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Abstract

This article proposes a model of bone remodeling that encompasses mechanical and
electrical stimuli. The remodeling formulation proposed by Weinans and collaborators
was used as the basis of this research, with a literature review allowing a constitutive
model evaluating the permittivity of bone tissue to be developed. This allowed the
mass distribution that depends on mechanical and electrical stimuli to be obtained.
The remaining constants were established through numerical experimentation. The
results demonstrate that mass distribution is altered under electrical stimulation,
generally resulting in a greater deposition of mass. In addition, the frequency of
application of an electric field can affect the distribution of mass; at a lower frequency
there is more mass in the domain. These numerical experiments open up discussion
concerning the importance of the electric field in the remodeling process and propose
the quantification of their effects.
Background
Bones provide mechanical stability to the human body and are a source of minerals for

metabolism [1]. Bones have been studied extensively from the mechanical and mineral

standpoint, and in terms of functionality [1,2]. From a mechanical point of view, bones

can be adapted to loads on trajectories of stress through mineral apposition, which is

due to the action of osteoblasts [1-4]. Furthermore, they reabsorb minerals when the

mechanical stimulus is sufficiently low, as it is unnecessary to maintain structure [2].

Reabsorption is directed by osteoclasts. Osteoblasts and osteoclasts are the primary

cells involved during bone remodeling that are stimulated by the action of mechanical

strain sensors, for example, osteocytes [2]. These three cell types play an important

role during the processes of replacement, maintenance and modeling of bones [1].

Following the work of Meyer during the nineteenth century, Wolff [5] proposed a the-

ory of trabecular bone architecture, which assumes that trajectories of high mechanical

stress form the trabecular bone. In 1987, Frost [6-8] suggested an adaptive mechanism of

bone mass as a function of mechanical stress. Consequently, several bone remodeling

algorithms have been developed including those proposed by Frost [8], Pauwels [9], Kum-

mer [10], Cowin [11-13] and Hegedus [14], which predict the formation of bone structure

from internal mechanical loads studied in terms of stress and strain.

From mechanical models of bone remodeling, sophisticated studies have been car-

ried out concerning the processes of apposition and reabsorption during bone
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turnover, and particularly concerning the distribution of mass in the femur [15,16], hip

replacement [17,18], and dental implants [19]. Generally, these studies have been phe-

nomenological. Therefore, researchers have made significant efforts to include mathem-

atical models and the role of cell biology and biochemistry in the remodeling process,

resulting in research that begins at the microscopic level, concerning the effects of

basic cellular remodeling units (BMU, Basic multicellular units) during tissue replace-

ment [20,21]. From the perspective of BMU, important work was initiated at the bio-

chemical and mechanical level concerning the effects of cracks [22], cell cycles

throughout adult life [23], active molecules within each cell [24] and the spatial distri-

bution of each BMU [25]. With these important advances in the understanding of bone

remodeling, researchers in the field increasingly turned to the study of other biophys-

ical stimuli that can affect this process. Most models have not taken account of the

physical-chemical phenomena of tissue mechano-transduction. For this reason, new

investigations that allow the piezoelectric and electrokinetic behavior of the bone to be

studied were undertaken [26].

A clinical study demonstrated that a local electromagnetic field accelerates the heal-

ing process after bone fracture [26]. Therefore, an article by Demiray and Dost [27]

began new research concerning the effect of the electromagnetic field on interior injury

to bone. In another article, Ramtani [26] presented a mathematical model relating to

the benefit of the electric field in the reparair and maintenance of the solid matrix of

bone. Furthermore, there are studies concerning the electrical behavior of bone tissue

during the production of electric fields, and external electrical flow. Fukada and Yasuda

[28] demonstrated that bone exhibits piezoelectric behavior, i.e. mechanical stress cre-

ates electric polarization (the indirect effect) and an external electric field causes strain

(the converter effect). In addition, the properties of bones that produce piezoelectric

potentials have been determined [29-33]. These data led to the development of math-

ematical models that include the effect of electromagnetic fields during the repair

