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Abstract

Background: With the development of experimental techniques and bioinformatics,
the quantity of data available from protein-protein interactions (PPIs) is increasing
exponentially. Functional modules can be identified from protein interaction
networks. It follows that the investigation of functional modules will generate a
better understanding of cellular organization, processes, and functions. However,
experimental PPI data are still limited, and no modularity analysis of PPIs in
pathogens has been published to date.

Results: In this study, we predict and analyze the functional modules of E. coli O157:
H7 systemically by integrating several bioinformatics methods. After evaluation, most
of the predicted modules are found to be biologically significant and functionally
homogeneous. Six pathogenicity-related modules were discovered and analyzed,
including novel modules. These modules provided new information on the
pathogenicity of O157:H7. The modularity of cellular function and cooperativity
between modules are also discussed. Moreover, modularity analysis of O157:H7 can
provide possible candidates for biological pathway extension and clues for
discovering new pathways of cross-talk.

Conclusions: This article provides the first modularity analysis of a pathogen and
sheds new light on the study of pathogens and cellular processes. Our study also
provides a strategy for applying modularity analysis to any sequenced organism.

Background
Most cellular processes are carried out by groups of physically interacting proteins.

Protein-protein interactions (PPIs) are at the heart of biological activities. A complete

and reliable interaction map representing the specific binary interactions within a cell

would provide a significant platform for understanding many biochemically relevant

processes.

Several high-throughput experimental methods - such as pull down [1], immunopre-

cipitation [2], two-hybrid system, protein chips [3,4] - have been developed to detect

PPIs among all the proteins encoded by a genome. While the data from these experi-

mental approaches have been useful to biologists, there are several shortcomings. In

particular, the results from high-throughput interaction mappings have low accuracy,
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and even reliable techniques can generate many false positives when applied genome-

wide. Estimated error rates of high-throughput interaction results range from 41 to

90% [5,6]. Detecting experimental interactions is also labor-intensive and costly, in part

because the number of possible PPIs is very large.

Computational methods provide a complementary approach to detecting PPIs and

extending protein interactomes. A variety of computational methods have been applied

to observe or predict the PPI networks in biological systems. These methods enable

one to discover novel putative interactions and often provide information for designing

new experiments for specific protein sets. The computational approaches to in-silico

prediction can be classified into several general categories: genomic scale approaches

[7], sequence-based approaches [8,9], structure-based approaches [10,11], protein

domain-based approaches [12], learning-based approaches [13], and network-topology-

based approaches [14]. Among these, certain domain-based prediction methods have

shown great sensitivity and specificity to experimental PPIs, including MLE (Maximum

Likelihood Estimation) [15] and MSSC (Maximum Specificity Set Cover) [16]. These

approaches infer potential DDIs by relying on a training set of PPIs, and then use

these potential DDIs to predict PPIs in testing sets.

However, obtaining networks of PPIs is not the final target. A major challenge is how

to manage and analyze the huge number of data on PPIs. It has been reported that the

metabolic networks of 43 distinct organisms are organized into many small, highly

connected topological modules that combine in a hierarchical manner into larger, less

cohesive units [17]. A module of a PPI network may represent a protein complex, or a

group of proteins participating in the same cellular process. The prediction and analy-

sis of PPI modules will aid us in elucidating the basic mechanisms of biological activ-

ities, while modularity analysis of the PPIs of pathogens could give us a better

understanding of their pathogenicity.

Cluster analysis is an obvious choice of method for extracting functional modules

from networks of PPIs. Clustering can be defined as the grouping of objects based on

their shared discrete, measurable properties. A variety of clustering algorithms have

been developed and successfully used in diverse fields. Recently, a systematic quantita-

tive evaluation of the four most important clustering algorithms has been presented by

Brohee and Van Helden [18]. The four algorithms were RNSC, MCODE, SPC, and

Markov Cluster algorithm (MCL). Their results showed that the MCL algorithm was

both remarkably robust to graph alterations and superior in the extraction of com-

plexes from interaction networks.

The bacterium Escherichia coli O157:H7, which causes diarrhea and hemolytic ure-

mic syndrome (HUS), is a worldwide threat to public health and has been implicated

in many outbreaks of hemorrhagic colitis. The death rate for infected populations is

between 5 and 10 percent. Currently, there is no effective method for curing or pre-

venting infection. In 2001, the U.S.A. and Japan published the genome sequences of

the EHEC 0157:H7 EDL933 and Sakai strains, respectively, which made genome-scale

research on O157:H7 possible [19,20].

Several papers concerning modularity analysis of E. coli have been published in

recent years. Von Mering et al. integrated techniques of conserved gene neighborhood,

gene fusion events, and common phylogenic distribution to find functional modules of

E. coli K12. By comparing to known metabolic pathways, they discussed pathway
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extension and functional links among pathways [21]. Gerdes et al. gave a system level

analysis of essential genes in E. coli MG1655 based on experimental results, and dis-

cussed these essential genes in topological modules [22]. Li et al. developed a four-step

approach for genome-wide discovery of parallel modules from protein functional lin-

kages. This approach recovers known parallel complexes and pathways and discovers

new ones [23]. To date, however, there are no published papers referring to modularity

analysis of pathogens, whose PPIs are under-studied.

