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Abstract

Background: Proteolytic degradation of the extracellular matrix (ECM) is a key event
in tumour metastasis and invasion. Matrix metalloproteinases (MMPs) are a family of
endopeptidases that degrade most of the components of the ECM. Several broad-
spectrum MMP inhibitors (MMPIs) have been developed, but have had little success
due to side effects. Thus, it is important to develop mathematical methods to
provide new drug treatment strategies. Matrix metalloproteinase 2 (MMP2) activation
occurs via a mechanism involving complex formation that consists of membrane
type 1 MMP (MT1-MMP), tissue inhibitor of matrix metalloproteinase 2 (TIMP2) and
MMP2. Here, we focus on developing a method for analysing the complex formation
process.

Results: We used control analysis to investigate inhibitor responses in complex
formation processes. The essence of the analysis is to define the response coefficient
which measures the inhibitory efficiency, a small fractional change of concentration
of a targeting molecule in response to a small fractional change of concentration of
an inhibitor. First, by using the response coefficient, we investigated models for
general classes of complex formation processes: chain reaction systems composed of
ordered steps, and chain reaction systems and site-binding reaction systems
composed of unordered multi-branched steps. By analysing the ordered step
models, we showed that parameter-independent inequalities between the response
coefficients held. For the unordered multi-branched step models, we showed that
independence of the response coefficients with respect to equilibrium constants
held. As an application of our analysis, we discuss a mathematical model for the
MMP2 activation process. By putting the experimentally derived parameter values
into the model, we were able to conclude that the TIMP2 and MMP2 interaction is
the most efficient interaction to consider in selecting inhibitors.

Conclusions: Our result identifies a new drug target in the process of the MMP2
activation. Thus, our analysis will provide new insight into the design of more
efficient drug strategies for cancer treatment.
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Background
Metastasis and invasion are a major cause of death in cancer patients, and thus pre-

venting this secondary spread of the tumour is an important aspect of cancer ther-

apy. A prerequisite for the migration of endothelial cells through the extracellular

matrix (ECM) is the initiation of a biochemical pathway responsible for the proteo-

lytic degradation of these structural barriers. Matrix metalloproteinases (MMPs) are a

family of endopeptidases that degrade most of the components of the ECM [1,2].

Several broad-spectrum MMP inhibitors (MMPIs) have been developed, some of

which have been used in clinical trials for cancer treatment [3]. However, these

MMP inhibitors have had little success due to side effects, implying that these clearly

lacked selectivity in their action. Most MMPs are inhibited by MMPIs that bind to

the active sites of MMPs. Similarities in active sites of MMPs pose obstacles to the

design of specific inhibitors. It is thus important to find alternatives to these

approaches to increase specificity. Therefore, it is worth developing mathematical

methods in analysing biochemical reaction pathways to provide new drug treatment

strategies.

Matrix metalloproteinase 2 (MMP2) was proposed as a potential therapeutic target,

based on its high-level expression in many human tumours and its ability to degrade

type IV collagen [4]. The activation of MMP2 proenzyme is processed by membrane

type 1 matrix metalloproteinase (MT1-MMP) [5-7]. Under physiologic conditions,

MMP2 is secreted as a latent form, pro-MMP2, and it has been established that its

activation occurs via a mechanism involving a complex formation that consists of

MT1-MMP, tissue inhibitor of matrix metalloproteinase 2 (TIMP2) and pro-MMP2.

Here, focusing on the MMP2 activation process, we develop a mathematical method

which quantifies a response of systems to an inhibitor and classifies interactions in

order of the inhibitory efficiency. The goal of this study is to identify the most efficient

interaction to consider in selecting inhibitors.

In order to achieve this goal, we use control analysis, a method of sensitivity analysis

which is widely used in many fields (see for example [8]). Methods of obtaining quanti-

tative measures of control in metabolic pathways were developed by Kacser and Burns

[9] and Heinrich and Rapoport [10,11] (for a review, see [12]). The essence of the ana-

lysis is to define the response coefficient which measures the inhibitory efficiency, a

small fractional change of concentration of a targeting molecule in response to a small

fractional change of concentration of an inhibitor. First, using the response coefficient,

we investigate models for general classes of complex formation processes: chain reac-

tion systems composed of ordered steps, and chain reaction systems and site-binding

reaction systems composed of unordered multi-branched steps. By analysing the

ordered step models, we show that parameter-independent inequalities between re-

sponse coefficients hold. In the unordered multi-branched step models, we assume

there are no cooperative reactions, i.e. the equilibrium constant for binding a site of

molecule B to a site of another molecule A is independent of whether any of the other

sites of molecule A are occupied. This assumption satisfies the detailed balance condi-

tion, but it puts a stronger constraint on the system (the importance of the detailed bal-

ance condition in kinetic modelling was discussed in [13-15]). Under this assumption,

we show that independence of the response coefficients with respect to the equilibrium

constants holds. These results indicate that the inhibitory efficiency depends on the
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topology of pathway networks. As an application of our analysis, we investigate a math-

ematical model for the MMP2 activation process [16]. In the model, MT1-MMP is

dimerized, bound to TIMP2 and forms a quadruple complex by binding proMMP2,

MT1-MT1T2M2, which contributes to activation of proMMP2. We try to identify the

most efficient interaction to consider in selecting inhibitors by putting the experimen-

tally derived parameter values into the model.

