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Abstract

Background: The role of the immune system in tumor progression has been a
subject for discussion for many decades. Numerous studies suggest that a low
immune response might be beneficial, if not necessary, for tumor growth, and only a
strong immune response can counter tumor growth and thus inhibit progression.

Methods: We implement a cellular automaton model previously described that
captures the dynamical interactions between the cancer stem and non-stem cell
populations of a tumor through a process of self-metastasis. By overlaying on this
model the diffusion of immune reactants into the tumor from a peripheral source to
target cells, we simulate the process of immune-system-induced cell kill on tumor
progression.

Results: A low cytotoxic immune reaction continuously kills cancer cells and,
although at a low rate, thereby causes the liberation of space-constrained cancer
stem cells to drive self-metastatic progression and continued tumor growth. With
increasing immune system strength, however, tumor growth peaks, and then
eventually falls below the intrinsic tumor sizes observed without an immune
response. With this increasing immune response the number and proportion of
cancer stem cells monotonically increases, implicating an additional unexpected
consequence, that of cancer stem cell selection, to the immune response.

Conclusions: Cancer stem cells and immune cytotoxicity alone are sufficient to
explain the three-step “immunoediting” concept – the modulation of tumor growth
through inhibition, selection and promotion.
Background
The immune system in mammals is responsible for elimination of damaged cells. The

development of tumors is always associated with an immune response [1]. Complete

activation of the adaptive immune system might result in complete tumor eradication,

but tumor progression and clinical manifestation has demonstrated the ability of

tumor cells to escape immunosurveillance, despite efficient immune responses. In fact,

a massive influx of activated infiltrating immune cells is correlated with a poor patient

prognosis, fueling the hypothesis that an immune reaction may under some circum-

stances be tumor-promoting [1]. The potential for a tumor-promoting action by the

immune system was proposed some time ago [2], but the actual mechanisms are still

the subject of debate. We do know that infiltrating macrophages and mast cells can
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regulate tumor cell proliferation and cell death, and that chronic inflammation can

skew the dynamics in favor of tumor growth [1]. More recently it has been hypothe-

sized that the immune system can keep the tumor in a somewhat dormant state, but

over time select for more aggressive variants with reduced immunogenicity [3]. This

process, often referred to as immunoediting or tumor sculpting, may occur continu-

ously and has major effects early in tumor progression [4]. Conceptually, the process is

comparable to the enrichment of radioresistant and chemoresistant neoplastic clones

that takes place as part of tumor evolution in the face of treatment by radiation and

drugs [5]. The immune system can likewise exacerbate this natural evolutionary

process, eliminating sensitive sells while yielding enrichment of immunoresistant tumor

variants [6]. Recent evidence has emerged that cancer stem cells can selectively escape

the cytotoxic action of immune system killer cells and thus become enriched during an

immune response [7]. This raises the prospect that the efficiency of the immune system

in eradicating the tumor could be dependent on the ratio of immune reactants to tumor

cells. Supporting this idea, a low immune reaction has been shown to accelerate tumor

growth, whereas a large numbers of immune reactants inhibit progression [2,8-10]

(Figure 1).

Tumor growth dynamics are usually marked by the defining features of immunoedit-

ing; initial growth amidst productive immune response, an equilibrium state where

tumor growth and suppression by immune response are more or less in balance, and

malignant progression, as tumor subpopulations selected for immune resistance or eva-

sion during the previous phase drive tumor expansion [1,4]. The selection of tumor

cells resistant to infiltrating immune cells might explain the strong correlation between

number of tumor-associated macrophages and poor prognosis [11]. The tumor-

promoting effect of macrophages and the immune system in general has been at-

tributed to second-order events such as production of angiogenic factors and matrix

metalloproteinases (MMPs), because the primary cytotoxic cell killing is intuitively

tumor-inhibiting [11]. However, it has been shown recently that cell kill might paradox-

ically benefit tumor progression in heterogeneous tumors [12] and in particular, that a

sufficient source for this heterogeneity may lie in the tumor-intrinsic interactions be-

tween cancer stem cell and non-stem cell fractions that give rise to a ‘self-metastatic’

phenotype [13,14]. Here we present a model of self-metastatic tumor growth subject to
Figure 1 Dual effect of the immune response in premalignant tumor progression. A small number of
immune reactants paradoxically stimulate growth, whereas a large immune response inhibits tumor
progression (reproduced from [8]).
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immune action, and show in this setting that the basic cytotoxic function of the im-

mune system alone can reproduce the experimentally- and clinically-observed multifa-

ceted features of immunoediting – elimination, equilibrium, and escape.

Methods
Various mathematical models have been utilized previously to address different phases

of the tumor-immune system interaction, including mechanisms of immunoediting

[15-25]. None of the models, however, discuss the ramifications of a tumor being com-

prised of a heterogeneous population of cancer stem cells and non-stem cancer cells.