In this paper, the EHEC O157:H7 Sakai strain is selected for further research. Our

aim is to analyze the modularity of the pathogen E. coli O157:H7 PPI network, without

any known experimental PPI data. We also want to see what can be interpreted about

pathogenicity and cellular processes by the modularity analysis. First, a domain-based

method was used to predict the PPIs of O157:H7. Then we used the Markov Cluster

algorithm (MCL) and separated 172 modules out of the predicted O157 PPIs. After

evaluation, we found that most of these modules were functionally homogeneous and

biologically significant. One hundred and twenty-one modules were considered highly

reliable and may provide directions for experimental research. Six pathogenicity-related

modules were analyzed, some of which are new and deserve further experimental vali-

dation. After investigation of the relationships among modules, the modularity of cellu-

lar function and cooperative effects are discussed. In view of these modules, our

analysis can provide a better understanding of cell function. Moreover, the predicted

modules can provide possible candidates for biological pathway extension and clues for

discovering new modes of cross-talk between pathways. Overall, these results provide

the first modularity analysis of a pathogen and shed new light on the study of patho-

genicity and cellular processes.

Results
Prediction of E. coli O157:H7 PPIs

A domain interaction matrix is built using the MLE-MSSC method, based on 3722

credible protein interactions downloaded from the DIP database [24], which are vali-

dated by two or more experimental methods. All 5341 proteins of the E. coli O157:H7

Sakai strain are then scanned using the InterProScan program [25] to obtain the

domains of these proteins. Among the O157 proteins, 2118 (39.4%) have domains that

are present in the domain interaction matrix. In other words, 39.4% of the O157:H7

proteins can be used to predict PPIs. After computation, 24,995 PPIs involving 1701

proteins were predicted. Two post-processing steps were applied to eliminate direc-

tionally repeated interactions and self-interactions. The final dataset (additional file 1)

contained 12,130 PPIs involving 1652 proteins, which are shown in Table 1 and in

Additional file 2, Figure S1. We then used tools from the TIGR website to categorize

the proteins predicted to have PPIs into 20 functional groups (Figure 1). From the fig-

ure, we can see that the two most different categories lie in “Hypothetical proteins

Table 1 Predicted data of O157 protein interactions

Proteins
predicted

Total protein of
O157

percentage Interactions Average PPIs per
protein

Raw data 1701 5341 31.8% 24995 14.7

Processed
data

1652 5341 30.9% 12130 7.3
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(true)” and “Hypothetical protein (conserved)”. So although about 60% of the proteins

cannot be used to predict PPIs, a significant number of these proteins belong to

hypothetical proteins, which have no clear functions and may not even be expressed.

This could reduce the false negative effect caused by our PPI prediction method.

Evaluation of predicted PPIs

The reliability of our predicted PPIs is the basis of this research, as the module predic-

tion and further analysis are all founded on these data. Although MLE and MSSC were

proved in their original papers to show good sensitivity and specificity, we still adopted

several other methods (below) to validate the reliability of prediction.

Comparison of predicted PPIs with STRING database

Currently, there are too few experimental PPIs from E. coli O157 to evaluate our pre-

dictions. So we chose the STRING database, which collects experimental and predicted

PPIs. The PPIs in the STRING database include direct and indirect (functional)

Figure 1 Functional category comparison. Y-axis represents the number of proteins. X-axis represents
functional categories. Blue bars represent proteins in predicted data and red bars represent whole proteins
from O157. We can see the greatest difference between the two is in the hypothetical proteins (true)
category.
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associations, which are derived from four sources: genomic context, high-throughput

experiments, co-expression, and previous knowledge.

We downloaded the PPI data from the STRING database and 548,828 PPIs of EHEC

O157:H7 Sakai strain were selected, relating to 5201 proteins. After comparing our

predicted PPIs with the STRING datasets, we found that 2478 (20.4%) of them over-

lapped. PPIs are dynamic, so the results of different assays or even the same assays at

different times or under different conditions can vary. The overlap percentage here is

not far from the ~25% overlap of the high-throughput experimental yeast interactome

by Gavin [26] and Krogan [27] respectively. So we can conclude that our predicted

PPIs overlapped well with the existing data in the STRING database.

Topological analysis of predicted PPIs network

To evaluate the predicted PPIs, we also analyzed the topological structure of the pre-

dicted PPI network to see if it had the same characteristics as the PPI networks gener-

ated by experiments.

Yook et al. compared four available databases that represent the protein interaction

network of S. cerevisiae and found that the yeast protein interaction network in each

database shows scale-free topology and hierarchical modularity [28]. Li et al. analyzed

three of the largest protein interaction networks of S. cerevisiae, C. elegans and D. mel-

anogaster and also confirm the scale-free, small-world property [29].

To investigate whether our predicted PPI network has a scale-free topology, the

degree distribution was calculated. Degree k is the elementary character of a node,

representing the number of other nodes linked to it. The degree distribution P(k)

represents the probability that a node has k links. If the degree distribution follows the

power law distribution, P(k) ~ k-g , then it means the network is scale-free [30]. The

degree distribution of our predicted PPI network is shown in Figure 2. It follows the

power law with a degree exponent of 1.7, indicating that the PPIs can be defined by a

scale-free network. By randomizing the domain-domain interaction matrix, we

repeated the prediction procedure and generated a random PPI dataset. Instead of

being scale-free, the random PPIs dataset follows the Poisson distribution (additional

file 3, Figure S1).

Clustering coefficients can reflect the network’s modularity property. It is defined as Ci

= 2ni/ki(ki-1), where ni represents the number of direct links between the ki neighbors of

node i. The clustering coefficient of a network is defined as the average value of all indi-

vidual nodes. For the random network model, all the nodes share the same clustering

coefficient: Crand = p =
< k >

N
, where < k > is the average degree of the network and N

is the total number of nodes. The relative clustering coefficient of the predicted PPI net-

work is calculated and normalized by a random network of similar size [28]. The result

is 54.3, which indicates that the nature of the clustering is far from random.