Therefore, our method can serve as a tool for quantifying the inhibitory efficiency

and allows us to determine the most efficient method of selecting the inhibitor in com-

plex formation processes. Application of the method to the MMP model may provide a

new tool for designing more efficient drug strategies for cancer treatment.

Results
The response coefficient as a measure of the inhibitory efficiency

Here, we explain fundamentals of control analysis. The key point of the analysis is to

introduce the response coefficient, which describes how a variable such as molecular

concentration responds to variation of parameters such as rate constants. In this paper,

we would like to consider the response of an inhibitor concentration. Mathematically,

the response is expressed as

R ¼ lim
δ I½ �!0

δF=F
δ I½ �= I½ �

¼ @F
@ I½ �

I½ �
F
¼ @ lnF

@ ln I½ � ;

where F denotes the objective function, which will be taken as a molecular concentra-

tion in the steady state of the system. Therefore, the response coefficient R represents a

fractional change of the objective function F, δF/F, in response to a fractional change in

an inhibitor concentration, δ[I]/[I], in the limit as δ[I] tends to zero. Introducing an in-

hibitor requires construction of a new model which consists of the original species and

a new inhibitor. Instead of introducing new inhibitors, we here consider the change of

the objective function in response to changes in the equilibrium constants. To see why

this alternative method is valid, let us consider a simple Michaelis–Menten type en-

zymatic reaction

Eþ S
!
 ES! E þ P:

Suppression of concentration [ES] leads to suppression of P production. Hence, to
make analysis simpler, we consider a simpler reaction scheme

Eþ S
!
 ES:

Disturbance of this reaction by an inhibitor in a competitive way is expressed as
Eþ S
!
 ES

þ
I ;
"#
EI
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The steady state solution of this reaction system can be written as

ES½ � ¼ S½ �
αK þ S½ � E½ �T ;

E½ � þ EI½ � ¼ αK
αK þ S½ � E½ �T ;

where [E]T is the total concentration of the enzyme. The concentration [ES] is the en-

zyme concentration which contributes to P production, while the concentration

[E] + [EI] is the enzyme concentration which does not contribute to P production. The

parameter K, defined by K= kd/ka, is the equilibrium constant of the enzyme and sub-

strate binding reaction, where kd is the dissociation rate constant and ka is the associ-

ation rate constant. The coefficient α is written as α ¼ 1þ I½ �
KI

, where KI is the

equilibrium constant of the enzyme and inhibitor binding reaction. Because α is always

greater than 1, an addition of the inhibitor is equivalent to an increase of the equilib-

rium constant K. Therefore, in this paper, instead of adding inhibitors, we perform an

inhibition analysis by changing equilibrium constants.

Let us take a look at the basic properties of the response coefficient for a simple

model. The response coefficient for F with respect to K is written as

R ¼ @F
F

�
@K
K
¼ @ lnF

@ lnK
: ð1Þ

At the steady state, F is a general function of total concentrations of molecules and

equilibrium constants, and thus we can write F= F([E]T, [S]T,K). Let us see how the re-

sponse coefficient behaves as the value of the equilibrium constant changes. First, sup-

pose that the total concentration of the substrate is much greater than that of the

enzyme, i.e. [E]T < < [S]T. In this case, the system can be reduced to a linear system.

The steady state solution is written simply as

ES½ � ¼ S½ �T
K þ S½ �T

E½ �T :

The response coefficient for [ES] with respect to K is calculated as

RES ¼ @ ln ES½ �
@ lnK

¼ � K
K þ S½ �T

:

The minus sign means that a decrease of the complex concentration [ES] is caused

by an increase of K. The response coefficient RES goes to 0 as K goes to 0, while RES

goes to −1 as K goes to ∞. This indicates that the inhibition becomes more efficient as

K gets larger. Next, to explore behaviours of the response coefficient in the nonlinear

regime (the enzyme concentration is in the same order as the substrate concentration)

of the system, we use numerical simulations. We calculate RES for three different total

substrate concentrations, [S]T= 1 nM, 100 nM and 10000 nM (Figure 1A). All three

curves behave in the same manner in that RES goes to 0 as K goes to 0, while RES goes

to −1 as K becomes large, as described above. To compare these three curves quantita-

tively, we introduce the Hill coefficient nH, which quantifies steepness:

nH ¼ log 81
log K90=K10

;



