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Abstract

Background: Bioinformatics can be used to predict protein function, leading to an
understanding of cellular activities, and equally-weighted protein-protein interactions
(PPI) are normally used to predict such protein functions. The present study provides
a weighting strategy for PPI to improve the prediction of protein functions. The
weights are dependent on the local and global network topologies and the number
of experimental verification methods. The proposed methods were applied to the
yeast proteome and integrated with the neighbour counting method to predict the
functions of unknown proteins.

Results: A new technique to weight interactions in the yeast proteome is presented.
The weights are related to the network topology (local and global) and the number
of identified methods, and the results revealed improvement in the sensitivity and
specificity of prediction in terms of cellular role and cellular locations. This method
(new weights) was compared with a method that utilises interactions with the same
weight and it was shown to be superior.

Conclusions: A new method for weighting the interactions in protein-protein
interaction networks is presented. Experimental results concerning yeast proteins
demonstrated that weighting interactions integrated with the neighbor counting
method improved the sensitivity and specificity of prediction in terms of two
functional categories: cellular role and cell locations.

Background
Determining protein functions is an important challenge in the post-genomic era and

Automated Function Prediction is currently one of the most active research fields. Pre-

viously, researchers have attempted to determine protein functions using the structure

of the protein and comparing it with similar proteins. Similarities between the protein

and homologues from other organisms have been investigated to predict functions.

However, the diversity of homologues meant that these time-consuming methods were

inaccurate. Other techniques to predict protein functions including analyzing gene

expression patterns [1,2], phylogenetic profiles [3-5], protein sequences [6,7] and pro-

tein domains [8,9] have been utilised, but these technologies have high error rates,

leading to the use of integrated multi-sources [10,11]. The computational approach

was designed to resolve the inaccuracy of protein prediction, using information gained

from physical and genetic interaction maps to predict protein functions. Recently,
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researchers have introduced various techniques to determine the probability of protein

function prediction using information extracted from PPI. Results from these trials

have been promising, but they do not address effective problems including function

correlation [12-14], network topology and strength of interaction.

Network topology represents an interaction between proteins and the mechanism of

that interaction. Therefore, much information can be extracted from these networks

with regards to the strength of the interaction and its contribution to new function

prediction, i.e. weighted contribution. A PPI network can be described as a complex

system of proteins linked by interactions, and the computational analysis of PPI net-

works begins with the representation of the PPI network structure [15,16]. The sim-

plest representation takes the form of a network graph consisting of nodes and edges

[17]. Proteins are represented as nodes and two proteins that interact physically are

represented as adjacent nodes connected by an edge [18]. On the basis of this graphi-

cal representation, various computational approaches including data mining, machine

learning and statistical methods can be performed to reveal the PPI networks at differ-

ent levels.

The computational analysis of PPI networks is challenging and faces major problems.

The first problem concerns the unreliability of protein interactions derived from large-

scale experiments, which have yielded numerous false positive results (Y2H). Secondly,

a protein can have more than one function and could be considered in one or more

functional groups, leading to overlapping function clusters. The third problem con-

cerns the fact that proteins with different functions may interact. Therefore, a PPI has

connections between proteins in different functional groups, leading to expansion of

the topological complexity of the PPI networks. Neighbour counting is a method pro-

posed by Schwikowski et al. [19] to infer the functions of an un-annotated protein

from the PPI. This method locates the neighbour proteins and predicts their assigned

functions and the frequency of these functions; the functions are arranged in descend-

ing order according to their frequencies. The first k functions are considered and

assigned to the un-annotated protein. Some papers used this technique with k equal-

ling three. This method makes use of information from the neighbours, but it has sev-

eral drawbacks: (1) it considers the interactions to be of equal weights, which is not

logical; (2) it does not consider the nature of the function and whether it is dominant;

(3) it does not provide a confidence level for assigning a function to the protein. The

problem of confidence levels was addressed in [20], where the authors used chi-square

statistics to calculate significance levels on the basis of the probability that various

functions are present. The chi-square method provides a deeper analysis than the

neighbour counting method, but it is less sensitive and specific.