From topological structural analysis, we can see that our predicted PPI network has

the same characteristics as those networks obtained by experiment (Table 2).

GO distance analysis of predicted PPIs

The GO annotations [31] of E. coli O157:H7 Sakai strain are included in the Uniprot

GOA annotation and thus are downloaded from the GO database. For each pair of
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proteins in our predicted dataset and random dataset, we computed the GO distance.

The smaller the value, the more specific a category the two proteins belong to, so they

are more likely to interact. The average GO distance of the predicted PPI dataset is

0.50, while that of the random dataset is 0.92. Student’s t test shows that the predicted

PPI dataset has a significantly low GO distance towards the random dataset (t = 82.5,

P < < 10-15).

Semantic similarity analysis of predicted PPIs

Besides the GO distance, the semantic similarity of GO terms is calculated to evaluate

the predicted PPI dataset. For pairs of interacting proteins, GO terms in the “Biological

Process” category are used to compute the semantic similarity score. The biological

process aspect can be related to protein interactions, both physical and indirect

(involved in same process). Of the 1651 proteins in the predicted PPI dataset, 1356

(82.1%) had the GO Biological Process annotation. The average semantic similarity of

our predicted PPI dataset is 3.49, while the score of random set is 1.66. Student’s t test

Figure 2 Degree distribution of predicted PPI network. Note that the degree distributions follow the
power law, indicating it is a scale-free network. The degree exponent value is obtained from fitting to the
function P(k) ~ k-g and is listed in table 2.

Table 2 Topological characteristics of experimental PPI networks [17] and predicted
dataset of O157

Organism No. of
proteins

No. of
interactions

Diameter of
network

Relative clustering
coefficient

Degree
exponent

S. cerevisiae 4773 15461 4.2 50 1.8

C. elegans 4030 2638 4.8 35 1.6

D. melanogaster 20988 7068 4.5 24 2

Predicted dataset
of O157

1652 12130 5.5 54 1.7
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shows that the predicted PPI dataset has a significantly high semantic similarity score

(t = 52.6, P < < 10-15). The average scores of both datasets may be somehow higher, as

we ignored interacting pairs lacking GO annotations in the “Biological Process”

category.

Combining the comparison of STRING database, topological analysis, GO distance

and semantic similarity analysis, we can tell that the predicted dataset is reliable

enough for further analysis.

Prediction of modules from PPI network

The Markov cluster algorithm (MCL) [32] is used to predict modules from the PPIs

obtained above, with an inflation coefficient of I = 1.8. However, the modules predicted

by the MCL algorithm have no overlapping components, while in real organisms some

proteins exist in multiple complexes or participate in several cellular processes at the

same time. We therefore identified the proteins shared between modules by a post-

processing step. The shared proteins are shown in Additional File 4 Table S1; 172

modules were separated and the size distribution of the final predicted modules dataset

(Additional File 5) is displayed in Additional File 6, Figure S1.

Assessing the quality of derived modules

In order to determine whether the predicted protein modules are biologically signifi-

cant and deserving of further research, we assessed the derived modules in three ways,

described below.

GO annotation analysis of the modules

We used the GO Biological Process annotation to evaluate the functional coherence of

the modules predicted above. As we mentioned earlier, 1356 (82.1%) of the 1651 pro-

teins in predicted PPI dataset had GO Biological Process annotation. We used these

proteins as the background set. For each module and each GO term, we computed the

enrichment of the term in the module versus the background set using a hypergeo-

metric test and derived a P-value for the module. These P-values were further FDR-

corrected for multiple testing. For each module, we chose the term that yielded the

highest level of significance. Finally, the results showed that 121 modules (70.3%) had

an enriched GO annotation (P < 0.01), which means that our predicted modules have

good functional coherence. Details of the enriched GO terms and P-values of the mod-

ules can be seen in Additional File 7, Table S1.

Comparison with known conserved protein complexes

Although there is no known database of the protein complexes of the E. coli O157:H7

Sakai strain, those complexes related to survival or reproduction will probably be con-

served in other related organisms. We can find these modules from our predicted data,

and then compare them with conserved protein complexes validated experimentally in

other bacteria to evaluate the reliability of our predicted modules. To achieve this, we

searched our modules in BOND (Biomolecular Object Network Databank) and in pub-

lished references in PubMed. The results show that 55 of our predicted modules

(32.0%) have complexes conserved in other bacteria, details of which can be seen in

Additional File 8, Table S1. Three examples are given below.
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Module 62 consisted of eight proteins (Additional File 9, Figure S1A), seven of which

are components of the F1F0-type ATP synthase. This enzyme is of crucial importance

almost ubiquitously because ATP is the common “energy currency” of cells [33,34], so it is

conserved among almost all organisms. Module 114 (Additional File 9, Figure S1B) con-

sisted of three proteins, RecO, RecF, and RecR. The RecFOR complex is also conserved in

other organisms; it modulates the assembly and disassembly of RecA filaments on DNA

and is essential in DNA recombination, repair and replication [35,36]. Module 126 (Addi-

tional File 9, Figure S1C) consisted of HypC, HypD, and HybG, which are also conserved

in other bacteria. The complex functions in the assembly of the active site of the [NiFe]-

hydrogenase enzymes [37].

Comparison with KEGG pathway database

The KEGG pathway database [38] collects pathway data from metabolic processes,

genetic information processes, environmental information processes and cellular pro-

cesses. As we mentioned earlier, a protein module may not only represent a protein

complex, but could also refer to a group of proteins participating in the same biological

pathway or cellular process. So comparing our predicted module with KEGG pathways

is useful for the evaluation. We adopted the following method to achieve this goal. First,

we used Uniprot GOA annotation to annotate the GO Term (Biological Process) for

each KEGG pathway and an enriched GO Term was obtained for each KEGG pathway.