[34,35] and remodeling [36] of bone. For example, Qu and Yu [34] developed a math-

ematical model (no spatial dimension) of the remodeling process and healing under the

effect of mechanical loads and the use of electric charges. In this model, the higher the

voltage applied to a bone after fracture, the lower the percentage of bone damage and

micro damage in the few days after the stimulus. Similarly, during osteoporosis an elec-

tric field increases bone density over time. Huang et al. [37] established a hypothesis

concerning the biological and biochemical pathways that activate cells, particularly

osteocytes, during the imposition of an electric field. Furthermore, Qu and Yu [38] pro-

posed a mathematical model that included mechanical loads and electromagnetic

effects during the process of bone remodeling.

To date, there have been no phenomenological models concerning bone remodeling that

have been tested and compared with purely mechanical models. Therefore, this article pro-

poses a new electro-mechanical model relating to bone remodeling. To test its performance,

various numerical experiments were carried out and compared with previous mechanical

models. The electric model constants were obtained from relevant literature and numerical

experimentation. From these assumptions it was concluded that the electric field can affect

the distribution of mass, which originates from the remodeling process, under mechanical

effects only. Using the remodeling model of Nackenhorst [39] as a starting point, it was

demonstrated that the electric field can increase bone density and accelerate the process of
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apposition. Therefore, the model proposed herein can be used as a basis for further work

concerning electrical effects in the maintenance of bone.

Methods
The electro-mechanical model

The electro-mechanical model of bone remodeling that involves mechanical and elec-

trical stimuli can be written, hypothetically, as follows (1):

dρ
dt

¼ gmech ρ;Wmec ρð Þð Þ þ gelect ρ;Welect E ρ; fð Þð Þð Þ ð1Þ

Wheregmech ρ;Wmec ρð Þð Þ is the well known mechanical stimulus described by Weinans

[39], which depends on tissue density (ρ x; y; z; tð Þ), and the work carried out by mech-

anical stress (Wmec ρð Þ) and gelect ρ;Welect E ρ; fð Þð Þð Þ is the electrical stimulus that depends

on density, frequency and the work carried out by the electric field (Welect E ρð Þð Þ). Dur-
ing this first approach, we consider that the two stimuli are added to determine the

bone remodeling process. However, we will develop each of the terms that determine

the electro-mechanical model throughout this article.

The mechanical model

Following the remodeling mechanical model described in [4,39], the density variation

over time depends on the mechanical stimulus that exists at every spatial point of the

bone, which can be written as in [39] (2):

gmech ρ;Wmec ρð Þð Þ ¼ k1
W ρð Þ
Wrefm

� 1

� �
ð2Þ

Where ρis the bone density at each point in space (ρ x; y; z; tð Þ), W ρð Þis the energy-
strain per unit of volume due to mechanical stress, k1 is a constant and Wref m is the

strain-energy (per unit of volume) of reference that sets the threshold for which they

will perform deposition (W ρð Þ=Wrefm > 1) or absorption (W ρð Þ=Wrefm < 1) of the tissue

[39], in the presence of mechanical stress. It should be noted that the energy-strain

depends on the density and is given by (3):

W ρð Þ ¼ 1
2ρ

eTC ρð Þe ð3Þ

Where e is the strain, in Voigt notation, of the strain tensor given in (4):

e ¼ E11 E22 γ12½ �T ð4Þ

That is a function of the displacements given by (5):
u ¼ u1 u2½ �T ð5Þ

e ¼ B1u ¼

@

@x
0

0
@

@y
@

@y
@

@x

2
666664

3
777775

u1
u2

� �
ð6Þ
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In addition, C ρð Þ is the matrix of linear elasticity. The matrix C ρð Þ contains the Pois-

son module, which is usually considered constant, and Young's modulus that depends

on the density by expression [4] (7):

E ρð Þ ¼ Aρn ð7Þ
where A is a constant and n establishes a relationship of power density that has been

uncovered through experimentation [39].