Deng et al. [21] considered various situations for the presence of a certain function

for a protein of interest: (1) number of proteins having this function; (2) number of

protein pairs (interacting) having the function; (3) number of protein pairs where one

has the function and the other does not; (4) number of protein pairs without this func-

tion. A weighted sum of these numbers is calculated according to the random Markov

field algorithm, which assigns different weights to interactions and overcomes the

above problems by considering the entire interaction network [21]. This method con-

siders the frequency of proteins having the function of interest and the neighbours,

with less weight being placed on neighbours that are further away. Therefore, it can be
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used to calculate the probability that an un-annotated protein has a function of inter-

est, and the results are more accurate than those obtained by using neighbour counting

or the chi-square method.

This paper presents a new method for predicting protein function based on estimat-

ing a weight for the strength of the interaction between proteins in the PPI. The simi-

larity between protein interactions and the connected routers in a certain autonomous

number of networks was explored. Applying the idea of a network linked list of proto-

cols such as OSPF (Open Shortest Path First) can allow information concerning sur-

rounding routers to be obtained, according to the principles of cost and level (hop

count) [22,23]. The suggested algorithm was compared with the equal weight interac-

tions method to indicate differences in the accuracy of prediction.

Results
The proposed approach was applied to infer the functions of un-annotated proteins in

yeast and used weighting interactions rather than free weights (equal interactions). In

YPD, proteins are assigned functions based on three criteria: “Biochemical function”,

“Subcellular location” and “Cellular role”. The numbers of annotated and un-annotated

proteins, based on the three functional categories, are presented in Table 1. The accu-

racy of the predictions was measured by the leave-one-out method. For each annotated

protein with at least one annotated interaction partner, it was assumed to be un-anno-

tated and functions were predicted using the weighted neighbour counting method.

The predicted results were compared with the annotations of the protein. Repeating

the leave-one-out experiment for all such proteins allowed the specificity (SP) and sen-

sitivity (SN) to be defined [22]. The corresponding values of overlapped proteins for

“Biochemical function”, “Subcellular location” and “Cellular role” were 1145, 1129 and

1407, respectively. In the first three Figures, the relationship between sensitivity and

specificity was implemented for biochemical function, cell location and cellular role,

respectively. In terms of the prediction method (neighbour counting method), a fixed

number of the highest frequency functions can be compared. In the present study,

although one data set is used, k (number of interactions) had a variety of values (from

2 to 5). Figures 1a-d demonstrate the specificity and sensitivity in terms of biochemical

function when k equals 2, 3, 4 and 5. In terms of biochemical functions (Figure 1), the

sensitivity of a proposed algorithm is higher when specificity values are low. However,

for higher specificity the weightless technique (W0) has good sensitivity. Therefore, an

established technique is sufficient for predicting biochemical function. As

Table 1 The numbers of annotated and un-annotated proteins for all proteins, based on
three functional categories: Biochemical function, cellular location and subcellular role.

Biochemical function

Annotated 3353

Un-annotated 3063

cellular location

Annotated 3181

Un-annotated 3235

Sub-Cellular role

Annotated 3894

Un-annotated 2522
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demonstrated in Figures 2 and 3, the sensitivity and specificity for all weights (new

suggested techniques W1-W5) were higher than W0 for all values of k. It can be

demonstrated that in the cell location function category, W2 (weight relating to IG1) is

the best weight to use when the number of interactions for each protein is two. W3

(weights for IG2), W1 (weights for number of experimental method) and W5 (PCA for

the basic three weights (W1, W2, W3)) were the best weights when the numbers of

interactions for each protein were 3, 4 or 5, respectively. Furthermore, W2 was the

best weight for the cellular role function category when the number of interactions

was two, and W3 (weights of IG2) were the best weights for the cellular role function

category when the numbers of interactions were 3, 4 or 5. There were overlaps

between some weights on the indicated curves (overlap curves), but there was a small

variation in terms of detecting these weights.