A

B

Figure 1 Behaviour of the steady state for a simple model. (A) Response coefficient R as a function of
the equilibrium constant K for total substrate concentrations [S]T= 100nM, 1000nM and 10000nM.
(B) Complex concentration [ES] as a function of the total inhibitor concentration [I]T for equilibrium
constant values K= 10nM, 100nM and 1000nM.
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where K90 is the value of K such that RES=− 0.9 and K10 is the value of K such that

RES=− 0.1. We obtain nH= 1.02 when [S]T= 10000nM, nH= 0.98 when [S]T= 100nM

and nH= 0.73 when [S]T= 1nM. Thus, the steepness slightly decreases as the total con-

centration decreases. Furthermore, we calculate the inhibitor concentration dependence

of the complex concentration (Figure 1B). Let the value of the total inhibitor concen-

tration necessary to reach a 50% reduction of concentration (IC50) be a measure of the

inhibition. We obtain IC50 = 67.89nM when K= 10nM, IC50 = 59.72nM when

K= 100nM and IC50 = 53.20nM when K= 1000nM. We can see that the inhibition

becomes more efficient as the equilibrium constant gets larger. Therefore, we conclude

that the response coefficient can be a measure of the inhibitory efficiency.
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So far, we have discussed behaviours of the response coefficient in a simple model as

an example. We would like to generalize this analysis to larger systems which have

multiple interactions. From here, we consider models for general classes of complex

formation processes: (1) chain reaction systems composed of ordered steps, (2) chain

reaction systems composed of unordered multi-branched steps and (3) site-binding re-

action systems composed of unordered multi-branched steps.

Analysis of the ordered step models

We first investigate models for chain reaction systems composed of ordered steps. Let

A1, . . ., An be n types of molecules. The reaction scheme of the model is described as

A1 þ A2
!k1a
 k1d

A1A2;

A1A2 þ A3
!k2a
 k2d

A1A2A3;

A1A2A3 þ A4
!k3a
 k3d

A1A2A3A4;

⋮ ⋱

A1⋯An�1 þ An
!kn�1a
 kn�1d

A1⋯An�1An:

We refer to this model as “Model Sn”. In order to provide a basis for the analysis, we
begin with the simple case Model S3, which consists of three molecules: A1,A2,A3. By

linear approximation under the assumption [A1] < < [A2], [A3], a simple analytical steady

state solution can be derived for molecular concentrations

A1½ � ¼
~K1 ~K2

~K1 þ 1
� �

~K 2 þ 1
A1½ �T ;

A1A2½ � ¼
~K 2

~K1 þ 1
� �

~K 2 þ 1
A1½ �T ;

A1A2A3½ � ¼
~K2

~K1 þ 1
� �

~K2 þ 1
A1½ �T ;

ð2Þ

where ~K1 ¼ K1= A2½ �T and ~K2 ¼ K2= A3½ �T . The response coefficients for the complex

concentrations with respect to K1 and K2 are calculated as

R123
1 ¼ @ ln A1A2A3½ �

@ ln~K1
¼ �

~K 2 ~K 1

~K 1 þ 1
� �

~K2 þ 1
;

R123
2 ¼ @ ln A1A2A3½ �

@ ln~K2
¼ �

~K 2 ~K1 þ 1
� �

~K 1 þ 1
� �

~K2 þ 1
;

R12
1 ¼

@ ln A1A2½ �
@ ln~K1

¼ �
~K2 ~K1

~K1 þ 1
� �

~K 2 þ 1
;

R12
2 ¼

@ ln A1A2½ �
@ ln~K2

¼ 1
~K1 þ 1
� �

~K2 þ 1
;

R1
1 ¼

@ ln A1½ �
@ ln~K1

¼
~K 2 þ 1

~K 1 þ 1
� �

~K2 þ 1
;

R1
2 ¼

@ ln A1½ �
@ ln~K2

¼ 1
~K 1 þ 1
� �

~K2 þ 1
;

ð3Þ

where Ri
123, Ri

12 and Ri
1(i= 1, 2) denote the response coefficients for [A1A2A3], [A1A2]

and [A1] with respect to Ki, respectively. As can be seen from (3), the following
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inequalities between the response coefficients hold: R1
123 >R2

123, R2
12 >R1

12 and R1
1 >R2

1.

The inequality R1
123 >R2

123 shows that inhibitory efficiency of the A3 binding reaction is

larger than that of the A2binding reaction. The sign of R1
12 is negative, while that of R2

12

is positive. This means that the complex concentration [A1A2] increases by the inhib-

ition of the A2 binding reaction.

In the nonlinear regime of Model S3, we cannot solve for the steady state solution ex-

plicitly. Thus, we instead investigate whether the same relations hold by numerical

simulations. In the simulations, we set the total concentrations as [Ai]T= 100nM

(i= 1, 2, 3). From the simulation results, we can see the following: R1
123 depends on the

values of K1and K2 (Figure 2A). The inequality R1
123 >R2

123 holds for a wide range of K1

values (Figure 2B). The sign of R1
12 is negative, while that of R2

12 is positive (Figure 2C).