By manipulating equation (7) we can obtain a dimensionless form of the density. This

is easier to use with the aim of determining the modulus of elasticity. Multiplying the

right side of (7) by ρn0=ρ
n
0

� �
produces (8):

E ρð Þ ¼ Aρn0
ρ

ρ0

� �n

¼ E0
ρ

ρ0

� �n

¼ E0λ
n ð8Þ

Where E0 ¼ Aρn0 and λ ¼ ρ=ρ0 are the elasticity modulus and the dimensionless density

ratio, respectively. Therefore, the linear elasticity matrix can be expressed as (9):

C ρð Þ ¼ λnC0 ð9Þ

Where C0 is the matrix of linear elasticity with constant coefficients, which depends
onE0 and ν only, and is given in the case of plane stress by:

C0 ¼ E0
1� ν2

1 ν 0
ν 1 0

0 0
1
2

1� νð Þ

2
64

3
75 ð10Þ

Thus, the strain energy per unit of volume (3) can be expressed as (11):
W ρð Þ ¼ 1
2ρ

λneTC0e ¼ λn

ρ

eTC0e

2

� �
¼ λn

ρ
�Umec ð11Þ

Where �Umec is the strain energy at each instant of time, which is calculated with the

initial constant of the remodeling [39] problem only. Replacing these equations in (2),

and with some algebraic manipulation, we produce (12):

gmech ρ;Wmec ρð Þð Þ ¼ k1
ρ0
ρ0

λn �Umec

ρWrefm
� 1

� �
¼ k1

ρ0
ρ

� �
λn �Umec

ρ0Wrefm
� 1

� �

¼ k1 λn�1
�Umec

ρ0Wrefm
� 1

� �
ð12Þ

where we can define Urefm ¼ ρ0Wrefm . Therefore, we produce the following equation for

the density ratio (13):

gmech ¼ k1 λn�1
�Umec

Urefm
� 1

� �
ð13Þ

The momentum equation that establishes the internal stresses of a body is given by
[40] (14):

r � σ þ b ¼ 0 ð14Þ

Where the stress is given by (15):
σ ¼ C ρÞe ¼ λnC0eð ð15Þ
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Electrical model

This article proposes the inclusion of a hypothetical electrical term that can determine,

in part, the process of bone remodeling. Therefore, the contribution of this stimulus

can be written as (16):

gelect ρ;Welect E ρ; fð Þð Þð Þ ¼ k2
Welect E ρ; fð Þð Þ

Wrefe
ð16Þ

Where 2 ρ; fð Þ is the electrical permittivity of bone tissue and depends on the dens-
ity, (ρ) where frequency (f ), Welect 2 ρ; fð Þð Þ is the electrical energy per unit of volume,

k2 is a constant and Wref e is the electric energy (per unit volume) of reference.

It should be noted that the term electric energy depends on permittivity, which in

turn depends on the density and frequency. This energy term is given by (17):

Welect 2 ρ; fð Þð Þ ¼ 1
2ρ

2 ρ; fð ÞE x; y; z; tð Þ2 ð17Þ

Where E x; y; z; tð Þ is the electric intensity (electric field). However, E ρ; fð Þ , electrical
permittivity, depends on density and frequency, and is given by (18):

2 ρ; fð Þ ¼ 202r ρ; fð Þ ð18Þ

Where 20 is the permittivity in the free space and 2r ρ; fð Þ is the relative permittivity,
which in turn is given by (19):

2r ρ; fð Þ ¼ Bρm þ δ fð Þ ð19Þ

where B is a constant and m establishes a relationship of power density that can be

proved through experimentation, and will be developed in the following sections. Fur-

thermore, δ fð Þ is a function of frequency at which the electric field is applied.