Conclusions
The majority of methods concerning the estimation of protein functions through pro-

tein-protein interactions (PPI) use the same weights for all interactions. Such methods

do not consider the various situations for each interaction including the number of

experimental methods used to identify the interactions, the number of leaves con-

nected to the interaction (whether or not the protein is sticky) and the most common

graphs for the studied species within the network. Therefore, this research introduces

new weights for protein interactions to enhance protein function prediction. These

weights are W1-W5, and W1 depends of the number of experimental methods that

identify the interaction. W1 has high confidence (100%) when the number of experi-

mental methods used is more than one. W2 depends on the number of leaves

Figure 1 Biochemical function sensitivity and specificity. The sensitivity and specificity of the six
collected data (un-weighted and five weights) in the biochemical category for up to five interactions
(k = 5).
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Figure 3 Cellular role function sensitivity and specificity. The sensitivity and specificity of the six
collected data (un-weighted and five weights) in cellular role category for up to five interactions (k = 5).

Figure 2 Cell location function sensitivity and specificity. The sensitivity and specificity of the six
collected data (un-weighted and five weights) in cell location function for up to five interactions (k = 5).

Ahmed et al. Theoretical Biology and Medical Modelling 2011, 8:11
http://www.tbiomed.com/content/8/1/11

Page 5 of 17



connected to the studied interactions, which indicates whether the protein is sticky or

not. The high confidence of W2 is apparent when the IG1 value is less than three (the

protein is not sticky). W3 relates to the value of IG2, which indicates the global topol-

ogy of the network of the studied species; its value is highly confident when IG2 is less

than zero. In addition, there are two estimated weights, W4 and W5. W4 is the aver-

age of the basic weights (W1, W2 and W3), and W5 is the PCA value for the same

weights. Applying the suggested weights to yeast protein functions and integrating

these weights with the neighbor counting method led to enhanced results in two func-

tion categories: cell location and cellular role. The sensitivity and specificity of every

point on the curves of the two function categories were higher than those obtained

using the weightless technique (free or equal weights (W0)). W3 was the best weight

to use in the cellular role category when the numbers of interactions were 3, 4 or 5.

The cell location function category did not have a common weight for all cases but in

each case (number of interactions), there was a better weight compared with other

methods.

Methods
This paper introduces a novel algorithm by comparing the proteins in protein-protein

interaction networks to the connected routers in the same autonomous number of net-

working. The protein acts as a router, and the node and edge (interaction between two

proteins) act as the connection between two routers (Figures 4 and 5), where routers

have up to 100 interactions (29 interactions are the maximum in the yeast proteome).

As presented in Figure 4a, a group of routers and their movable messages are indi-

cated, and the connected routers are presented in Figure 4b. In Figure 5, the group of

proteins are connected using different experimental methods. The routing system can

be introduced by various types of connections (LAN, WAN, Serial) as different experi-

mental methods of interactions in the protein system. Initially, the router will be una-

ware of neighbour routers on the link. Therefore, the linked state protocol will be

applied to the routing system, where a link is an interface on a router and the proto-

cols are the control system of all connected routers. The protocol includes information

concerning the interface’s IP address/mask, the type of network (ethernet (broadcast)

or serial point-to-point link), the cost of that link and any neighbour routers on that

Figure 4 Connected routers. Presentation of connected routers in a specific network.
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link. In the protein system, a generic protocol is followed that identifies the protein by

name (gene name, locus name, accession name etc...), ID (determined number for each

protein), sequence (amino acids in given number and order) and functions (if known).

The type of network will be elucidated; interaction between two proteins (protein pair)

or dense interactions (cluster), and the weight of the interaction (our contribution).

