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Abstract

Background: In nature, bacteria often exist as biofilms. Biofilms are communities of
microorganisms attached to a surface. It is clear that biofilm-grown cells harbor
properties remarkably distinct from planktonic cells. Biofilms frequently complicate
treatments of infections by protecting bacteria from the immune system, decreasing
antibiotic efficacy and dispersing planktonic cells to distant body sites. In this work,
we employed enhanced Boolean algebra to model biofilm formation.

Results: The network obtained describes biofilm formation successfully, assuming -
in accordance with the literature - that when the negative regulators (RscCD and
EnvZ/OmpR) are off, the positive regulator (FlhDC) is on. The network was modeled
under three different conditions through time with satisfactory outcomes. Each
cluster was constructed using the K-means/medians Clustering Support algorithm on
the basis of published Affymetrix microarray gene expression data from biofilm-
forming bacteria and the planktonic state over four time points for Escherichia coli K-
12.

Conclusions: The different phenotypes obtained demonstrate that the network
model of biofilm formation can simulate the formation or repression of biofilm
efficiently in E. coli K-12.

Background
In natural, medical or engineering environments, bacteria often exist as sessile commu-

nities called biofilms [1], which are exquisite structures caused by a genetically pro-

grammed developmental process in which each stage entails dramatic modifications at

the genetic, biochemical, and phenotypic levels [2]. This phenotype enables bacteria to

adhere and anchor to surfaces in aqueous environments [3], so the cells acquire speci-

fic advantages when invading tissues, such as antiobiotic and shear stress resistance. It

is estimated that biofilms are involved in 65% of human bacterial infections [4], since

cells in biofilms are 1000 times more resistant than cells in the planktonic state, mak-

ing medical treatments fail [1].

Many authors [5] have identified five steps in biofilm formation: (i) reversible attach-

ment, (ii) irreversible attachment, (iii) maturation-1, (iv) maturation-2, and finally (v)

dispersion [6]. Each step requires reprogramming of gene expression, and this repro-

gramming occurs in response to environmental changes [7,6]. The full development of

the biofilm includes the existence of a three-dimensional structure made of a polysac-

charide matrix that contains water channels for transporting nutrients and removing
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waste [5,7]. Different organelles play big roles during biofilm formation at different

stages on the bacterial surface, e.g. during reversible attachment flagella propel cells

toward the surface to overcome electrostatic interactions [6]. The irreversible attach-

ment process requires the cells to lose their flagella and develop adhesive organelles

such as curli or fimbria to attach to the surface [1]. Finally, the production of colanic

acid capsules allows the three-dimensional structures of the mature biofilm to be con-

structed [8]. For specific organelles to appear at each step in the proper order, expres-

sion of these organelles must be coordinated and thus regulated by a subset of

external signals, regulators and secondary messengers, e.g. flagellum biogenesis requires

the positive regulator FlhD/FlhC (FlhDC), environmental conditions such as appropri-

ate temperature, osmolarity, and pH, the presence of acetate and the transcription fac-

tor HdfR, etc. [6]. Many types of genes with different functions seem to be involved in

biofilm formation [9].

Recently, there has been a dramatic upsurge of research on biofilms aimed at pre-

venting or controlling their formation or eradicating them [10], since they are often

deleterious and more complex to treat than planktonic forms owing to their high resis-

tance to antibiotics [2]. It is therefore important to understand the genetic basis of bio-

film formation in order to find effective ways to prevent it. Whole genome profiling for

each stage provides invaluable information about the underpinnings of the regulation

process [1,11,5,4]. Domka et al. [12] compared the gene expression in cells forming

biofilms and suspended (planktonic) cells over time in E. coli K-12.

The gene expression profile could be further interpreted to elucidate the gene regula-

tion network and variations in its topology over time. Once established, mathematical

models can be used to predict the system dynamics and understand it deeply. These

models are based on different approaches such as conservation mass balance and the

mass action law, and involve the use of ordinary differential equations, or stochastic

kinetics in cases where it is no longer possible to apply mass action assumptions. How-

ever, these techniques demand extensive development if a unique solution is required,

and this kinetic background cannot easily be obtained [13]. For this reason, approaches

that do not demand so much information such as Boolean based network kinetics con-

stitute an ideal way of gaining a deeper understanding of the dynamics of gene net-

works, because this technique just requires the topology of the network for different

time points [14-16].