R1
1 and R2

1 are both positive and satisfy R1
1 >R2

1 (Figure 2D). Therefore, we have shown

that the parameter-independent inequalities hold both in the linear and the nonlinear

regimes of Model S3.

To investigate whether similar relations hold in larger systems, we next consider

Model S4. To linearize the model, we assume [A1]T < < [A2]T, [A3]T, [A4]T. As in Model

S3, the steady state solution can be derived for molecular concentrations

A1½ � ¼
~K1 ~K2 ~K3

~K1 þ 1
� �

~K2 þ 1
� �

~K 3 þ 1
A1½ �T ;

A1A2½ � ¼
~K 2 ~K3

~K 1 þ 1
� �

~K2 þ 1
� �

~K3 þ 1
A1½ �T ;

A1A2A3½ � ¼
~K 3

~K 1 þ 1
� �

~K2 þ 1
� �

~K3 þ 1
A1½ �T ;

A1A2A3A4½ � ¼ 1
~K 1 þ 1
� �

~K 2 þ 1
� �

~K3 þ 1
A1½ �T :

ð4Þ

The response coefficients are calculated as

R1234
1 ¼ �

~K3 ~K2 ~K 1

~K 3 ~K 1 þ 1
� �

~K2 þ 1
� �þ 1

; R1234
2 ¼ �

~K3 ~K2 ~K 1 þ 1
� �

~K3 ~K1 þ 1
� �

~K2 þ 1
� �þ 1

;

R1234
3 ¼ �

~K3 ~K1 þ 1
� �

~K2 þ 1
� �

~K 3 ~K 1 þ 1
� �

~K2 þ 1
� �þ 1

; R123
1 ¼ �

~K 3 ~K2 ~K1

~K3 ~K1 þ 1
� �

~K2 þ 1
� �þ 1

;

R123
2 ¼ �

~K 3 ~K2 ~K 1 þ 1
� �

~K3 ~K1 þ 1
� �

~K2 þ 1
� �þ 1

; R123
3 ¼ 1

~K 3 ~K1 þ 1
� �

~K 2 þ 1
� �þ 1

;

R12
1 ¼ �

~K3 ~K 2 ~K 1

~K 3 ~K 1 þ 1
� �

~K 2 þ 1
� �þ 1

; R12
2 ¼

~K3 þ 1
~K3 ~K1 þ 1
� �

~K2 þ 1
� �þ 1

;

R12
3 ¼

1
~K3 ~K1 þ 1
� �

~K2 þ 1
� �þ 1

; R1
1 ¼

~K2 þ 1
� �

~K3 þ 1
~K3 ~K1 þ 1
� �

~K2 þ 1
� �þ 1

;

R12
2 ¼

~K3 þ 1
~K3 ~K1 þ 1
� �

~K2 þ 1
� �þ 1

; R12
3 ¼

1
~K3 ~K1 þ 1
� �

~K2 þ 1
� �þ 1

; ð5Þ

where R1234
i ¼ @ ln A1A2A3A4½ �

@ ln~Ki
, R123

i ¼ @ ln A1A2A3½ �
@ ln~Ki

, R12
i ¼ @ ln A1A2½ �

@ ln~Ki
and R1

i ¼ @ ln A1½ �
@ ln~Ki

i ¼ 1; 2; 3ð Þ.
From the above expression (5), we can see that the inequalities R1

1234 >R2
1234 >R3

1234,

R3
123 >R1

123 >R2
123, R2

12 >R3
12 >R1

12 and R1
1 >R2

1 >R3
1 hold. In the simulations, we set total

concentrations [Ai]T= 100nM(i= 1, 2, 3, 4). We can see that the inequalities R1
1234 >

R2
1234 >R3

1234, R3
123 >R1

123 >R2
123, R2

12 >R3
12 >R1

12 and R1
1 >R2

1 >R3
1 hold for a wide range of

K1 values (Figure 3). The sign of R1
123 is positive, while those of R2

123 and R3
123 are



A

B

C

D

Figure 2 Behaviours of the response coefficients for Model S3. (A) Response coefficient R1
123 as a

function of K1 for K2 = 100nM, 1 nM and 0.01 nM. (B) Response coefficient Ri
123 (i= 1, 2) as a function of K1.

Blue and red lines indicate R1
123 and R2

123, respectively. (C) Response coefficient Ri
12(i= 1, 2) as a function of

K1. Blue and red lines indicate R1
12 and R2

12, respectively. (D) Response coefficient Ri
1(i= 1, 2) as a function of

K1. Blue and red lines indicate R1
1 and R2

1, respectively. In (B)–(D), we set K2 = 100nM.
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negative (Figure 3B). R1
12 and R2

12 are positive, while R3
12 is negative (Figure 3C). R1

1, R2
1

and R3
1 are positive (Figure 3D). These results suggest that the inequalities relating the

response coefficients represent basic properties of the ordered step models.