If more than two proteins in our predicted modules belonged to KEGG pathways, we

selected the most overlapping KEGG pathway for further comparison. If the enriched

GO term of both the module and the most overlapping KEGG pathway were the same,

we deemed that the module was reliable; otherwise, we decided that it was not. Eighty

modules have at least two proteins that belong to 92 KEGG pathways. Among these, 51

(63.8%) modules have an enriched GO term identical with the KEGG pathway. Because

of the incompleteness and bias of the KEGG pathway data, we can infer that other mod-

ules that have no overlap with a KEGG pathway may have the same rate of reliability.

Combining GO annotation, comparison with conserved protein complexes and

KEGG pathways, we can conclude that the predicted modules have good functional

homogeneity and biological significance, which gives us confidence for further discus-

sion. In all of the 172 predicted modules, 121 functionally significantly enriched mod-

ules identified by GO annotation analysis were considered highly reliable, which can

give clues for further research.

Discussion
Predicted modules provide new information on pathogenicity

Two main factors contribute to the pathogenicity of EHEC O157:H7. First, the strain’s

ability to adhere and colonize, involving invasion, proliferation and resistance to the host

immune system, makes it an effective pathogen. Second, the strain produces toxins,

including endotoxin and exotoxin [39]. Among our predicted modules, we found six func-

tional modules that contain known virulence factors and may relate to E. coli O157’s

pathogenicity.

Novel module in cell adhesion

Module 6 consists of 49 proteins (Figure 3), and from Figure 3 we can see that the

topology of the protein interaction map from this module is very interesting. The 42
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peripheral proteins only interact with the seven central proteins; neither peripheral

proteins nor central proteins interact amongst themselves. The GO annotations of the

42 peripheral proteins are all “cell adhesion” (GO ID: 000715), while most of the pro-

teins’ annotations in NCBI are “putative fimbrial protein”, including LPF (long polar

fimbriae) [40] and Type-1 fimbriae [41,42], which were already experimentally vali-

dated as important virulence factors in adhesion processes of O157:H7. The NCBI

annotations of the seven central proteins are listed in Table 3; all seven scanned by the

InterProScan program contain a domain called “Penicillin-binding protein, transpepti-

dase fold” (IPR012338). We used TMpred to predict transmembrane regions of these

proteins, and the results showed that six of the seven proteins have at least one mem-

brane-spanning region, which suggests they are transmembrane proteins. We then pre-

dicted the signal peptides of the seven proteins by SignalP 3.0 [43], and the results

revealed signal peptides in five of them, which means they are probably secreted pro-

teins. These results provide the possibility that the central proteins have a cellular loca-

tion allowing them to interact with fimbirae proteins, as fimbriae proteins are located

in the outer membrane. This module has not yet been reported in any published refer-

ence. Further experimental validation and research is merited for this novel module.

Figure 3 Protein interaction map of module 6.
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Landscape of O157:H7 iron acquisition system

The protein interaction map in Figure 4 consists of two modules associated with iron

acquisition. Iron is required by most living cells because of its diverse roles in numer-

ous metabolic processes, including glycolysis, energy generation by electron transport,

and DNA synthesis. Iron forms highly insoluble ferric hydroxide complexes, which

severely limits its bioavailability for use by pathogens. However, invading pathogens

must gain access to host iron for survival, so two systems have evolved to acquire it

from the iron- or heme-chelating proteins of mammalian hosts. The first mechanism

relies on siderophores, which are compounds of low molecular mass and enormous

avidity for ferric iron [44]. The second method is the direct use of iron-containing

complexes, especially heme proteins [45].

Importing both siderophores and heme proteins into pathogens requires outer mem-

brane receptors and TonB-ExbB-ExbD import systems [46], which is the case in module

Table 3 NCBI annotation, SignalP and TMpred prediction result of the seven central
proteins

Protein ID SignalP TMpred annotation

NP_312106.1 secreted 1 Hypothetical protein

NP_308697.1 secreted 2 D-alanyl-D-alanine carboxypeptidase fraction A

NP_310158.1 unsecreted 1 glutaminase

NP_312469.1 unsecreted 0 glycyl-tRNA synthetase beta subunit

NP_311137.1 secreted 1 hypothetical protein

NP_308453.1 secreted 2 hypothetical protein

NP_311048.1 secreted 1 penicillin-binding protein 7

Figure 4 Interaction map of modules associated with iron acquisition. The green nodes belong to
module 35, and the yellow nodes belong to module 75.
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35 in Figure 4. Besides iron, the uptake of vitamin B12 also depends on the TonB system,

and BtuB in Figure 4 is the outer membrane receptor for B12 [47]. The TolA, TolR, and

TolQ elements in the yellow module share similarities with the TonB system and may

contribute to the integrity of the cellular envelope [48].

Two proteins are annotated as “hypothetical protein” in the green module; the Blast

result shows that they have high similarity to a TonB-dependent outer membrane receptor.

We also used Signal P and Tmpred [49] to see whether they have signal peptides or trans-

membrane domains. Both of the proteins were predicted to have signal peptides, meaning

that they are probably secreted proteins. One of them was predicted to have four possible

transmembrane domains, while no transmembrane domains were predicted for the other.

Further experiments are suggested to validate their roles as outer membrane receptors.

We can see from Figure 4 that there are multiple outer membrane receptors for iron,

probably because iron is essential for O157; in this way the pathogen can increase its

tolerance to mutations and ensure the continued import of iron. It has been reported

that mutations in one of the outer membrane receptors do not affect iron acquisition,

while a TonB mutant failed to use heme as an iron source or to utilize the sidero-

phores, and showed reduced virulence [50,51]. Our predicted interaction map can

explain this well, as TonB plays a hub-like role, such that mutation or deletion of it

will destroy the network and thereby cause inefficient iron acquisition.