Furthermore, neighbours of the adjacent protein (known interactions in the network)

are identified (Table 2). The protein interactions are calculated until the second level.

The algorithm is performed following four steps: (1)- determining the level and degree

for each adjacent protein, (2)- calculating the weight (cost) for each interaction (inter-

action with high cost/weight is strong), (3)- integrating these data to predict the func-

tion of the un-annotated proteins using the neighbourhood counting method, and (4)-

calculating the sensitivity and specificity for the different weights.

Protein level

There is a difference between the degree and the level of any node. The degree of a

node (protein) is defined as the total number of connected nodes or proteins directly

surrounding this node (protein A has degree equal to six) as shown in Figure 6; the

level of a node is the layer of nodes related to the main one. The directed nodes have

a level equal to one, and their neighbours are the second level as presented in Figure

6. The red nodes are the first level of protein A (black), the second level of proteins

are the yellow coloured nodes (nodes connected to protein’s A neighbours). The last

(third) level is the group of proteins coloured green. In router networks, the hop count

principle is performed to determine the router level. In this paper, the second level

was assumed to be sufficient for extracting the most important information about the

Figure 5 Connected protein nodes. Seventeen connected proteins are depicted as a part of the real
interacting proteins database, where yellow nodes are leaves (last ones in the path).
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function of a protein. The concept of node level was applied to 2559 protein-protein

interactions between 6416 proteins collected from the Munich Information center of

Protein Sequences (MIPS, http://mips.gsf.de) for the yeast Saccharomyces cerevisiae

[24]. As demonstrated in Figure 7, proteins with ID numbers 1913, 3246 and 3517 had

a level equal to one for the studied protein number 1, and the yellow nodes are second

degree.

Table 2 sample of proteins and their interactions

Protein ID # interactions p1 p2 p3 p4 p5 p6 p7 P8 p9 p10

32 1 3258 0 0 0 0 0 0 0 0 0

33 23 19 33 33 84 304 333 370 407 568 1065

34 17 56 475 1118 1277 2027 3350 3352 3342 3346 3347

35 0 0 0 0 0 0 0 0 0 0 0

36 5 36 36 2557 3092 4052 0 0 0 0 0

37 0 0 0 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 0 0 0 0 0

40 1 3802 0 0 0 0 0 0 0 0 0

41 3 1726 3275 386 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0

46 1 3708 0 0 0 0 0 0 0 0 0

47 1 4590 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0

49 0 0 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0

51 0 0 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0 0 0

53 0 0 0 0 0 0 0 0 0 0 0

Figure 6 Protein levels. Protein A (black) and its surroundings, which were divided into three degrees or
levels (red nodes as first level, yellow as second level and green nodes as the third level).
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PPI weight calculation

Protein-protein interaction weights are introduced and each interaction has a specific

weight. Three basic methods were considered in terms of calculating the weights of all

the interactions and overcoming problems affecting the interaction network. The first

method concerns the number of experimental methods. Protein-protein interactions

are identified by high-throughput experimental methods such as Y2H [25-29], mass

spectrometry of co-immunoprecipitated protein complexes (Co-IP) [30,31], gene co-

expression, TAP purification cross link, co-purification and biochemical methods.

Challenging technical problems arise using the first two methods, which lead to spur-

ious interactions due to self activation in Y2H and abundant contaminants with CO-

IP. These problems lead to false positive interactions [32]. Therefore, a quantitative

method for evaluating the pathway through proteomics data is required. A number of

experimental and computational approaches have been implemented for large-scale

mapping of PPIs to realize the potential of protein networks for systems analysis. One

method utilizes multiple independent sets of training positives to reduce the potential

bias of using a single training set; this method uses association with publishing identi-

fiers or foundation in two or more species, otherwise PPIs must have an expression

correlation more than 0.6 [33]. Another technique also obtains conserved patterns of

protein interactions in multiple species [34]. There are several methods for determin-

ing the reliability of interactions [35-38]. In this paper, the reliability or confidence is

introduced by counting the number of experimental methods for each interaction;

some interactions have been identified using many experimental methods and others

identified by just one. In yeast proteins, approximately ten experimental methods can