We can generalize these results to the n chain reaction model: Model Sn. Assuming

[A1]T < < [A2]T, . . ., [An]T, the steady state solution can be obtained as

A1½ � ¼
~Kn�1⋯~K1

D
A1½ �T ;

⋮

A1⋯Ai½ � ¼
~Kn�1⋯~Ki

D
A1½ �T

⋮

A1A2⋯An½ � ¼ 1
D

A1½ �T ;

ð6Þ

where D ¼ 1þ ~Kn�1 1þ ~Kn�2 1þ⋯ 1þ ~K 1
� �� �� �

. The response coefficients are calcu-

lated as

R1⋯i
n�1 ¼

1
D
;

⋮

R1⋯i
iþ1 ¼

1þ ~Kn�1 1þ⋯ 1þ ~Kiþ2
� �� �

D
;

R1⋯i
i ¼ �

~Kn�1⋯~Ki 1þ ~Ki�1 1þ⋯ 1þ ~K1
� �� �� �

D
;

⋮

R1⋯i
1 ¼ �

~Kn�1⋯~K1

D
:

ð7Þ



A

B

C

D

Figure 3 Behaviours of the response coefficients for Model S4. (A) Response coefficient Ri
1234 (i = 1,2,3)

as a function of K1. Blue, red and green lines indicate R1
1234, R2

1234 and R3
1234, respectively. (B) Response

coefficient Ri
123(i= 1, 2, 3) as a function of K1. Blue, red and green lines indicate R1

123, R2
123 and R3

123,
respectively. (C) Response coefficient Ri

12(i=1, 2, 3) as a function of K1. Blue, red and green lines indicate R1
12,

R2
12 and R3

12, respectively. (D) Response coefficient Ri
1(i= 1, 2, 3) as a function of K1. Blue, red and green lines

indicate R1
1, R2

1 and R3
1, respectively. For all, we set K2 = K3 = 100nM.
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where Rj
i ¼

@ ln A1⋯Aj½ �
@ ln~Ki

. Therefore, the inequalities are as follows:

R1⋯n
1 > R1⋯n

2 > ⋯ > R1⋯n
n�1 ;

⋮
R1⋯i
iþ1 > R1⋯i

iþ2 > ⋯ > R1⋯i
n�1 > R1⋯i

1 > ⋯ > R1⋯i
i ;

⋮
R1
1 > R1

2 > ⋯ > R1
n�1:

Thus, we have shown that the parameter-independent inequalities hold in Model Sn.
The inequalities indicate that the reactions can be sorted in order of the inhibitory effi-

ciency, which is independent of the values of the equilibrium constants.

Analysis of the unordered multi-branched step models – chain reaction systems

Here, we consider chain reaction systems with unordered multi-branched steps. In the

unordered multi-branched step models, we assume that there are no cooperative reac-

tions, i.e. the affinity of any reaction is independent of whether other sites are occupied.

Let A1, . . .,An be n types of molecules. All possible complexes in the general chain reac-

tion system are listed as follows:

A1 A2 A3 ⋯ An�1 An

A1A2 A2A3 ⋯ ⋯ ⋯ An�1An

A1A2A3 ⋯ ⋯ An�2An�1An

⋱ ⋱

A1A2⋯An
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We refer to this model as “Model Cn”. The number of complexes is NS= n(n+ 1)/2

and the number of reactions is NI= n(n− 1)(n+ 1)/2. As an example, let us first con-

sider the n= 3 case. All possible complexes can be listed as

A1 A2 A3

A1A2 A2A3

A1A2A3

In order to deal with the model analytically, we linearize the system. By linear ap-
proximation under the assumption [A2]T < < [A1]T,[A3]T, the steady state solution for

molecular concentrations is written simply as

A2½ � ¼
~K1 ~K 2

~K1 þ 1
� �

~K2 þ 1
� � A2½ �T ;

A1A2½ � ¼
~K2

~K1 þ 1
� �

~K2 þ 1
� � A2½ �T ;

A2A3½ � ¼
~K1

~K1 þ 1
� �

~K2 þ 1
� � A2½ �T ;

A1A2A3½ � ¼ 1
~K1 þ 1
� �

~K2 þ 1
� � A2½ �T ;

ð8Þ

where ~K 1 ¼ K1= A1½ �T , ~K2 ¼ K2= A3½ �T . The response coefficients for molecular concen-

trations with respect to the equilibrium constants are given by

R123
1 ¼ �

~K1

~K1 þ 1
; R123

2 ¼ �
~K2

~K2 þ 1
;

R12
1 ¼ �

~K 1

~K1 þ 1
; R12

2 ¼
1

~K2 þ 1
;