As with the mechanical case, we can manipulate equation (19) so that it is

expressed in terms of relative density, multiplying the first term by to produce

ρn0=ρ
n
0

� �
(20):

2r ρ; fð Þ ¼ Bρm0 λ
m þ δ fð Þ ¼ 2ρλ

m þ δ fð Þ ð20Þ

where 2ρ is a constant for the power model of relative permittivity. Therefore, sub-

stituting (20) in (17), we obtain (21):

Welect 2 ρ; fð Þð Þ ¼ 1
2ρ

ρ0
ρ0

20 2ρλ
m þ δ fð Þ� �

E x; y; z; tð Þ2

¼ 1
2ρ0λ

20 2ρλ
m þ δ fð Þ� �

E x; y; z; tð Þ2 ¼ 1
ρ0λ

2ρλ
m þ δ fð Þ� �

�Uelect

ð21Þ

where �Uelect ¼ 1
220E x; y; z; tð Þ2. Substituting equation (21) in (16) produces (22):

gelect ρ;Welect 2 ρð Þð Þð Þ ¼ k2

1
ρ0λ

2ρλ
m þ δ fð Þ� �

�Uelect

Wrefe
¼ k2

2ρλ
m þ δ fð Þ� �
λ

�Uelect

Urefe
ð22Þ

We have chosen Urefe ¼ ρ0Wrefe as the reference value of electric energy.
However, Gauss's law for an electric field, with no internal loads, is given by (23):

r �D ¼ ρe ð23Þ

where D ¼2 E and ρe is the density of the electric energy. In turn, the electric field
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can be expressed in terms of a quantity called electric potential or voltage, given

by (24):

E ¼ �rφ ð24Þ

whereφ is the electric potential.In summary, equation (1) can be written as (25):

dρ
dt

¼ k1 λn�1
�Umec

Urefm
� 1

� �
þ k2

2ρλ
m þ δ fð Þ� �
λ

�Uelect

Urefe
ð25Þ

Again, using the dimensionless form, we have (26):
dλ
dt

¼ k1
ρ0

λn�1
�Umec

Urefm
� 1

� �
þ k2
ρ0

2ρλ
m þ δ fð Þ� �
λ

�Uelect

Urefe
ð26Þ

dλ
dt

¼ kmec λn�1
�Umec

Urefm
� 1

� �
þ kelect

2ρλ
m þ δ fð Þ� �
λ

�Uelect

Urefe

where kmec ¼ k1=ρ0and kelect ¼ k2=ρ0 are mechanical and electrical constants that define

the conversion rate of bone remodeling, dependent on the mechanical stress and the

electrical potential, respectively.

Solution by the finite element method

To solve equation (14) we take its differential form to its weak [40] form, to obtain

(27):
Z
Ω

δeλnC0edΩ�
Z
Ω

δu � bdΩ�
Z
Γ

δu � tdΓ ¼ 0 ð27Þ

Where δe and δu are weighting functions, and t ¼ σ � n is the traction on the
boundary Γ that serves as a frontier to the domain Ω (see Figure 1).

To calculate the approximate solution by finite element discretization, the displace-

ment field approximates through [40] (28):

u x; tð Þ ¼ NT xÞa tð Þð ð28Þ

Where NT xÞð is a row vector containing the shape functions used to approximate the
displacement a tð Þ [40] in the nodes. Using the Galerkin method, we approximate the

weighting functions in the same way as the displacement field, producing at the elem-

entary level equation [40] (29):
Z

Ωe
BλnC0BTdΩe

� �
aþ

Z
Ωe

NbdΩe þ B:C: ¼ 0 ð29Þ

where B is the derivative operator (discrete version of operator B1 of equation (6)) that

converts the displacements into strains (see [40]). This system of equations is com-

pleted by applying the Neumann and Dirichlet conditions suitable for solving the elastic

problem (see Figure 1).