Figure 7 Saccharomyces cerevisiae network. A part of the yeast Saccharomyces cerevisiae network (MIPS
database). The level of the nodes is distributed. The figure has been drawn using the Inter-Viewer program.
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be used to identify protein-protein interactions (Edge between Protein (YBR0904) and

Protein (YDR356W) can be identified by ten experimental methods where protein

(AAC1) and protein (YHR005C-A) can be identified by one method). As demonstrated

in Figure 8, approximately 750 interactions from 2559 proteins have been identified by

more than one experimental method. More than half of all the interactions have been

identified by just one method (~1800 interactions); researchers have high confidence

(100%) concerning those interactions identified by more than one method and 50%

confidence for the others (one method identification). Table 3 presents the yeast pro-

tein interactions, the number of experimental methods used to identify them and the

identification value for each one. This method does not depend on clear points on

computational algorithms, but reflects the strength of interaction from the laboratory

viewpoint. Another approach for estimating the reliability of experimental methods

concerns calculating the stability of every method.

The second method for calculating weights of interactions is the IG1 concept (Inter-

action Generality 1) [39-41]. A new method for assessing the reliability of protein-pro-

tein interactions (local topology) is obtained in biological experiments by calculating

the number of proteins involved in a given interaction (number of protein leaves con-

necting to the two studied proteins incremented by one) as shown in Figure 9. IG1

assumes that complicated interaction networks are likely to be true positives. By imple-

menting the IG1 on the collected data (yeast protein interactions), the range of IG1

was between one and 21 (Figure 10), meaning that some interactions have many leaves.

Figure 8 Interactions/Experimental methods relationships. Demonstrates the number of interactions
(edges) corresponding to the number of experimental methods (~1800 interactions can be identified by
one experimental method).
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Table 3 Yeast interaction pairs, number of identification methods and type of experimental method

Protein_1 Protein_2 # Identification Method Y2H Cross-link affinity chromo precipitation assay purification in Vetro Others

YKL161C RLM1 1 1 - - - - - - -

AAC1 YHR005C-A 1 1 - - - - - -

AAD14 AAD14 1 1 - - - - - - -

AAD6 YNL201C 1 1 - - - - - - -

ABP1 ACT1 3 1 - 1 - - 1 - -

ABP1 RVS167 4 1 - - 1 - - - 2

ABP1 SRV2 3 - - - - - - 1 2

YER045C PSE1 1 1 - - - - - - -

ACC1 DMC1 1 1 - - - - - - -

ACC1 SNP1 1 1 - - - - - - -

ACE2 YNL157W 1 1 - - - - - - -

ACS2 SNP1 1 1 - - - - - - -

ACT1 ACT1 4 1 1 1 - 1 - - -

ACT1 AIP1 1 1 - - - - - - -

ACT1 BEM1 2 1 - - 1 - - - -

ACT1 BNI1 1 1 - - - - - - -
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According to the IG1 concept, increasing values leads to false positive interactions. In

the suggested algorithm, it is assumed that interactions with an IG1 value less than

four (as threshold) have high confidence (100%) and those with more than four have

low confidence (Table 4). For example, the interaction between proteins YMR056C

and YHRS01C has an IG1 value of three (weight = 100%) when the interaction

between proteins YMR056C and YDR167W has an IG1 value of four (weight = 50%).

Figure 10 Interactions/IG1 relationships. The relationship between the number of interactions and their
corresponding IG1values is shown. The last column indicates the number of interactions that have an IG1
of more than 10.

Figure 9 Interaction Generality 1. Part of protein IDs and their interactions are presented. The edge
between proteins 4 and 17 has an IG1 value of two, where the edge between proteins 7 and 14 has an
IG1 value of three.
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However, the interaction between proteins YDL043C and YMR117C has an IG1 value

of 21 (weight = 50%).