Shiga toxin: the most important virulence factor of O157

Module 101 (Figure 5) contains four proteins. Stx (Shiga Toxin) is a key virulence fac-

tor of O157. It consists of two subunits, A and B, with the structure A1B5. E. coli

O157 can produce Stx1 and Stx2. Stx1 exists internally, while Stx2 is secreted to the

environment. Stx2 is about 1000 times more toxic to human renal microvascular

endothelial cells than Stx1 [52]. Also, experimental support for the association between

Stx2 and severe diseases was provided by Siegler et al., who compared the effects of

Stx1 and Stx2 in a primate animal model of HUS [53]. The proteins in Figure 5 are

subunits of Stx1 and Stx2. We can see that there are interactions between Stx1 and

Stx2, perhaps because their subunits are similar (55% identity in amino acid sequence

between the A subunits of Stx1 and Stx2), causing a false positive. It is also possible

Figure 5 Interaction map of module 101 related to Shiga toxin.
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that in some periods they join to form a complex, and are split afterwards. If the latter

hypothesis can be proven experimentally, then we can explain why organisms that pro-

duce both Stx1 and Stx2 are paradoxically less virulent than those that produce Stx2

but not Stx1 [54]. The interactions between Stx1 and Stx2 could prevent Stx2 from

being secreted. Also, we might be able to design a drug to disable the splitting of Stx1

and Stx2, thereby effectively reducing the virulence of O157.

Other pathogenicity-related modules

Module 88, displayed in Additional File 10, Figure S1A, contains Tir (Translocated

Intimin Receptor), which is secreted by a type III secretion system (TTSS) and inserted

into the host cell membrane as a receptor for intimin [55]. CesT is Tir’s chaperone,

and it directs Tir to TTSS ATPase EscN [56]. EscN functions in substrate recognition

and in chaperone release from, and unfolding of, type III secreted proteins [57]. Mod-

ule 115 has three proteins, shown in Additional File 10, Figure S1B: the a, b, and g
subunits of urease. The complex catalyzes the hydrolysis of urea into ammonia and

carbon dioxide. Expression of urease could modify internal and/or surrounding anion

concentrations, enabling O157 to survive in acidic conditions and perhaps contributing

to its low infectious dose [58]. Module 130 consists of two periplasmic proteins, RseA

and RseB, together with rpoE. RpoE is a sigma factor responsible for the transcription

of genes for the cell envelope stress response. Under normal conditions, it is kept inac-

tive by its interaction with the periplasmic proteins RseA and RseB. Under stress con-

ditions, a protease in the periplasm cleaves the interaction between rpoE and the

RseAB complex. Then rpoE is free to regulate the expression of genes associated with

the stress response. Inactivation of rpoE diminishes bacterial survival and growth inside

host macrophages, as it also regulates genes required for oxidative stress resistance

[59].

From our study of the pathogenicity-related modules above, we can see that our

modularity analysis of O157:H7 provided new information about the pathogen and

clues for further experimental validation. This new information not only includes novel

modules and speculations about the functions of new proteins, but also pathogenicity

from the point of view of the module level. However, owing to false negatives in PPI

prediction, other pathogenicity-related modules have not been shown here. With more

complete and reliable experimental PPI data and more accurate in silico prediction

methods in the future, the modularity analysis of pathogens will help us generate a bet-

ter understanding of pathogenicity.

Investigation of relationships among predicted modules

In this study, 172 modules are divided by a mathematic algorithm from a complex PPI

network shown in Additional File 2, Figure S1, while in the real organism they may

have relationships, even with few or no interactions among them. It has been reported

that complex cellular processes are modular and are accomplished by the concerted

action of functional modules [60]. Therefore, to study cellular processes, it is of great

importance to determine the relationships among the 172 predicted modules and their

meaning. For this investigation, we considered three kinds of information: Modules

were deemed related if (1) they have direct PPIs or overlapping components, (2) they

have the same enriched GO term of Biological Process, since they might participate in
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the same cellular process, (3) they overlap with the same KEGG pathway and have the

same enriched GO term as the KEGG pathway. These three kinds of information were

then integrated and the results are listed in the supporting files. Figure 6 shows an

example of integrating two of the kinds of information mentioned above. The relation-

ships of the predicted modules provide a guideline for the discussion of cellular pro-

cess below.

Predicted modules demonstrate modularity of cell function

In the 21st century, research in cell biology is changing from molecular to modular,

and from studying the function of only one gene or protein to investigating how a

group of biological molecules functions as a module. The conception of modularity of

cell function is that cell functions are carried out by different modules, which comprise

many types of molecules. Through studying the relationships among modules, we

found that our predicted modules demonstrate the modularity of cell function.

Figure 7 consists of five small modules related to cell division in O157. In the green

module, FtsZ is a GTPase that forms a ring-like structure known as the Z-ring at the

midcell boundary [61,62]. There are some similarities between FtsZ and tubulin, so it

is not surprising that the Z-ring is a highly dynamic structure. ZipA is a stabilizing fac-

tor of the Z-ring [63], while proteins in the yellow module are destabilizing factors of

the Z-ring [64]. SopA and SopB, in the red module, are related to the partitioning of

the plasmid during cell division. After BLAST, we found that two of the three hypothe-

tical proteins in the red module were highly similar to ParA and ParB, which are also

related to partitioning of the plasmid [65]. MurF, MurC, and MurE, in the blue mod-

ule, are associated with cell envelope biosynthesis [66]. The Fts proteins in the purple

Figure 6 Relationships among predicted modules. Red node in the network represents a module. Node
radius is proportional to the module’s size. Node labels represent module number. Edges represent at least
two PPIs among modules. Modules in dashed rectangle have the same GO Biological Process Term as each
other.