Similarly, for the electric case we can use the finite element method. For this

purpose we use the weak expression of equation (23) in terms of electrical



Figure 1 Domain and boundary conditions. The acronym on the index indicates whether it is a
condition for the electric (elect) or mechanical (mec) case. Note that there are two types of boundaries (not
necessarily equal) for each equation, the electric field and displacement (for the mechanical stress).
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potential to produce (30):Z
Ω

rwð Þ 2ρλ
m þ δ fð Þ� � rφð ÞdΩþ

Z
Ω

wρedΩ

�
Z
Γ

w 2ρλ
m þ δ fð Þ� � rφð Þ � n� �

dΓ

¼ 0 ð30Þ
where w is the weighting function and n is the external normal to the domain of

the problem. Again, for calculation of the approximate solution, the scalar field of

the electric potential approaches through [40] (31):

φ x; tð Þ ¼ NT xÞv tð Þð ð31Þ
Where v is the potential at each node of the element, and N xÞð are the shape func-
tions for scalar [40] problems. Weighting functions are chosen in the same manner as

shape functions, which is through the method of (Bubnov-) Galerkin standard. There-

fore, at the elementary level we have the following equation (32):Z
Ω
Be 2ρλ

m þ δ fð Þ� �
BT
e dΩ

e

� �
v þ

Z
Ω

NTρedΩþ B:C: ¼ 0 ð32Þ

where

Be ¼

@N1

@x
@N1

@y
@N2

@x
@N2

@y
@Nnod

@x
@Nnod

@y

2
6666664

3
7777775

ð33Þ

where nod is the number of nodes of each element.
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Solution to the equation of relative density

This article solves the equation of dimensionless density (or relative) by integrating

equation (26) by the method of Euler. For this purpose we define (34):

dλ
dt

¼ f x; tk ; λ; fð Þ ¼ kmec λn�1
�Umec

Urefm
� 1

� �
þ kelect

2ρλ
m þ δ fð Þ� �
λ

�Uelect

Urefe
ð34Þ

Therefore, the forward Euler method is defined as [41] (35):
λkþ1 ¼ λk þ Δtf x; tk ; λkð Þ ð35Þ

where Δt ¼ tkþ1 � tk is the integration time interval and k refers to the evaluation of

the variable λ at a specific time, i.e.: λk ¼ λ x; tkð Þ . This method has been used exten-

sively in the prediction of bone density through remodeling [42]. The forward Euler

method is of the first order and has the disadvantage of being unstable for large time

intervals [41].

Euler's method was implemented in FORTRAN and was coupled with the elastic and

electrical problems. For implementation we used an approach based on element (with

an elemental average) [39,43].

Computational model

The computational example to be solved is a 0.1x0.1 m square plate with non-uniform

load at the top and restrictions of movement vertically at the bottom as presented in

Figure 2. This example has been extensively studied in numerical tests concerning bone

remodeling algorithms [42-44]. For these values we built a mesh of 80x80 elements

(see Figure 3) in the horizontal and vertical directions, respectively, and integrated

these with a time step of Δt ¼ 0:100 . The total simulation time was 200. The initial

condition was λ ¼ 1:0 and the limits used in the algorithm of bone remodeling were:

0:0125≤λ≤2:175.

The constants for the mechanical energy

For the mechanical case we used an initial Young’s modulus E0 , a Poisson's modulus ν

and an initial dimensionless density λ0 with values 64 MPa, 0.3 and 1.00, respectively

[44]. The dimensionless parameters of the density equation were obtained from Nack-

enhorst (1997) [39,44] and were n ¼ 2, kmec ¼ 0:3125days�1 and Urefm ¼ 800Pa.

The mesh was produced using bilinear quadrilateral elements and four points of

Gauss integration [40].

The constants for electric energy

In the electric case, there are numerous articles [45-48] that determine the major elec-

trical properties of bone. In particular, graphs of the electric permittivity in function of

frequency and density are provided in [46], as presented in Figures 4 and 5. Figure 4

presents data concerning bone density as a function of the relative permittivity on the

frequency of 50 KHz. The article [46] used 40 bone tissue samples, and used the meas-

urement of the density as a function of the permittivity. From the data, the mathemat-

ical model proposed for permittivity as a function of tissue density is given by a power



Figure 2 Boundary conditions relating to bone remodeling.
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equation, expressed as (36):

2 ρð Þ ρ; 50KHzð Þ ¼ Bρm ð36Þ

Where m ¼ 1:5486 and B ¼ 1050:0; this is a function of the density of bone tissue.

