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Abstract

Background: Generally, utility based decision making models focus on experimental
outcomes. In this paper we propose a utility model based on molecular diffusion to
simulate the choice behavior of Drosophila larvae exposed to different light
conditions.

Methods: In this paper, light/dark choice-based Drosophila larval phototaxis is
analyzed with our molecular diffusion based model. An ISCEM algorithm is
developed to estimate the model parameters.

Results: By applying this behavioral utility model to light intensity and phototaxis
data, we show that this model fits the experimental data very well.

Conclusions: Our model provides new insights into decision making mechanisms in
general. From an engineering viewpoint, we propose that the model could be
applied to a wider range of decision making practices.
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Background
Animals (including human beings) face the problem of choice making at both indivi-

dual and population levels. Drosophila is a model animal that exhibits choice behaviors

in various taxis responses. Decision making theories employ the concept of utility as a

basis for choice. Utility maximization is a basic presumption of behavioral decisions

[1]. If an animal consistently chooses one option in a given set of circumstances, that

option is assigned a higher utility than the competing options at the time of decision.

Insofar as choice is adaptive, the utilities of goal objects and activities can be consid-

ered subjective estimates of potential contributions to fitness [2]. Because utility plays

an import role in decision making theories, it is meaningful to study the utility model

from animal behaviors to help us make optimal judgments.

Phototaxis is generally considered a form of light dependent preference behavior in

animals. In the fruit fly Drosophila melanogaster, it is well known that wild type adults

show positive phototaxis while negative phototaxis is seen in larvae [3-7]. From time of

hatching to the early third instar stage, larvae robustly avoid light [3,8,9]. Immediately

prior to pupation, light avoidance declines dramatically and animals become photoneu-

tral, while adult flies are strongly attracted to light [3,8,9]. These behavioral changes

undoubtedly reflect an innate search for suitable environments and a quest for survival.

Early-instar larvae eat voraciously and, by avoiding light, they immerse themselves in
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food-rich environments while also avoiding predators. In addition to becoming less

photophobic, wandering third instar larvae cease feeding and exit food to pupate.

Survival rates are low for larvae that pupate in food. It seems unlikely that a change in

visual behavior is the sole reason for larvae to leave the food, but rather that during

this stage an array of developmentally programmed behavioral changes occur [9].

Decision making in Drosophila larvae exposed to different light conditions can be

tested in a simple light/dark choice assay [3,4], in which the larvae are free to move

towards their preferred light condition. During the phototaxis assay, larval distribution

in the different light conditions changes dynamically as larvae seek the preferred condi-

tion. The complete mechanism underlying larval phototaxis is not yet clearly under-

stood, but significant progress has been made in recent years [9]. The two small eyes

of the larva are much simpler than the compound eye of the adult. Each larval eye,

also termed the ‘Bolwig Organ’ (BO), is composed of only 12 photoreceptor neurons

(PRs), which are divided into two subtypes according to the rhodopsin gene they

express. Eight PRs express the green-sensitive rhodopsin6 (rh6) and four express the

blue-sensitive rhodopsin5 (rh5) [10-12]. When light is detected by the PRs, signals are

sent to downstream 5th lateral neurons (LNs) using acetylcholine (Ach) as the neuro-

transmitter [3,6,9]. Further downstream, the so-called NP394 neurons are known to

control larval light preference, but how these NP394 neurons trigger motor neuron

responses at the output layer remains unknown [5].

Diffusion plays a crucial role in brain function because diffusion moves informational

substances between cells [13]. To understand how information is processed between

cells in larval phototaxis changes, we need to know how mobility and local interactions

of molecules lead to variability in light preference. Changes in the extracellular envir-

onment are usually transmitted in the cell through changes in the conformation or

association of intracellular proteins. In the simplest case, the information contained in

the state of these proteins is transmitted through space by their diffusional mobility

[14]. That is, on a fundamental level, fluctuations in intracellular or extracellular mole-

cular positions can occur by diffusion [15]. Fick’s Second Law, also known as the Dif-

fusion Equation, describes non-steady-state diffusion and is typically used to model

molecular mobility [14-16]. Because the Diffusion Equation is nonlinear, the correct

parameters can be obtained by global optimization.

In conventional least square (LS) regressions for nonlinear problems, it is not easy to

obtain analytical derivatives with respect to target parameters. Even if the derivatives

can be obtained analytically or numerically, one must take care to choose the correct

initial values for iterative equation-solving processes, because some undesired, locally

optimized solutions may also satisfy the equation. Nonlinear problems may possess

multiple local minima; finding the global minimum is usually difficult using conven-

tional LS regressions [17]. On the other hand, one can try to match coefficients of the

polynomial with least squares fitting by solving a linear system. The linear system is

obtained by minimizing the total square error. However, the linear system is ill-condi-

tioned for high polynomial order [18].

The shuffled complex evolution metropolis algorithm (SCEM-UA) is a global-search-

ing algorithm based on improvements of the shuffled complex evolution algorithm

(SCE-UA) developed by Duan et al [19]. The SCEM-UA method adopts Markov Chain

Monte Carlo theory (MCMC) and uses the Metropolis-Hastings algorithm (MH),
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replacing the Downhill Simplex method, to obtain a global optimal estimation [19].

The SCEM-UA algorithm is used to estimate mixed Weibull distribution parameters in

automotive reliability analysis. The results are compared with maximum likelihood

estimation (MLE) results. In published examples, SCEM-UA has been shown to deliver

more accurate results than MLE [20]. Although SCEM-UA can successfully obtain the

global optimal solution, its performance depends on correct setting of the minimal and

maximal limits. In the current study, we improve the SCEM-UA algorithm so that it

can optimize the parameter searching space and obtain the optimal solution. This

improved algorithm is termed the ISCEM algorithm.