R23
1 ¼

1
~K1 þ 1

; R23
2 ¼ �

~K2

~K2 þ 1
;

R2
1 ¼

1
~K 1 þ 1

; R2
2 ¼

1
~K2 þ 1

;

ð9Þ

where R123
i ¼ @ ln A1A2A3½ �

@ ln~Ki
, R12

i ¼ @ ln A1A2½ �
@ ln~Ki

, R23
i ¼ @ ln A2A3½ �

@ ln~Ki
and R2

i ¼ @ ln A2½ �
@ ln~Ki

i ¼ 1; 2ð Þ. An im-

portant observation is that the response coefficients with respect to ~Ki only depend on
~Ki , i.e. Ri ¼ Ri ~Ki

� �
. We call this property independence of the response coefficients.

This property comes from the assumption that there are no cooperative reactions, be-

cause, as shown previously, the ordered step models do not have this property. Numer-

ical simulation results also show independence of the response coefficients in the

nonlinear regime of the model (Figure 4). In the simulations, we set [Ai]T= 100nM

(i= 1, 2, 3). The response coefficient R1
123 does not depend on K2 for a wide range of K1

values (Figure 4A). The sign of the response coefficient R2
12is positive, which means

[A1A2] increases by the inhibition of K2 (Figure 4B). The independence of R2
12 in terms

of K2also holds for a wide range of K1 values (Figure 4B). The independence of re-

sponse coefficients means that inhibitory efficiency is determined by the values of the

equilibrium constants.



A

B

Figure 4 Behaviours of the response coefficients for Model C3. (A) Response coefficient R1
123 as a

function of K1 for K2 = 100nM, 1nM and 0.01nM. (B) Response coefficient R2
12 as a function of K2 for

K1 = 100nM, 1nM and 0.01nM.
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We next explore Model C4. All possible complexes are listed as

A1 A2 A3 A4

A1A2 A2A3 A3A4

A1A2A3 A2A3A4

A1A2A3A4

We investigate this model only by means of numerical simulations. In the simula-

tions, we set [Ai]T= 100nM(i= 1, 2, 3, 4). The response coefficient R1
1234 does not depend

on K2 and K3 for a wide range of K1 values (Figure 5A). The independence of R3
123 in

terms of K1 and K2 also holds for a wide range of K3 values (Figure 5B).



A

B

Figure 5 Behaviours of the response coefficients for Model C4. (A) Response coefficient R1
1234 as a

function of K1 for different K2 and K3 values. Blue (control) line indicates K2 = K3 = 100nM, red line indicates
K2 = 1nM, K3 = 100nM, and green line indicates K2 = 100nM, K3 = 1nM. (B) Response coefficient R3

123 as a
function of K3 for different K1 and K2 values. Blue (control) line indicates K1 = K2 = 100nM, red line indicates
K1 = 1nM, K2 = 100nM, and green line indicates K1 = 100nM, K2 = 1nM.
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Analysis of the unordered multi-branched step models – site-binding systems

Here, we apply control analysis to the models in which molecule A has n binding sites

for the binding of Bi(i= 1,⋯, n). Schematically, all possible complexes are listed as

A B1 B2 ⋯ Bn

AB1 AB2 ⋯ ABn

AB1B2 AB1B3 ⋯ ABn�1Bn

⋱ ⋮
AB1⋯Bn�1 ⋯ AB2⋯Bn

AB1⋯Bn
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We refer to this model as “Model SBn”. We assume that each equilibrium constant

Ki for binding the site of Bito each site of A is independent of whether any of the other

sites of A are occupied. By linear approximation under the assumption [A]T < < [B1]

T,⋯, [Bn]T, the steady state solution for molecular concentrations is given by

A½ � ¼
Yn
j¼1

Kj

 !
A1⋯n;

ABi½ � ¼
Yn
j 6¼i

Kj

 !
A1⋯n; i ¼ 1;⋯; n

⋮

ABi1⋯Bik½ � ¼
Yn

j 6¼i1;⋯;ik

Kj

 !
A1⋯n; i1;⋯; ik i1 6¼⋯ 6¼ ikð Þ ¼ 1;⋯; n

⋮
AB1⋯Bn½ � ¼ A1⋯n;

ð10Þ

where A1⋯n ¼
Qn

j¼1 1þ Kj
� �� �

. The response coefficients for [ABi1⋯Bik] with respect

to Kj are given by

Ri1⋯ik
j ¼

�
~Kj

1þ ~Kj
if j ¼ i1;⋯; ik i1 6¼⋯ 6¼ ikð Þ;

1

1þ ~Kj
if j 6¼ i1;⋯; ik i1 6¼⋯ 6¼ ikð Þ;

ð11Þ

where Ri1⋯ik
j ¼ @ ln Ai1⋯Aik½ �

@ lnKj
. Thus, the independence of the response coefficients also

holds in this model. We further explore the nonlinear regime of the model by using nu-

merical simulations. We consider Model SB3 as an example. In the simulations, we set

[A]T= [B1]T=⋯= [Bn]T= 100nM. We can see that the independence of R1
123 holds in a

wide range of K1 (Figure 6). Therefore, together with the results from the chain reac-

tion systems, the independence of the response coefficients is an intrinsic property of

unordered multi-branched step models under the assumption that there are no co-

operative reactions.