With the aim of using dimensionless density, we multiplied and divided by ρn0=ρ
n
0

� �
to
Figure 3 Mesh used in the example. (a) 80x80.



Figure 4 Bone density as a function of the relative permittivity at a frequency of 50 KHz. Taken from
[46].
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produce (37):

2 ρð Þ ρð Þ ¼ 1050:0ρ1:54860 λ1:5486 ¼ 2ρλ
1:5486 ð37Þ

Where 2ρ ¼ 1050:0ρ1:5486 and depends on the initial density that considers the com-
0

putational model.

Figure 5 presents the relative permittivity in terms of the function of the frequency

for the density of the femoral head of ρ ¼ 0:3737g:cm�3. With a greater frequency, per-

mittivity decreases. To complement equation (37) (33) we must add a term that allows

us to calculate the difference between the relative permittivity at a frequency of 50 kHz

and any other frequencies used in the model; this is (38):

δ fð Þ fð Þ ¼ 2r fð Þ 0:3737g:cm�3; fð Þ � 2r 50Khzð Þ 0:3737g:cm�3; f ¼ 50Khzð Þ
δ fð Þ fð Þ ¼ 2r fð Þ 0:3737g:cm�3; fð Þ � 228:681

ð38Þ

where 2r 50Khzð Þ 0:3737g:cm�3; f ¼ 50Khzð Þ ¼ 228:681 . For its part, the function
Figure 5 Graphic representation of relative permittivity (dimensionless) as a function of frequency
(in Hz) for various densities of bone tissue. FC: Femoral head; FMC: femoral medial condyle, FLC: femoral
lateral condyle FTM: femoral greater trochanter. Taken from [46].



Garzón-Alvarado et al. Theoretical Biology and Medical Modelling 2012, 9:14 Page 11 of 17
http://www.tbiomed.com/content/9/1/14
2r fð Þ 0:3737g:cm�3; fð Þ can be obtained from Figure 5, so we get:

log10 2r fð Þ 0:3737g:cm�3; f
� �� 	 ¼ 0:1407 log10 fð Þ� 	2 � 1:8936 log10 fð Þ

þ 8:1505 ð39Þ

In summary, the equation for the electric permittivity depending on the density and
frequency is given by (see Figure 6):

2r ρ; fð Þ ¼ 2ρλ
1:5486 þ 2r fð Þ � 228:681 ð40Þ

For the remaining constant changes we made variations of kelec and used Urefe ¼
800Pa, as in the mechanical case.

Results
Figure 7 presents various examples that were run for a frequency f = 50 KHz, and with

variation in the constant Kelect. For these examples, a potential difference at various

contour lines was imposed, according to the domain that was established in Figure 2.

In the first example, a voltage of 100 was placed on the right side and no voltage at the

bottom (Figure 7a). In the second example, a voltage of 100 V was placed on the right

side and no voltage on the left (Figure 7b). In the third and fourth examples, the volt-

age was placed on the top and bottom, respectively (Figures 7c and 7d). In the other

contours we placed null Neumann conditions.
Figure 6 Graphic reconstruction of relative permittivity as a function of frequency and density.



Figure 7 Examples developed in the article; ϕ indicates voltage.
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In the first example, the mechanical condition demonstrated in Figure 2 coupled with

an electric field as observed in Figure 7a were used. The results are presented in Figure 8.

Figure 8 presents the results for the relative density value of λ using an approach

based on element, with an average at an elementary level of the mechanical stimulus,

electrical and density values. In all figures (Figures 8, 9, 10, 11 and 12) black represents

the maximum density value (2,175) and white represents the lowest value (0.0125). It
Figure 8 Results for the first example: the electric boundary condition in Figure 7a. The figure
demonstrates the results for various values of kelect.



Figure 9 Results for the second example: varying the frequency in equations (35) and (36).