Wang et al. Theoretical Biology and Medical Modelling 2011, 8:47
http://www.tbiomed.com/content/8/1/47

Page 13 of 23



module assemble on the Z-ring in order, though their functions are still not clear. The

other proteins in the purple module are related to cell wall biosynthesis [67].

Because of false negatives, there may be some cell division-related modules that have

not been predicted, but our modularity analysis still gives a landscape that multiple

modules of different functions coordinate to accomplish cell division. This coordina-

tion does not only refer to small modules interacting directly to form a large module.

For example, in Figure 7, the interaction between modules may be because two mod-

ules share the same protein, though they may be separated by time or location. But

when they finish their own functions, they still macroscopically coordinate to fulfill a

more important cellular function. In our other predicted modules, we also found the

phenomena of modularity of cell function, which is listed in Table 4.

There are still many problems to solve regarding the modularity of cell function,

such as how other cell functions are modular, or what the relationship is among mod-

ules fulfilling the same cellular function or how they coordinate and assemble. Once

these problems are solved, the era of synthetic biology will really arrive. We will be

able to design and synthesize a functional module in the same way that we design

complex electronic modules or chips for a computer. Moreover, we will be able to

arrange different functional modules properly, so as to simulate the cellular environ-

ment or synthesize new life.

Figure 7 Modules related to cell division. Green nodes belong to predicted module 135, yellow nodes
belong to module 70, red nodes belong to module 61, blue nodes belong to module 93, and purple
nodes belong to module 38.

Table 4 Numbers of modules related to other cellular functions in our predicted data

Cellular Functions Number of related modules(module ID)

DNA repair 9 (66, 67, 81, 82, 86, 98, 108, 114, 119)

DNA binding 6 (1, 13, 25, 44, 56, 83)

Signal transducer activity 4 (8, 17, 28, 29)

Structural constituent of ribosome 7 (91, 92, 97, 122, 127, 128, 151)

Transporter activity 8 (2, 4, 14, 15, 75, 35, 94, 96)

Transcription factor (regulator) 7 (5, 7, 24, 27, 48, 74, 112)
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Predicted modules show cooperative effects

Cooperativity among biological molecules, for example enzymes, is established beyond

doubt. We investigate the relationships among our predicted modules and find that

cooperativity also obtains at the module level. The effect of different modules with

similar functions cooperating to fulfill a cellular process is described as a positive coop-

erative effect; if these modules perform opposite functions, then we call it a negative

cooperative effect.

Positive cooperative effect

In Figure 8A, three predicted modules make up the Sec protein translocation system.

This system is widespread in bacteria. The substrate proteins of the system have

amino-terminal signal peptides, and they are transported in an unfolded state, which is

largely driven by the energy released during ATP hydrolysis. SecYEG forms a complex

and is likely to oligomerize to form a protein-conducting channel across the cytoplas-

mic membrane. SecA is an ATPase that provides energy for protein translocation [68].

The SecYEG-A complex constitutes a functional entity, and additional proteins are

involved in protein translocation across the cytoplasmic membrane. SecB is a molecu-

lar chaperone, which binds to the mature portions of preproteins and facilitates their

targeting to the translocation system via its affinity for SecA [69]. Ffh and FtsY, in the

red module, are involved in another targeting route for precursor proteins that is

mediated by the signal recognition particle [70]. Figure 8B shows predicted module 96,

which corresponds to another protein translocation system: the twin-arginine translo-

cation (TAT) system, which operates in thylakoid membranes and the plasma mem-

branes of a wide variety of prokaryotes. In contrast to the Sec system, TAT has the

unique ability to transport folded proteins through tightly sealed membranes, and it

does not seem to require ATP hydrolysis at any stage of translocation [71].

We can see clearly that these four modules of two systems carry out similar func-

tions and cooperate to fulfill the cell’s protein export functions.

Negative cooperative effect

In Figure 7, we have mentioned that the green module plays a role in forming a

dynamic Z-ring structure at the midcell boundary and stabilizing this structure. Since

the components in the yellow module play an opposing role, they are destabilizing fac-

tors of the Z-ring. These two modules together shift the equilibrium of FtsZ expression

Figure 8 Modules related to protein export. A: Modules related to Sec translocation system. B: Modules
related to the TAT system.
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between an unassembled cytoplasmic pool and the assembled ring. The negative coop-

erative effect between these two modules ensures that the Z-ring only forms in the

midcell instead of other places in the cell, so cell division is accomplished properly.

Of course, besides the cooperative effect, there might be other relationships among

modules such as regulation, activation, deactivation and so on. But investigating these

relationships requires other information and remains a great challenge.

Predicted modules provide possible candidates for biological pathway extension

Biological pathways can be regarded as a collection of known relationships or reactions

among biological objects (i.e., genes or gene products). However, knowledge about bio-

logical pathways is not complete, and known pathways are insufficient to cover all

genes or gene products. In the case of humans, for example, about 3,000 genes are

covered by the major biological pathway databases. The rest, and their relationships

with other genes or gene products, remain to be explored [72].

In the previous assessment, we found modules that overlapped with the KEGG path-

way and had the same enriched GO terms. In these modules, proteins not overlapping

may be possible candidates for KEGG and may provide information for pathway exten-

sion. Two examples are given below.

