesirable growth characteristics. In order to demon-

strate the feasibility of the approach, a linear programming approach is outlined as a

protocol by means of which optimal doses of multiple interventions are calculated. In

practice, values of the necessary parameters are often not known; the model also pro-

vides the rationale for an iterative experimental framework in which known doses are

applied and the measurement of population sizes and proportions is then utilized to

estimate unknown parameters. These estimates can be used as hypotheses to be tested

by experimental studies. Growth and death parameters are generally identifiable from

existing data. However the interaction among clones is probably more difficult to glean

from existing datasets. Therefore an initial application of the model is to determine the

interaction values for a set of clones by application of predefined interventions. In

addition to the normal stem cells, the model can be applied to the heterogeneity of

malignant cells in cancer and responsiveness of such cells to combinations of

treatments.

If all the growth parameters of the different clones and their interactions are known,

solutions to the linear program can identify optimal doses for each of the treatments

that drive the cellular pool into the desired state of expansion. If estimates of the

growth parameters are available, a designed experiment with fixed doses of perturbing

agents can be applied to determine the minimum costs, for example, at which a speci-

fic endpoint can be achieved. An alternative use of the model would be to determine

unknown parameters (such as the efficacies of treatments for specific clones, Fi) in an

experimental setting where known doses of experimental agents are applied and out-

comes measured in terms of cell proportions. These data could then be used to esti-

mate unknown parameters.

The simulations and generalization of the model and its analysis have provided an

alternative understanding of clonal heterogeneity. The mathematical framework that
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includes intrinsic cellular effects, interactions among clones, and exogenous effects

within a single model, allows for the possibility that switching, stability, treatment pro-

tocols can become tractable features of study.

Appendix A: Nested Switches
For i = 1 the sum in (2.3) is empty, and so the equation for q1 is decoupled from the

system. Writing that equation as dt dq q q= −1 1 1 1
2/ ( ) and integrating gives

t
dq

q q

q

q

q t

q

q t

=
−

= − −∫ −

 

1

2

0
1

1 1

1 0
1

1

1

12 2

( )

( )

( )

( )

tanh . (A:1)

Solving (2.6), we find

q t
t q

1
1 1 1 1 1 1

12 2 2
2 0

( ) tanh tanh
( )

.= + − −⎡

⎣
⎢

⎤

⎦
⎥

−   


(A:2)

Specifying equilibrium values as

q q t ii
t

i
∞

→∞
≡ ≥lim ( ), ,1 (A:3)

we may observe from (A.2) that

q1
1

1 12
1∞ += +( ) ≡ [ ]

 sgn . (A:4)

Here and hereafter we use a standard notation x
x if x

otherwise
[ ] =

>⎧
⎨
⎩

+ ,

,

0

0
.

Now make the equilibrium approximation q t q j ij j( ) , ,...,= = −∞ 1 1 in (2.3). This

decouples the entire system in (2.3), which becomes

dq

dt
Q q q ii

i i i i= −( ) − ≥ 2 1, , (A:5)

where the constants

Q q ii ji j

j

i

= ≥∞

=

−

∑ 
1

1

1, . (A:6)

The decoupling enables (A.5) to be solved for each qi(t) in the closed form (A.2) with

a1 replaced by ai - Qi and q1(0) by qi(0), i ≥ 1. Then, in particular, (A.4) gets replaced

by

q
Q

Q Q ii
i i

i i i i
∞ += − + −( )⎡⎣ ⎤⎦ = −[ ] ≥

 
2

1 1sgn , . (A:7)
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Combining (A.6) and (A.7) recursively gives (identical to equation 2.6):

q q ii i ji j

j

i

i i i

∞ ∞

=

−
+

+

= −
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

≥

= − [ ] − − [
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1

1

1 1 2 2 12 1
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]]⎡
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⎣
⎢

− − [ ] − − −

+ +

− − −
+

− − −



       i i i i i i i1 1 1 1 1 1 1 2 12, , , ii

i

−
+ + + +
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⎢
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⎦
⎥

⎤

⎦
⎥
⎥1 

  

,



i ≥ 1.

(A:8)

Appendix B: Stability

To show that the limiting values q Qi i i
∞ += −[ ] are stable, let

a Qi i i= − , (B:1)

and make the perturbation

q a zi i i= [ ] ++
. (B:2)

A calculation shows that

dz

dt
C B z zi

i i i i= + − 2, (B:3)

where

B Q Q a z ai i i i ji i ji j

j

i

j

i

i= − + − [ ] − − [ ]+

=

−

=

−
+∑∑  

1

1

1

1

2 . (B:4)

Here the term -Qi + Qi is appended for convenience. We find in turn that

B a zi i ji j

j

i

= − −
=

−

∑ 
1

1

, (B:5)

since |ai| = ai - Qi - 2[ai]
+ and − [ ] + =+

=

−

∑  ji i
j

i

ia Q
1

1
0 by definition. Likewise we

find that

C a Q a Q ai i i i i i ji i

j

i

= [ ] − − [ ] + − [ ]
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ + +

=

−

∑ 
1

1

(B:6)

vanishes. This is because the last two terms in the parenthesis cancel, while the first two

equaling ai cancel the third for ai ≥ 0. For ai < 0, the leading factor in (B.6), [ai]
+ = 0. We

continue by induction.
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For i = 1, (B.3) becomes,

dz

dt
a z z1
1 1 1

2= − −

whose solution is

t
a

z a

a
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z
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=
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⎧
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−2 2
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1 1 1

1
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1
1

tanh .,

., .