Figure 10 Results for the first example: the electric boundary condition in Figure 7b. The figure
presents results for various values of kelect.
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Figure 11 Results for the first example: the electric boundary condition in Figure 7c.The figure
presents results for various values of kelect.
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should be noted that with Δt = 0.1 the pattern obtained is similar for all values of kelect.

It is observed that near the area of imposition of the mechanical stress there is a similar

density distribution to a chess board, and far from the loading area there is the forma-

tion of three well-defined columns reminiscent of the cortical bone (Figure 8a and 8b).

In cases where the constant increases (kelect = 1.4x10
7 and above) there is the appear-

ance of a high density area in the lower right region, from where a new column starts

in the top domain (Figs 8c, d, e and f). In this area, near the lower right structure, there

is the distribution and space formation of a chess board. In addition, in the upper part

there are empty areas that generate ramifications in each of the columns supporting

the load. Note that the imposition of the electric field defines a new topological struc-

ture in the domain, as presented on the right-hand side of the simulation results. This

new structure is an additional column, which is generated by the potential and a sup-

port area of higher density in the lower right corner.

Figure 9 presents the results for various values of Kelect. In this case, a voltage of

100 V was imposed on the right side and a null voltage on the left side. Null Neumann

conditions were imposed on remaining contours (see Figure 7b). It is noted that there

were changes in topology; columns 2 and 3, from left to right in Figures 9c and 9d, are

thicker and closer to one another. In addition, upper branches of greater density were

created and an additional branch that begins from the last column to the right. In the

case of Figure 9e, the formation of a non-defined region of the "chessboard" type on

the right side of the domain is presented.

Figures 10 and 11 present results for various values of kelect. In these cases a voltage

of 100 V was imposed at the top and bottom, respectively. Null Neumann conditions
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demonstrates the results for various values of kelect.
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were imposed on the remaining contours. Note that in these cases the mass distribu-

tion increases as kelect increases. In the case of Figure 10e, the density increases in the

upper part of the domain, so that the chessboard becomes more continuous in the cen-

tral part of the domain. In Figures 10e and 11e the columns that are formed in each

simulation have higher bandwidths than previous cases.

In the second example there is a variation of the frequency, while the value of kelect
remains constant at 7.0x107. With the voltage configuration of Figure 7d, this is with a

lower voltage of 100 V. Note in this case that at low frequencies the density and the

amount of tissue deposited are greater than at high values. Figure 9a demonstrates that the

frequency generates a total deposit of tissue. In figure 12b the formation of a high density

topology and continuing formation is apparent. Figures 12c, 12d and 12e present results

comparable to those observed in previous cases. However, in figure 12c, the columns are

wider than in figures 12d and 12e.

Discussion and conclusions
In this article several numerical examples were developed concerning bone remodeling

of the plate during mechanical stress, assuming the imposition of an electric field in

the domain. To calculate the mechanical and electrical stimulus of remodeling, and the

evolution of density, the elemental approach was utilized. This pioneering article

includes the electrical effect, previously designed by Weinans et al. [4], in a model of

bone remodeling.

Comparable with previous articles, the results of the study presented herein dem-

onstrate in the mechanical case formation of the columnar zone (of high density)



Garzón-Alvarado et al. Theoretical Biology and Medical Modelling 2012, 9:14 Page 16 of 17
http://www.tbiomed.com/content/9/1/14
in the area remote from the load and formation of the trabecular zone (of low

density) in the area close to the load [17]. The results are similar to those obtained

by Weinans et al. [4], Fernandez et al. [49] and Chen et al. [17]. When applying

an electric field there is an increase in bone density and an alteration in the top-

ology of the distribution of mass in the domain. In general, there is greater bone

mass apposition in the domain. Therefore, the columns developed by the mechan-

ical stress increase in size due to the electric field. In addition, a greater number

of columns and localized compact zones may be observed. In the formulation the

effect of electrical frequency has been included to allow increased apposition of

mass at low frequency to be observed.
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