The third method for calculating the weight uses the IG2 concept (Interaction Gen-

erality 2), [42,43]. This algorithm explores the five major sub-graphs of a network to

obtain information concerning the global topology of the network. After collecting the

five values for each interaction according to Figure 11, principal component analysis

(PCA) has been implemented. The PCA concept for the previous major topologies of

yeast protein networks was implemented and IG2 values ranged from -281 up to ~27

(Table 5). By determining the threshold (19) as the margin of reliability, it is assumed

that IG2 values less than the threshold are more accurate than those above the thresh-

old. Regarding the three previous methods for calculating weights, high confidence

interactions can be collected compared with low confidence interactions (Figure 12).

After collecting the weights from the three previous methods (number of experimental

methods, IG1 and IG2), new weights strategies can be created using an average of the

three values or PCA. Five different weights for each interaction were collected. As indi-

cated in Table 6, interactions between proteins AAC1 and YHR005C-A had a W1 =

0.5, which means that only one method was used to identify it; W2 = 1, therefore it

has more than three leaves in IG1 (IG1 < 4), W3 = 0.5 indicating that IG2 was more

Figure 11 Interaction generality 2 topologies. The major five topologies related to the yeast network
topology are shown according to interaction generality two.

Table 4 The reliability score of IG1 in protein interactions

PID_1 PID_2 IG1 Reliability score

1 1913 3 1

1 3246 1 1

1 3517 4 0.5

7 7 0 0

19 33 7 0.5

19 2980 1 1

19 3384 1 1

22 2483 2 1

24 785 4 0.5

24 3258 14 0.5

25 5838 2 1

32 3258 13 0.5

33 33 0 0

33 84 7 0.5

33 304 8 0.5

33 333 8 0.5
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Figure 12 High confidence edges. The number of high and low confidence edges for each method
used.

Table 5 IG2 values for yeast protein interactions

P_name 1 P_name 2 PID_1 PID_2 t1 t2 t3 t4 t5 IG2

AAC1 YHR005C-A 1 1913 0 0 0 2 2 26.94071

ANC1 SNF5 1 3246 0 0 0 3 0 26.90991

ANC1 TAF25 1 3517 0 0 164 5 3 -121.486

ABP1 ACT1 19 33 2 0 4 10 6 26.97287

ABP1 RVS167 19 2980 1 1 2 13 0 23.08996

ABP1 SRV2 19 3384 1 1 2 12 0 24.42532

YER045C PSE1 22 2483 0 0 2 3 1 24.44631

ACC1 DMC1 24 785 0 0 0 20 3 25.10544

ACC1 SNP1 24 3258 0 0 0 10 13 26.56783

ACE2 YNL157W 25 5838 0 0 0 0 1 26.8268

ACS2 SNP1 32 3258 0 0 0 7 12 26.97778

ACT1 AIP1 33 84 0 0 8 10 6 26.88486

ACT1 BEM1 33 304 0 2 20 14 7 26.97287

ACT1 BNI1 33 333 2 2 4 14 7 19.55493

ACT1 BUD6 33 370 1 1 10 22 7 7.772698

ACT1 CAP2 33 407 0 0 8 10 6 22.16398

ACT1 COF1 33 568 0 0 8 10 5 17.03328

ACT1 FUS1 33 1065 0 0 8 10 6 19.55493

ACT1 GLK1 33 1164 0 0 8 7 9 19.55002

ACT1 IQG1 33 1470 0 2 8 13 6 19.55493

ACT1 LAS17 33 1583 0 0 8 9 7 19.63262

ACT1 MYO4 33 1983 0 0 8 10 5 18.64504

ACT1 OYE2 33 2174 0 0 8 10 5 19.58083

ACT1 PFY1 33 2295 1 1 6 11 6 19.55002

ACT1 RPP2B 33 2843 0 0 8 9 7 19.55002
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than 19, W4 is the average of the three weights which equalled 0.66 (1/3 Σ wi, i = 1..3),