The value of a Boolean logic network modeling resides in translating a continuous to

a discrete dynamic system [13]. However, this discretization is only possible when each

node response can be described by binary variables [14], which is the general case for

gene transcription regardless of the biological system. Boolean networks allow regula-

tory networks to be modeled and analyzed efficiently, making strong simplifying

assumptions about the structure and dynamics of a genetic regulatory system [17]. In

this model each cluster (a group of genes) at a given time can display one or other of

two states, on or off. The expression of a cluster A at time t + 1 is modeled by a Boo-

lean function, whose entries are the expression at time t of all K clusters related to

cluster A. Generally, K ≤ N where N is the total number of clusters obtained. After a

succession of times, the system traces its history in a space of states [14].

Domka et al. [12] compared the differential gene expression over time when E. coli

form biofilms, and gene expression between cells in suspension and biofilms. However,
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this study was limited to determining the proportion of genes induced and repressed

between 2.5 and 5 fold, without identifying the most important networks or pathways

for biofilm formation. Therefore, the aim of the present study is to build a network

model of biofilm formation in E. coli K-12, to identify clusters and regulators during

biofilm formation and to analyze the dynamics of each cluster to corroborate the

results previously obtained through whole genome profiling.

Results and discussion
Ten clusters for four time points were obtained with similarity levels greater than 82%.

We then identified relevant clusters regarding biofilm formation for E. coli (Table 1) to

calculate the weight matrix (Table 2). The connection between expression (model) and

phenotype (biological conclusions) is based on the expression and presence of the posi-

tive regulators (clusters A and D).

Overall, we found no effect on the expression trend for the different initial condi-

tions (Table 3) in Clusters E, G, H, I & J as they reached the active state, regardless of

the initial population (Figure 1). This result corroborated the importance of such clus-

ters for the whole biofilm formation process in basic cell functions such as replication,

transcription, translation and respiration.

We first observed the gene expression dynamics with non-zero initial conditions for

all clusters. Interestingly, the global positive regulator FlhDC cluster, capable of regu-

lating the expression of curli and flagella, was found to be repressed after 0.4 s, possi-

bly indicating a negative effect from the FlhD repressors OmpR, RcsCD, hdfR and

LrhA. FlhD behavior was also propagated for the H-NS and QseBC positive regulator

clusters (Figure 1). Overall, these results suggest that the simultaneous presence of all

clusters does not allow biofilms to form owing to repression of key clusters at the

onset of the process (clusters A, D and F) [6,18-24]. Consistent with experimental

data, cluster F, which is quorum sensing-related, does not follow flagella and H-NS

regulator behavior because it is not strongly coupled with OmpR and RcsCD. Phenoty-

pically, these results suggest that quorum sensing requires the strong action of the fla-

gella apparatus in order to play a role during activation; these results were previously

shown by González Barrios et al. [4].

In silico knockouts were also carried out in order to corroborate the phenotypes pre-

viously reported for critical genes during the different stages of the biofilm formation

Table 1 Main features of each cluster in biofilm formation

Cluster Name Features of cluster

A FlhDc regulator and all flagella, curli and capsule genes

B EnvZ/OmpR regulator

C RcsBC regulator

D H-HS regulator, Fimbria gene (FimA), DnaAKJ and GrpE

E cold shock protein, Transfer RNA

F QseBC

G Basic genes for surviving i. e. NADH dehidrogenase, & hdfR

H Basic genes for surviving i. e. tryptophan genes, & LrhA

I 30-50S ribosomal subunits proteins

J 5S, 23S, 16S Operons

Some major genes and features for each cluster that takes part in biofilm formation. Each cluster was obtained from
cluster analysis of the microarray data of the whole E. coli K-12 genome.
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process. First, we wanted to evaluate the effect of deleting the EnvZ/OmpR regulator

(cluster B) in order to establish a correspondence between this regulator and the mas-

ter flagella regulon and determine the potential formation of biofilm when the cluster

was knocked out. Overall, we again found no response for biofilm formation since the

presence of RcsCD, hdfR and LrhA, which are also reported to be negative regulators

in this context, possibly causing the absence of the expression of cluster A, the master

flagella regulon (FlhDC), the H-NS regulator (cluster D) and the quorum sensing sys-

tem (Cluster F). Regarding the initial conditions for this knockout, we noticed that

even though the system displays no positive response in silico when none is present

under the initial conditions, FlhDC almost reaches a positive value, possibly indicating

that the initial absence of cluster B could lead the cells to establish biofilm depending

on the time response; in other words, the lag time for RcsBC to reach the active state

when cluster B is forced to remain shut down. This suggests synergism among the

three repressor systems in order to avoid the formation of the biofilm (Figure 2).

Moreover, we also found the same results when cluster C (RcsBC) was deleted (data

not shown), corroborating this hypothesis of synergism.