Here we extend an established cellular automaton model of tumor growth that consid-

ers interactions between cancer stem cells and non-stem progenitor cells [13,26-29] to

study the impact of the immune system on tumor growth dynamics and tumor com-

position. We introduce a hybrid discrete-continuum model framework [30,31] where

individual cells live on a discrete lattice and the concentration of immune reactants is

modeled as a diffusing continuum (Figure 2). The two layers are connected such that

cancer cells experience the local concentration of immune reactants, triggering cell

death in proportion. For the discrete cell model we assume that cancer stem cells are

immortal, i.e. their probability of cell death is α= 0, and have an unlimited proliferative

capacity ρ, i.e. ρ=infinity. In contrast, non-stem cancer cells, the more committed off-

spring of cancer stem cells, can only divide a finite number of times ρmax, after which

they become unviable and die. Throughout this study we assumed ρmax = 10, in line

with previous observations of fast tumor growth [26]. With every cell division, cancer

stem cells can either divide symmetrically with probability ps to produce two daughter

cancer stem cells, or asymmetrically with probability 1-ps to produce a cancer stem cell

and a non-stem progenitor cancer cell. We set ps = 0.01 (i.e., 1%) to reflect the low fre-

quency of cancer stem cells reported in the literature [32]. To initiate the simulation of

tumor growth and immune response, we seed single cancer stem cells in the center of

a computational domain of 350 × 350 grid points, representing a square lattice of

3,500 μm × 3500 μm subdivided into 100 μm2 units that can hold at the most one cell

at any time. Cells have a random motility μ (in units of cell widths per day) and accord-

ingly, are considered for migration to an adjacent unit every 1/μ days. In line with pre-

vious studies we set μ= 15 (i.e., 15 cell widths or �150 μm day-1) [13]. Cells can divide

after reaching ‘maturation’, which for simplicity is attempted every 1 day. When it is

time to attempt migration or division, the moving cell, or the progeny of the dividing

cell, will be randomly assigned to an adjacent vacant unit. If there is no adjacent vacant

unit the movement (or division) does not take place. Accordingly, a cell that is com-

pletely surrounded by other cells is forced to become quiescent, and migration and pro-

liferation are only possible once adjacent lattice points become vacant again. For

simplicity we ignore tumor cell interaction with host cells in the immediate tumor

microenvironment, as well as density-dependent modulation of cellular fates [33].

The concentration of immune reactants c is modeled as a diffusing continuum

@c
@t

¼ dcr2c
zfflffl}|fflffl{
diffusion

� βc
z}|{
decay

;

where dc= 10
-9 cm2s-1 is the diffusion coefficient comparable to cell motility estimated

experimentally [34] and β is the decay rate of immune reactants. We further assume



Figure 2 Schematic of the hybrid model setup. A) Simulation flowchart. B) Cancer cells live on a
discrete square lattice with initially a single cancer stem being located in the center of the domain.
Immune reactant concentration is modeled as a continuum with sources located at domain boundaries. C)
A tumor population forms and immune reactants diffuse into the domain.
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immune system sources to be located at the domain boundary, and as the tumor grows,

immune agents are produced with either (i) a constant strength ξ, reflecting the prob-

ability of cell kill at the boundary @Ω of the total domain Ω, from which it follows that

0 ≤ ξ ≤ 1, equated with the (presumed fixed) boundary concentration, i.e.,

c @Ω ¼ ξ;j

or (ii) dependent on the tumor size in response to a growing cell population, as later

described. The probability α of immune reactant-induced death for a non-stem cancer

cell at position (x,y) at time t is equated to the immune reactant concentration at this

position at that time, i.e., α=c(x,y,t). In line with recent literature we assume cancer

stem cells evade the immune response [6,7,35,36]. A schematic of the cell dynamics

and the hybrid two-layer architecture is shown in Figure 2.

Results
Dual effect of the immune system

We simulate tumor growth from a single cancer stem cell for t = 730 days and report

the averages of 10 independent simulations. For simplicity we ignore immune reactant

decay (β= 0). Without an immune response, i.e. when ξ= 0, the tumor has 16,749 cells,

of which 15 cells are cancer stem cells (0.09%). Increasing the immune reactant source

strength to ξ= 0.04 and ξ= 0.1 yields bigger tumors (29,596 and 58,134 cells, respect-

ively) with more cancer stem cells and greater stem cell ratios (44 (0.15%) and 219

(0.38%)). When the immune system strength is further increased, a reverse effect and

decreasing tumor cell numbers can be seen. Immune responses of ξ= 0.4 and ξ= 1 lead



Table 1 Simulation statistics

ξ Total population Cancer stem cells Cancer stem cell ratio (%)

0 16,749 15 0.09

0.04 29,596 44 0.15

0.1 58,134 219 0.38

0.4 25,502 1,018 3.99

1 2,365 1,177 49.8

Average statistics for n = 10 independent runs each after t = 730 days.