and W5 (PCA of the three weights with threshold equal zero) was 0.5, indicating that

its value is more than zero. This example demonstrates a weak interaction (edge)

between protein ID 1 (AAC1) and protein ID 1913 (YHR005C-A). Another example

concerning high confidence is shown in the second row and concerns a protein inter-

action (edge) between ANC1 and SNF5, where the weights are 1, 1, 0.5, 0.83 and 1 for

W1, W2, W3, W4 and W5, respectively. Relating to the main three measurements,

many weights can be created by applying AND/OR processes. However, each weight

can be multiplied by the coefficient relating to the importance of its role in determin-

ing the edge; 0.35, - 0.2 and - 0.4 for W1, W2 and W3, respectively. The integration

was performed on the five weights explored (W1-W5). The neighbour counting

method was applied six times, once for the basic weight (equal weights or traditional

method) and once for each of the five estimated weights.

Integration process

After collecting the levels for each protein and the five different weights, the neighbour

counting method (frequencies of interaction partners having certain functions of inter-

est) was implemented to predict the functions of unknown proteins. The new weights

and weightless (edges with equal weights (W0)) algorithms were compared for proteins

having up to five interactions. This demonstrated that for most selected new weights

at a specific specificity (SP), the sensitivity (SN) was higher than obtained using W0.

As demonstrated in Figures 1, 2 and 3, the sensitivity and the specificity of the three

function categories of yeast (Biochemical, Cell location and Cellular role) are indicated

respectively. Equations 1 and 2 present the basic laws of SN and SP.

Table 6 The protein interactions and their suggested weights

Protein A name Protein B name Protein A-ID Protein B-ID W0 W1 W2 W3 W4 W5

AAC1 YHR005C-A 1 1913 1 0.5 1 0.5 0.66 0.5

ANC1 SNF5 1 3246 1 1 1 0.5 0.83 1

ANC1 TAF25 1 3517 1 0.5 0.5 1 0.66 1

ABP1 ACT1 19 33 1 1 0.5 0.5 0.66 1

ABP1 RVS167 19 2980 1 1 1 0.5 0.83 1

ABP1 SRV2 19 3384 1 1 1 0.5 0.83 1

YER045C PSE1 22 2483 1 0.5 1 0.5 0.66 0.5

ACC1 DMC1 24 785 1 0.5 0.5 0.5 0.5 0.5

ACC1 SNP1 24 3258 1 0.5 0.5 0.5 0.5 0.5

ACE2 YNL157W 25 5838 1 0.5 1 0.5 0.66 0.5

ACS2 SNP1 32 3258 1 0.5 0.5 0.5 0.5 0.5

ACT1 AIP1 33 84 1 0.5 0.5 0.5 0.5 1

ACT1 BEM1 33 304 1 1 0.5 1 0.83 1

ACT1 BNI1 33 333 1 0.5 0.5 0.5 0.5 0.5

ACT1 BUD6 33 370 1 0.5 0.5 1 0.66 1

ACT1 CAP2 33 407 1 1 0.5 0.5 0.66 1

ACT1 COF1 33 568 1 1 0.5 0.5 0.66 1

ACT1 FUS1 33 1065 1 0.5 0.5 0.5 0.5 1

ACT1 GLK1 33 1164 1 1 0.5 0.5 0.66 1

ACT1 IQG1 33 1470 1 1 0.5 1 0.83 1
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The sensitivity (SN) and specificity (SP) can be defined as:

SN =

∑k
i ki

∑k
i ni

(1)

Sp =

∑k
i ki

∑k
i mi

(2)

Where ni is the number of observed functions for protein Pi

mi is the number of predicted functions for protein Pi,

and ki are the overlaps between them.
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