Two additional knockouts were analyzed with the aim of identifying the expected

positive response from the system. First, we shut down the repressor clusters EnvZ/

OmpR and RcsBC, as this has been previously reported to inhibit the flagella response.

In this case the master flagella regulon, FlhDC, demonstrated that the biofilm forma-

tion is activated and these responses are rapid when the stable state is reached (addi-

tional file 1). Also, the major role of the RcsCD and OmpR clusters in regulation was

corroborated [6] as these genes remained inactivated, in contrast to hdfR and LrhA.

Nevertheless, the fact that A, B, C, D and F present a zero initial condition leads to

inactivation of H-NS and QseBC because there is insufficient of the activator FlhCD

and a negative phenotypical response (no biofilm formed). Therefore, the biofilm

Table 2 Weight matrix for biofilm formation

Cluster number A B C D E F G H I J

A 1 -1 -1 1 0 1 -1 -1 0 0

B 0 1 1 0 0 0 0 0 0 0

C 0 1 1 0 0 0 0 0 0 0

D 1 -1 -1 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0 1 1

F 1 0 0 0 0 0 0 0 0 0

G 0 0 1 0 0 0 0 0 1 1

H 0 0 1 0 0 0 0 0 1 1

I 1 1 1 1 1 1 1 1 0 1

J 1 1 1 1 1 1 1 1 1 0

Correlations between clusters obtained from different literature that used microarray data for E. coli K-12. 0, 1 and -1
represent neutral, positive and negative interactions, respectively.

Table 3 Initial value for concentrations of gene products of the network

Conditions y0 = 100mol y0 = 0mol Graphic Shape

I All Cluster -

II Clusters: A, D, F, E, G, H, I & J Clusters: B, C

Three set scenarios with different cluster initial concentration 100 or 0 [15]. Scenario I is set to observe the typical cell
behavior. Scenario II is set to show network’s response time to control biofilm formation. Scenario III is set to see if basic
cellular functions are for or against biofilm formation, since the clusters that take part in biofilm formation are off.
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regulation network demands positive action from the inductor clusters or genes

directly involved in the positive response such as FlhDC, and the cooperative interac-

tion of the negative regulators [6]. In order to corroborate this conclusion, we obtained

the profiles for the cases in which a virtual knockout in cluster A was made and clus-

ters A, B and C were knocked out, and in both cases no biofilm was formed (results

Figure 1 Profiles for the ten clusters. Plots for the ten clusters (A-J) show the expression profile (y-axis)
vs. time (x-axis) for three scenarios: condition I (-), condition II (-.) and condition 3 (...). Biofilm is not formed
under the null scenario because the biofilm positive regulators (clusters A and D) are repressed [expression
value (ev) = 0] for four negative regulators (clusters B, C, G and H) [ev = 700]. Quorum sensing (cluster F) is
at basal level [ev = 500].

Figure 2 Profiles for the ten clusters with virtual knockout in cluster B. Plots for the ten clusters (A-J)
show the expression profile (y-axis) vs. time (x-axis) for three scenarios: condition I (-), condition II (-.) and
condition 3 (...). Biofilm is not formed under the null scenario because the biofilm positive regulators
(clusters A and D) are repressed [expression value (ev) = 0] for three negative regulators (clusters C, G and
H) [ev = 700]. However, under scenario II, the biofilm machinery is shown to be activated at 4000s.
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not shown). It is important to highlight that virtual knockout of hdfR and LrhA could

not be done because these are congregated in fundamental clusters.

Finally, we modeled the case when, in a community of cells that have already formed

a biofilm, a signal that activates the OmpR regulator and then RcsCD suddenly arrives

(results not shown). The profile displays a biofilm formed until 7000 s and then OmpR

begins to produce enough protein to inhibit biofilm formation, concomitantly with

RcdCD at 15000 s. Although OmpR starts at 7000 s, biofilm formation (cluster A, D

profiles) does not begin to disappear immediately but around 11500 s. This is because

OmpR expression is initially absent, and genes for surface organelles are not affected

during the time necessary to raise their protein expression.

Conclusions
In this work we have built a network model of biofilm formation in E. coli K-12, using

cluster analysis and Boolean network kinetics, obtaining phenotypes already reported.

Throughout the modeling, we have used the most important regulators of biofilm for-

mation (FlhD, H-NS, QseBC, OmpR, RcsCD, hdfR and LrhA) under different initial

conditions, and obtained enough evidence to demonstrate that networks can efficiently

model a complex gene regulatory system such as the biofilm formation in E. coli K-12.