Enderling et al. Theoretical Biology and Medical Modelling 2012, 9:31 Page 5 of 9
http://www.tbiomed.com/content/9/1/31
to tumors containing 25,502 cells (1,011 cancer stem cells; 3.99%) and 2,365 cells (1177

cancer stem cells, 49.8%) (summarized in Table 1). The tumor size as a function of the

immune system strength is shown in Figure 3. When plotted as a fold change with re-

spect to the tumor grown without an immune response, i.e. ξ= 0, the curve resembles
Figure 3 Dual immune-reactant-dependent growth dynamics. A) Non-monotonic variation in cell
number over immune system strength. B) Immune system strength dependent growth stimulation and
growth inhibition (cf. figure 1).
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the initial growth stimulation and final inhibition as a function of immune reactant

concentration predicted by Prehn [2,8-10] (cf. Figure 1).
Self-metastastic morphology and immune selection

As described in detail elsewhere [13], heterogeneous tumors comprised of cancer stem

cells and non-stem progenitors grow as conglomerates of ‘self-metastases’ – i.e. of can-

cer stem cells seeding the tumor periphery – which are rapidly surrounded and inhib-

ited by their own non-stem progeny. By contrast, the relaxation of spatial constraints

made possible by cell death [26], allows for cancer stem cell migration to these now less

dense regions and the potential expansion of the cancer stem cell pool. Consequently, a

low cytotoxic immune response does not reduce the tumor burden but instead pro-

motes self-metastatic tumor growth (Figure 4). Only with a sufficiently high immune

reaction can a reduction in tumor size be observed, but this comes at the expense of

enriching for cancer stem cells. Under these conditions, emulated by simulation once

ξ�0.4, dense tumor clusters disappear and become replaced by an unconnected

patched morphology as previously observed in other cellular automaton studies [19]. In

the patient setting, the residual and now isolated cancer stem cells will inevitably go on

to drive the growth of a more resistant malignant tumor.
Early and late effects of an adaptive immune response

We now consider an immune reaction proportional to the size of the growing tumor.

For this, we assume tumor cells emit a chemical signal m that diffuses (with
Figure 4 Immune system modulated morphological evolution. Representative sample simulations of
tumor morphologies after 90, 450 and 730 days for different immune reactant source strengths ξ. Shaded
background represents immune system strength with darker blue representing a stronger local immune
reactant concentration.
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comparable diffusion rate dm= 10-9 cm2s-1) into the domain Ω and triggers an immune

response at the boundary c @Ωj according to the strength of the signal there. Specifically,

@m
@t

¼ γP x; y; tð Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{
production

þ dmr2m
zfflfflfflffl}|fflfflfflffl{
diffusion

� βmm
zffl}|ffl{
decay

; γ 2 0; 1½ �

c
@Ω ¼ m
�
�

�
�
@Ω ;

where P(x,y,t) represents the occupation status in the discrete cell layer (1 if a cell is

present at (x,y) at time t and 0 otherwise). What is seen after simulation is that a small

tumor cluster triggers only a low response, whereas a large conglomerate of self-

metastases induces a strong immune reaction. Tumor growth dynamics (Figure 5) fea-

ture a promotion of tumor growth early on while the immune reaction is low, followed

by a late strong reaction that is inhibiting – the early and late function of an initially

weak and later strong immune system response to a growing tumor, another effect

hypothesized by Prehn [2].

Discussion
We presented a cellular automaton model of heterogeneous tumor growth and the im-

pact of an induced immune response on tumor dynamics. Intrinsically, without an im-

mune response, a heterogeneous tumor population comprised of cancer stem cells and

non-stem progenitors grows as conglomerates of self-metastases [13,14]. This morpho-

logical phenomenon results from the interplay of cell proliferation, cell migration and

cell death. With increasing cell death intra-tumoral spatial inhibitions are loosened,
Figure 5 Early and late function of the immune system on neoplasia. Dual function of the immune
response in relation to tumor progression; an early minimal reaction that promotes, and a late strong
reaction that inhibits (after Prehn, 1972). Shown are averages of 10 independent simulations and standard
error.
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which in turn enable cancer stem cell cycling and thus, counter-intuitively, tumor pro-

gression. Focusing only on the cytotoxic function of the immune system we were able

to observe all immunoediting roles of the immune system: immune promotion at weak

immune responses, immunoinhibition at strong immune responses, and immunoselec-

tion at all levels. Simulations of our model support a hypothesis previously put forward

by Prehn [2,8-10] that comparable tumor sizes can be observed for weak and strong

immune reactions (either side of the peak in Figures 1 and 3). Our model augments

these studies by highlighting the different tumor compositions expected, including a

malignant enrichment in cancer stem cells following a strong immune response. We

conclude that tumors that progress to clinical presentation, particularly after strong im-

mune responses, are likely to be heavily enriched in cancer stem cells. Moreover, when

the immune system selection force is removed, the initial ratio of cancer stem cells to

non-stem cells is re-established, showing that long-term cancer stem cell enrichment

requires continuous dynamic maintenance. We propose more generally that a stem-

cell-expansive influence may take the form of anything that encourages morphological

fingering. Beyond immune response, this could include cell death, or even growth

within restricted thin channels, as might be expected e.g. during invasion of host tissue.
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