An application - MT1-MMP/TIMP2/MMP2 complex formation model

As an application of our analysis, we here investigate the MT1-MMP/TIMP2/MMP2

complex formation model [16]. In this model, MT1-MMP is dimerized, bound to

TIMP2 and forms a quadruple complex by binding proMMP2, MT1-MT1T2M2, which

contributes to activation of proMMP2. The model has all possible pathways that could

contribute to the formation and dissociation of complexes. All possible complexes

formed by the mentioned biochemical reactions are listed below:

MT1 T2 M2
MT1�MT1 MT1T2 T2M2

MT1�MT1T2 MT1T2M2
MT1T2�MT1T2 MT1�MT1T2M2

MT1T2�MT1T2M2
MT1T2M2�MT1T2M2

Rate constants of the reactions are summarized in Table 1. Although a simpler model
was proposed previously in [18], we use the model described above. As reported in



Figure 6 Behaviour of the response coefficient for Model SB3. Response coefficient R1
123 as a function

of K1 for K2 = 100nM, 1nM and 0.01nM. Here, we set K3 = 100nM.

Saitou et al. Theoretical Biology and Medical Modelling 2012, 9:33 Page 14 of 18
http://www.tbiomed.com/content/9/1/33
[16], taking into consideration the transient dynamics of the MMP2 activation, the

model we use here is more appropriate than the model proposed in [18].

Here, we try to identify the most efficient reaction to consider in selecting inhibitors

by putting the experimentally derived parameter values into the model. We focus on

the behaviour of the concentration of the quadruple complex MT1-MT1T2M2, which

is a binding state of a free MT1-MMP and the ternary complex MT1T2M2, because

only this complex contributes to activation of proMMP2. The total TIMP2 concentra-

tion dependence of the complex MT1-MT1T2M2 is shown (Figure 7A). The concen-

tration of the quadruple complex has the maximum value at a TIMP-2 concentration

of 50 nM (Figure 7B control). This property does not depend on [MT1]T and [M2]T.

This means that the quadruple complex which contributes to the proMMP2 activation

is suppressed at high levels of TIMP2 and attains its maximum only at intermediate

TIMP2 concentrations [16-18]. A concentration map in the [MT1]T and [T2]T plane is

depicted in Figure 7B. These simulation results indicate that the balance between

TIMP2 and MT1-MMP expression is a critical determinant of MMP2 activation. The
Table 1 Experimentally derived parameter values for the MMP model

Parameters Values Remarks

[MT1]T 100nM From Karagiannis 2004 [18]& Hoshino 2012 [16]

[T2]T 50-100nM From Karagiannis 2004 [18] & Hoshino 2012 [16]

[M2]T 100nM From Karagiannis 2004 [18] & Hoshino 2012 [16]

ka(MT1−MT1) 2/μM/s From Hoshino 2012 [16]

kd(MT1−MT1) 0.01/s From Hoshino 2012 [16]

ka(MT1−T2) 2.74/μM/s From Toth 2000 [19]

kd(MT1−T2) 0.0001/s From Toth 2000 [19]

ka(T2−M2) 0.14/μM/s From Olson 1997 [20]

kd(T2−M2) 0.0047/s From Olson 1997 [20]

The parameters ka(MT1−MT1) and kd(MT1−MT1) are association and dissociation rate constants of the MT1-MMP dimer
formation, respectively. The parameterska(MT1−T2) and kd(MT1−T2) are association and dissociation rate constants of the
MT1-MMP and TIMP2 binding reaction, respectively. The parameters ka(T2−M2) and kd(T2−M2) are association and
dissociation rate constants of the TIMP2 and MMP2 binding reaction, respectively.