There were 12 proteins in module 42 (Figure 9), seven (green nodes) of which had

overlaps with KEGG pathway ecs00020: Citrate cycle (TCA cycle). In this pathway,

these seven proteins form an enzyme (1.3.99.1) to catalyze the conversion of succinate

to fumarate. Four (orange nodes) of the five remaining proteins had the same GO

“Biology Process” term as these seven and the enriched GO term of the pathway. It is

inferred that those four protein candidates might either be components of the enzyme

or play roles in regulating its activity.

Module 4 consists of 53 proteins, 51 of which overlap with KEGG pathway ecs02010:

ATP-binding cassette (ABC) transporters (Additional File 11, Figure S1). ABC trans-

porters play an important role in bacteria, importing various nutrients required for sur-

vival in different niches and exporting substances toxic to the cell. Characteristically,

ABC transporters have three components: a substrate-binding protein, a permease pro-

tein, and an ATP-binding protein. The NCBI annotations of the remaining two pro-

teins in module 4 were “putative binding-protein dependent transport protein” and

“putative transport system permease protein”, respectively. This suggests that these two

proteins are possible candidates for KEGG pathway extension and deserve further

experimental validation.

From the two examples above, we can see that modularity analysis of O157:H7 has

the capacity to provide possible candidates for, and facilitate research into, biological

pathway extension.

Predicted modules gave clues for discovering new cross-talk

Few pathways are isolated. Cross-talk among pathways links them into a complex net-

work [73]. Such a network, with cross-talk linking distinct pathways, would confer on

the cell a sophisticated ability to sense multiple environmental signals impinging upon

it, thus providing a means of adapting or regulating its response to a particular range

of effectors [74]. Major new challenges have arisen from attempts to identify cross-talk

among pathways.
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Module 65 (Figure 10) consists of seven proteins that all have phosphotransferase

activity. From the figure, we can see that three pathways are presented in this module.

They are ecs00051: “Fructose and mannose metabolism”, ecs00052: “Galactose metabo-

lism”, and ecs00053: “Ascorbate and aldarate metabolism”. Interactions among these

pathways could be possible cross-talk. Some false-positives might exist, and experimen-

tal validation is needed for further identification of cross-talk. However, our modularity

analysis has the ability to provide clues that may lead to discovering new cross-talk

pathways.

Concluding remarks

Modularity analysis of PPIs has become an important and challenging topic in life

science. It will be instructive for scientists exploring the basic rules of cell processes or

studying the mechanisms of pathogens. In this research, we integrated several bioinfor-

matics methods for modularity analysis of E. coli O157:H7. We predicted PPIs inside

Figure 9 Possible candidates for biological pathway extension. Green cycles represent proteins
overlapping with ecs00020; orange cycles represent candidate proteins that have no overlap but have the
same GO term as the pathway.
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the bacterium, then we derived predicted modules. Evaluation showed that these pre-

dicted modules were functional, enriched, and biologically reliable. One hundred and

forty-four highly reliable modules were provided as directions for experimental

research. Through our modularity analysis, pathogenicity-related modules can be

found, which provide new information regarding the mechanisms of pathogenicity and

enable us to study pathogens in a new light. Our predicted modules also suggest that

some cellular functions are modular and give a more comprehensive understanding of

cell functions. Cooperativity among modules was discussed. Moreover, our modularity

analysis of O157:H7 provides possible candidates for the extension of biological path-

ways and clues for discovering new cross-talk between pathways. The method for mod-

ularity analysis provided in this study can be applied to other pathogens or any other

organism of interest that has been sequenced.

The bottleneck of this method is its reliance on the prediction of PPIs. Because there

are no available, experimentally validated data on PPIs for E. coli O157:H7, we adopted

a domain-based bioinformatics method to predict such PPIs. Although this method

has been successful and has some advantages compared to other predictive methods,

we can see from the results that less than 1/3 of the proteins of O157 were predicted

to have PPIs, which caused high false negative rates. False positives also exist in this

incomplete set of PPIs. These problems limited later modularity analysis. We believe

that with the increase of experimental data and the development of analytical methods,

modularity analysis of all biological interactions will greatly facilitate research in life

science and the development of synthetic biology.

Figure 10 Clues for discovering new cross-talk. Blank dashes represent pathway ecs00051, while pink
represents ecs00053 and purple represents ecs00052.
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Materials and methods
Datasets used

All datasets used in this study were downloaded in November 2007. DIP [24] provides

3722 creditable protein interactions, which are validated by two or more experimental

methods. These 3722 PPIs were selected from 54,511 PPIs deposited in the DIP data-

base referring to more than 200 organisms, including both non-pathogens and patho-

gens. Both direct (physical) and indirect (functional) associations are included among

the 548,828 PPIs of E. coli O157:H7 used for overlap analysis and downloaded from

the String database. The PPIs in String are derived from four sources: genomic context,

high-throughput experiments, coexpression, and previous knowledge. Sequences for

the proteins of E. coli O157:H7 are downloaded from the NCBI Refseq database in

Fasta format. One hundred and twelve pathways of O157 are downloaded from the

KEGG pathway database [38].