(B:7)

From this we see that lim
t

z
→∞

=1 0 , giving unconditional global stability for q1(t).

If this stability has been established for qj(t), for all j ≤ i, the equation for zi+1, may

be written as

dz

dt
a o z zi
i i i

+
+ += − + ( )( ) −

+
1

1 1
21

1
. (B:8)

The solution of which is

t
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z a o

a
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(B:9)

From this we see that lim
t iz→∞ + =1 0 , completing the induction.

Appendix C: Switching Effects with Oscillations
Insert (4.3)-(4.5) into (4.1), and collect terms in powers of ε. Then setting the coeffi-

cient of εk in what results to zero, we find the following differential equations for the

coefficients qik in the expansion in (4.5).

dq

dt
a q c f t q q q q qik
i ik i i i k ji i k l jl i k il

l

k

l

k

= − − −− − −
==
∑( ) , , ,1 1
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i k
1
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1 0, , . (C:1)

For k = 0, (4.6) yields

dq

dt
a q q q ii
i ji j

j

i

i i
0

0

1

1

0 0
2 1= −

⎛

⎝

⎜
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⎠
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− ≥
=

−

∑  , , (C:2)

which is the same as (2.3) of Section 1 with ai replacing ai. Then referring to (B.5)-

(B.7), we find for the limiting equilibrium value qi0
∞ of qi0(t), the analogous nested set

of switches as for the qi
∞ in (B.7). Namely
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Note in particular that (D.3) gives (compare (B.4))

q a10 1
∞ += [ ] . (C:4)

The case treated in Section 2 corresponds to the leading term in the expansion in

(4.5), since when ε = 0, (4.4) gives ai = ai. Continuing, we see that for k = 1, (D.1)

becomes

dq

dt
a q c q f t q q q qi
i i i i ji i
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For i = 1, the leftmost sum in (D.5) is empty. Then replacing q10 in (D.5) by its

asymptotic value q10
∞ (as given in (D.4)) yields

dq

dt
b q c q f ti

11
1 11 10 1= − ∞ ( ), (C:6)

where

b a q1 1 102= − ∞ . (C:7)

The solution of (D.6) is

q t e q c q e e f db t b t b
t
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0

1 1 10( ) ( ) ( ) .= − ∞ −∫    (C:8)

Using (D.4), note that

b a a a1 1 1 12 0= − [ ] = − ≤+
. (C:9)

Using (4.3) and performing the integration in (D.8), we find
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Then taking the limit (large t) here, we find (since b1 < 0) the following asymptotic

form for q11(t).

q t
c q

b
X t Y t11

1 10

1
2

1
2 1 1 1 1

∞
∞

=
+

+[ ]( ) cos sin ,


  (C:11)

where

X v b u1 1 1 1 1= − , (C:12)
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and

Y u b v1 1 1 1 1= − − . (C:13)

In the general case (employing the established asymptotic forms), (D.5) may be writ-

ten as

dq

dt
b q c q F t ii
i i i i i

1
1 0 1= − ≥∞ ( ), , (C:14)

where
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and
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Referring to (D.9), we can show that all of the bi ≤ 0 by inserting (D.3) into (D.15).

Namely,
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Referring to (D.4), assume, using induction, that

q c q X t Y t j ij j j j j j j1 0 1∞ ∞= +⎡⎣ ⎤⎦ ≤ −cos sin , ,  (C:18)

where the Xj and the Yj are to be specified. Inserting (D.18) into (D.16), and then

inserting the resultant expression for Fi(t) into (D.13), the latter becomes

dq

dt
b q c q U t V ti
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1 0= − +( )∞ cos sin ,  (C:19)
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and

V v
c

Yi i
i

ji j

j

i

= +
=

−

∑1

1

1

 . (C:21)

Tuck and Miranker Theoretical Biology and Medical Modelling 2010, 7:44
http://www.tbiomed.com/content/7/1/44

Page 25 of 27



Compare (D.19) to (D.6). Then since from (D.17), all bi < 0, analogy to (D.6)-(D.8)

allows us to develop the following asymptotic form of qi1(t).

q t
c q

b
X t Y ti

i i

i i
i i i i1

0
2 2

∞
∞

=
+

+[ ]( ) cos sin ,


  (C:22)

where

X V b Ui i i i i= − , (C:23)

and

Y U b Vi i i i i= − − . (C:24)

This specification of Xi and Yi completes the induction.

Collecting terms qi0
∞ and q ti1

∞( ) (the latter from (D.22)), we may write q ti
∞( ) , the

asymptotic form of qi(t) given in (4.5) as (identical to (4.6))
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