A

B

C

Figure 7 Behaviour of the steady state of the MMP model. (A) Complex concentration [MT1MT1T2M2]
as a function of total TIMP2 concentration for different total MT1-MMP and MMP2 concentrations. Blue line
indicates [MT1]T= 100nM, [M2]T= 100nM. Red line indicates [MT1]T=50nM, [M2]T= 100nM. Green line
indicates [MT1]T= 10nM, [M2]T= 100nM. Purple line indicates [MT1]T= 100nM, [M2]T= 50nM. Cyan line
indicates [MT1]T= 100nM, [M2]T= 10nM. (B) Concentration map of the complex concentration
[MT1MT1T2M2] as a function of total MT1-MMP and TIMP2 concentrations. Here, we set [M2]T=100nM.
(C) The response coefficients of the MMP model for the three interactions: the MT1-MMP dimerization, the
MT1-MMP and TIMP2 binding, and the TIMP2 and MMP2 binding. The blue line shows the response
coefficient RMT1MT1 = @ ln [MT1MT1T2M2]/ @ ln KMT1MT1 as a function of KMT1MT1, the red line shows the
response coefficient RMT1T2 = @ ln [MT1MT1T2M2]/ @ ln KMT1T2 as a function of KMT1T2 and the green line
shows the response coefficient RT2M2 = @ ln [MT1MT1T2M2]/ @ ln KT2M2 as a function of KT2M2. Here, we set
[MT1]T= 100nM, [T2]T= 50nM and [M2]T= 100nM.
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response coefficients for MT1-MT1T2M2 with respect to the equilibrium constants

were also calculated (Figure 7C). This model assumes that there are no cooperative

reactions, as in the previous examples, and thus the independence of the response coef-

ficients holds. To compare the three curves RMT1MT1, RMT1T2 and RT2M2 quantitatively,

we calculate the steepness. The Hill coefficients are nH= 0.74 for RMT1MT1, nH= 1.15

for RMT1T2 and nH= 0.95 for RT2M2. Thus, their steepnesses are slightly different. By

substituting experimentally derived values of the equilibrium constant (Table 2) into

the response coefficients, we obtain RMT1MT1 =− 0.095(KMT1MT1 = 5nM), RMT1T2 =

− 0.0024(KMT1T2 = 0.548nM) and RT2M2 =− 0.15(KT2M2 = 33.5714nM). Therefore, we con-

clude that the most effective inhibition is the TIMP2 and MMP2 binding interaction.
Table 2 Summary of equilibrium constants

KMT1−MT1 5nM

KMT1−T2 0.548nM

KT2−M2 33.5714nM
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Several broad-spectrum MMPIs function by strongly chelating the Zn ion that lies in

the MMP active site. Similarities in active sites of MMPs pose obstacles to the design of

specific inhibitors [3]. Thus, a new approach to the identification of new drug targets is

important. Here, focusing on the MMP2 activation process, we were able to determine

that the TIMP2-MMP2 is the most effective interaction. It is reported that TIMP2 inter-

acts with MMP2 through the C-terminal domain of the enzyme that is distinct from the

active site [21,22]. Therefore, our result identifies a new drug target in the process of

MMP2 activation. Development of low molecular weight compounds capable of effect-

ively and specifically inhibiting the TIMP2 and MMP2 binding interaction will be the

subject of future research. Our result can be validated using cell culture systems.
Conclusions
In this paper, our aim is to quantify the response of a system to the addition of inhibitors

and to classify their interactions in order of their inhibitory efficiency. In order to analyse

the response systematically, we used control analysis. Using the response coefficients, we

revealed that the parameter-independent inequalities between the response coefficients

hold in the ordered step models. For the unordered multi-branched step models, we

showed that independence of the response coefficients with respect to the equilibrium

constants holds. These results indicate that the inhibitory efficiency depends on the top-

ology of the pathway networks. We applied our analysis to a complex formation model

describing the formation of complexes of MMP2 and MT1-MMP in the presence of

TIMP2 [16]. In the complex formation process between these molecules, there are three

interactions, i.e. the MT1-MMP dimerization, the MT1-MMP and TIMP2 binding reac-

tion and the TIMP2 and MMP2 binding reaction. We tried to identify the most efficient

interaction to consider in selecting the inhibitors by putting the experimentally derived

parameter values into the model. The novel finding of the analysis is that the inhibition

of the TIMP2 and MMP2 binding interaction is the most efficient method for suppres-

sing the quadruple complex MT1-MT1T2M2, which contributes to the MMP2 activa-

tion. This result identifies a new drug target in the process of MMP2 activation.

Our method can also be applied to other models of complex formation processes.

However, there are some weaknesses in the analysis presented here. Throughout our

treatment, we have considered only the steady state in a well-stirred environment. For

the case that the substrate is a non-diffusible molecule such as ECM, the well-stirred

assumption is not valid. Thus, in this case, we should consider a three dimensional

compartment model in which the extracellular space is divided into small compart-

ments [16,23]. This will allow us to simulate a reaction–diffusion system. Furthermore,

we analysed models in closed systems, but intra- and intercellular transport of mole-

cules should play important roles in biochemical reactions occurring in cells. Thus,

spatio-temporal dynamics associated with a mechanism such as a positive feedback

loop [24] should be considered.
Methods
Numerical computation scheme

We employed the fourth-order Runge–Kutta method to solve systems of ordinary dif-

ferential equations numerically. In all simulations, the time step was taken as
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dt= 0.001 sec and time evolution was performed up to the time T= 100000 sec. In the

calculation of the response coefficients, the small fractional change of the equilibrium

constant K was δK/K= 0.01.
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