Prediction of E. coli O157 PPIs

Maximum Likelihood Estimation (MLE) and Maximum Specificity Set Cover (MSSC)

are both based on the Association Method (AM). These methods use currently avail-

able PPI data, and estimate the probabilities of domain-domain interaction observed in

PPIs. Using the inferred domain-domain interaction, these methods can then predict

previously unknown protein interactions. As MLE and MSSC modify AM in different

and independent ways to improve accuracy, we combined these two methods to

achieve a better result. In this work, the program InterProScan version 12.0 is adopted

to scan domains of the creditable protein interactions from DIP. Then MLE and

MSSC are used to build a domain interaction matrix for the prediction of PPIs. Inter-

ProScan was used again to scan domains of proteins of E. coli O157:H7 Sakai. The

total matched pairs of the O157:H7 proteins were compared with the domain interac-

tion matrix, and raw predicted PPI data were obtained. Two post-processing steps

were applied to the raw PPI data. First, we eliminated directional repeats from the

PPIs. Because the prediction program cannot predict weighted directional PPIs, direc-

tional PPIs are actually the same. Second, we eliminated self-interactions. The exis-

tence of self-interactions will generate single protein modules when the MCL

algorithm is used for prediction. Although simple protein modules may represent

homogeneous multimers, these would be difficult to analyze without additional

information.

Computation of GO distance

For any two interacting proteins, we calculate the Gene Ontology distance between

them, taking into account all GO terms that are common to the pair and terms speci-

fic to each protein. Any two proteins can have several shared GO terms (common

terms) and a variable number of terms specific for each other (specific terms). The GO

distance between interacting proteins i and j is calculated using the Czekanowski-Dice

formula [75]:

Di,j =
| TGO(i)�TGO(j) |

| TGO(i) ∪ TGO(j) | + | TGO(i) ∩ TGO(j) |
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In this formula, TGO are the sets of the proteins’ associated GO terms, while |TGO|

stands for their number of elements and Δ is the symmetrical difference between the

two sets. This distance formula emphasizes the importance of the shared GO terms by

giving more weight to similarities than to differences. Therefore, for two genes that

share no GO terms, the distance is 1, while for two proteins sharing exactly the same

set of GO terms, the distance is 0. Based on this algorithm, some Perl programs were

written to implement the calculation and analysis of GO distance in our study.

Calculation of GO semantic similarity

We used an R based package, csbl.go http://csbi.ltdk.helsinki.fi/csbl.go[76], to calculate

GO semantic similarity. The package can compute similarities for arbitrary numbers of

genes and supports custom GO annotation tables. For pairs of interacting proteins, the

semantic similarity of GO terms in the “Biological process” taxonomy is calculated on

the basis of the Resnik measure.

Prediction of PPI modules

The Markov Cluster algorithm (MCL) [32] was downloaded at http://micans.org/mcl.

The algorithm simulates flow on the PPI graph by constructing its adjacency matrix

and computing its successive powers to increase the contrast between regions with

high flow and regions with low flow. The graph was then partitioned into high-flow

regions corresponding to protein modules, separated by regions of no flow.

In the MCL algorithm, the inflation coefficient (I) is the main value that affects clus-

ter granularity. A big I value will tend to result in fine-grained clusters. We selected

five I values to predict protein modules: 1.4, 1.8, 2.2, 2.6, and 3.0. Since there is no

known protein complex database available for E. coli O157 that would allow us to

identify the optimal value, we used the MCL evaluation program combined with refer-

ences and finally chose I = 1.8 for further research.

The modules predicted by the MCL algorithm have no overlapping components, but

in real organisms some proteins exist in multiple complexes or participate in several

cellular processes at the same time. Shuye Pu et al. [77] solved this problem by a step

of simple post-processing. In that step, proteins assigned to each cluster (donor clus-

ter) were scanned for interaction partners in other clusters, and proteins interacting

with a sufficiently large fraction of partners in another cluster (acceptor cluster) were

also assigned to that cluster.

Visualization

A map of predicted PPIs was drawn using Pajek software downloaded at http://vlado.

fmf.uni-lj.si/pub/networks/pajek. Other PPI maps of modules were drawn by Cytoscape

2.4.0, which can be downloaded at http://www.cytoscape.org/download.php

Other tools

The TIGR tools we used to categorize proteins can be obtained at http://www.jcvi.org/

cms/research/projects/cmr/overview/. The TMpred program makes a prediction of

membrane-spanning regions and their orientation. The program can be used at http://

www.ch.embnet.org/software/TMPRED_form.html. SignalP predicts the presence and

location of signal peptide cleavage sites in amino acid sequences from different
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organisms: Gram-positive prokaryotes, Gram-negative prokaryotes, and eukaryotes. It is

also an online tool and can be obtained at http://www.cbs.dtu.dk/services/SignalP/

Additional material

Additional file 1: Predicted PPIs dataset. Final dataset of predicted PPIs in this study, containing 12,130 PPIs
with 1652 proteins involved.

Additional file 2: Profile of predicted PPI map. Green nodes represent proteins, blue edges represent
interactions.

Additional file 3: Degree distribution of random PPIs dataset. The random PPIs dataset follows the Poisson
distribution.

Additional file 4: Result of shared protein. Shared protein identified by a a post-processing step.

Additional file 5: Dataset of predicted modules. Data of 172 modules predicted in this study.

Additional file 6: The size distribution of 172 predicted protein modules. The biggest module contains 83
proteins, while the smallest module contains only 2 proteins.

Additional file 7: Enrich GO term and P-values for each predicted module. A list of enrich GO term and P-
value for each module if applicable.

Additional file 8: Comparison of predicted modules and conserved protein complexes. Comparison of
predicted modules with protein complexes in BOND and in published references in PubMed. Details of the 55 of
our predicted modules (32.0%) have complexes conserved in other bacteria.

Additional file 9: Three examples of comparison with known conserved protein complexes. A: protein
interaction map of module 62. B: protein interaction map of module 114. C: protein interaction map of module
126.

Additional file 10: Other pathogenic related modules. A: module 88; B: module 115; C: module 130.

Additional file 11: KEGG pathway map for ABC transporters. Yellow panes represent proteins which have
overlap with predicted module 4.
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