As in nature, the model simulated successful biofilm formation when the most signifi-

cant negative regulators (OmpR and RcsCD) are inactive, and when the positive global

regulator FlhDC is active.

Methods
Data

The Affymetrix Microarray data used were obtained from the NCBI Gene Expression

Omnibus (GEO accession: GSE3905) [25,26]. These data were originally obtained by

Domka et al. [12]. The data included four time points: 4, 7, 15 and 24 h for cells pre-

senting a biofilm phenotype and for cells in the planktonic state. For this purpose, they

grew the two groups of cells in the same reactor in order to eliminate errors associated

with different environment conditions. Each set of data included the level of expression

of 7312 genes, and in total 8 sets of data were obtained [12].

Gene clustering

Whole genome profiling allows cluster analysis to be carried out so the genes and clus-

ters that play important roles at each stage can be elucidated. Clustering of gene expres-

sion was performed using MultiExperiment Viewer v4.38 [27]. The K-means/medians

clustering support algorithm was used to make 10 clusters for each time point with the

expression levels for biofilm and planktonic cells. The number of clusters was calculated

using the Figure of Merit encompassed in the software, and Euclidean distance was used

as the metric distance. The clustering process was restricted to eighty iterations and

twenty K-means/K-medians with a threshold percentage of occurrences in same cluster

of 0.8. We compared the level of similarity, confirming that most genes were clustered

with the same genes for all time points, in order to obtain ten merged clusters.

Model description

A network model is useful in applications where the information relevant to the pro-

blem to be solved is scant or incomplete, but where data are available. Dynamic
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modeling gives the relevant information about time responses that the ordinary Boo-

lean approximation cannot provide. We then employ an enhanced Boolean network in

our model, which reduces the need for large sets of data for network training and dis-

plays the dynamic evolution of the network. In the network model, the rate of expres-

sion of a gene i is given as [17]:

dyi
dt

= k1ifi − k2iyi (1)

Where the first term quantifies the regulatory effect of other genes and the second

term describes the degradation. k1i and k2i are the rate constants. The decay rate con-

stant k2i can be expressed through the protein half-life t1/2 as:

k2 =
Ln2
t1/2

(2)

The regulatory effect of gene fi, can be represented as follows:

fi =
1

1 + exp

(
−

n∑
j
wijyj − τi

)
(3)

Where τi is the bias (used as a delay parameter for the reaction), yj represents the

concentrations of gene products of the network, and wij is the correlation coefficient

matrix, called the weight matrix. This matrix describes how various genes in the model

affect each other’s expression patterns over a period of time. A strong positive correla-

tion indicates that the genes may be co-expressed and have a value around one, and a

strong negative correlation indicates that the genes may inhibit each other’s expression

and have a value around negative one. Therefore the Boolean nature of this model is

conserved. Nevertheless, this approach constitutes an improved version as it involves

the dynamics of the process. The weight matrix was obtained from different microar-

rays aimed at studying gene regulation for the E. coli K-12 biofilm formation process

[2,4-7,12,28-33]. In order to keep track of the genes that play a major role according

to the literature, we first determined the interaction among them over time, localizing

them in different clusters. We only considered the most relevant genes because these

correlations are taken from literature and their functions are well known.

RNA mass balance allows the gene expression profile to be described in the follow-

ing manner:

dyi
dt

=
k1i

1 + exp

(
−

n∑
j
wijyj − τi

) − Ln2
t1/2

yi i, j = 1, . . . n
(4)

We solved the system of ordinary differential equations with the MATLAB® platform

using a fourth order Runge Kutta algorithm, with absolute and relative tolerances of

1.0e-006 and 1.0e-003, respectively. To reduce the dimensionality of the solution space

we assumed a single time delay τi = τ for every regulatory interaction. Kinetic para-

meters were determined based on Gupta et al. [17] (τ = 1, t1/2 = 800s, and k1i = 0.6
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mol/s). Simulations were performed using 2.64 GHz Intel Core 2 Duo Processor

T7500, 2 GB RAM. (Average time per analysis was 30 s).

Additional material

Additional file 1: Figure 1S - Profiles for the ten clusters with virtual knockout in clusters B and C. Plots for
the ten clusters (A-J) show the expression profile (y-axis) vs. time (x-axis) for three scenarios: condition I (-),
condition II (-.) and condition 3 (...). Biofilm is formed under scenarios I and II because the biofilm positive
regulators (clusters A and D) are activated [expression value (ev) = 700] in the absence of two most important
negative regulators (clusters B and C) [ev = 500]. However, under scenario III, biofilm is not formed since the most
important positive regulators is off [ev = 0].
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