From the above discussion of larval phototaxis neural mechanism, we infer that

molecular mobility (of, for example, acetylcholine) plays a critically important role in

larval phototaxis processes. In essence, the larvae convert light stimuli to molecular

propagation processes. The molecular mobility in larval phototaxis is apparently based

on the diffusion of molecules inside or outside neural cells [14-16]. That is, larval

photophobia in Drosophila is a process of larval molecular movement driven by light

intensity. Thus, we can use the molecular diffusion model to describe the larval light

avoidance behavior, replacing molecular concentration with light intensity as the driv-

ing force. Although the underlying molecular mechanism remains unclear, it is possible

that some biological molecules are synthesized at high concentration, and are reduced

to lower concentration by diffusion; for example, the neurotransmitters or other neuro-

peptides involved in photophobic behavior. Based on such understanding, we use the

Diffusion Equation as our decision making model and then test its compatibility with

the experimental data.

In summary, we propose a utility model derived from molecular diffusion to quanti-

tatively investigate the relationship between light intensity and Drosophila larval photo-

phobia, with the aid of a math ISCEM algorithm. By testing the model with

experimental data, we find that the dynamic process of larval phototaxis and light

intensity-photophobia is well simulated. Although the neural mechanism underlying

this utility model is unclear, this model enhances our understanding of decision mak-

ing mechanisms from an engineering viewpoint. We expect that this model can pro-

vide insights into the neural basis of decision making activities.

Materials and methods
Fly stock

Fly strain w1118 larvae were reared on standard medium [21] under conditions of nor-

mal light/dark (LD) cycles. In all experiments, early to mid-3rd-instar larvae (72-96h

after egg laying) were used.

Behavioral assay

All behavioral tests were performed at room temperature (22-24°C) between 10:00 am

and 5:00 pm. The 11-min phototaxis tests were performed following the protocol

introduced by Mazzoni et al. with modifications [3,4]. In brief, 8 cm petri dishes con-

taining 1.5% Bacto Agar, with one half of the lid covered with black electrical tape,

were illuminated from above using an 11W energy-saving fluorescent light (Leike Inc).

Early third instar larvae were removed from food and washed with fresh distilled

water. For each test, 20 larvae were placed on the agar surface and allowed to move
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freely for 11 minutes before their numbers on each side of the testing plate were

counted (Figure 1). The light avoidance index (AI) was calculated as AI = (number of

larvae in the dark half - number of larvae in the light half)/(number of larvae in the

dark half + number of larvae in the light half). Specifically for the larval dynamic distri-

bution analysis, all larvae were initially placed in the light half but at distances of no

more than 1 cm from the dark/light boundary. Light intensities were 150, 350, 550,

750 and 950 lux. The corresponding avoidance indices of w1118 under these light con-

ditions are shown in Table 1.

Building the utility model

According to Fick’s second law of diffusion [16], the spatial distribution of particles

emitted from a source evolves as:

∂V/∂t = D ∗ ∂
2 V/∂ x2 (1)

in which t is the time, x is the distance from the molecule-producing source; D is the

diffusion coefficient, and V is the concentration of the molecule at distance x from the

source.

Under initial conditions of t = 0 and x > 0, V = 0; under marginal conditions of t > 0

and x = 0, V = Vs. When t > 0 and x = ∞, V = 0.

The solution of equation (1) is

V(x, t) = Vs[1 − erf (x/2
√
Dt)] (2)

where erf (c) = (2/
√

π)
∫ c
0 exp(− c2)dc .

From Equation (2), it is apparent that

Vi(t) = Vs[1 − erf (x/2
√
Dt)] (3)

where Vi is the output concentration of source i.

We emphasize that Drosophila larval photophobia is based on molecular movement

in the larva, driven by light intensity. As mentioned in the Background section, we

understand that larval light avoidance behavior mimics molecular diffusion, and that

diffusive processes are involved in photophobia at the cellular level. Equation (3) there-

fore forms the basis of our decision making model.

ISCEM algorithm: An improved SCEM-UA algorithm

Suppose ŷ = h (ζ | θ), where ŷ × 1 vector of model predictions, ζ is an N × n matrix of

input variables and θ is a vector of n unknown parameters. The SCEM-UA algorithm

is given below:

(1) To initialize the process, choose the population size s and the number of com-

plexes q. The algorithm tentatively assumes that the number of sequences is identi-

cal to the number of complexes.

(2) Generate s samples from the prior distribution {θ1 ,θ2,...,θs} and compute the

posterior density {p(θ(1) | y),p(θ(2) | y),...,p(θ(s) | y)} at each point [19].

(3) Sort the points in order of decreasing posterior density and store them in an

array D[1:s,1:n+1], where n is the number of parameters, so that the first row of D
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Figure 1 Larval phototaxis test. (A) Schematic representation of the testing plate. The light and dark
halves of the testing plate are colored light and dark gray, respectively. See Materials and methods for
details of the 11-min phototaxis test. (B) Dynamics of w1118 3rd-instar larval distribution in the light and
dark halves of the testing plate during the 11-min phototaxis test. Twenty larvae were placed on the light
side of the LD boundary at the beginning of the test. The number of larvae in the light half was counted
every 0.5 min. The testing time of 11 min was used to demonstrate the final larval distribution. Light
intensity was 550 lux.
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represents the point with the highest posterior density. The extra column stores the

posterior density. Initialize the starting points of the parallel sequences, S1,S2,...,Sq,

such that Sk is D[k,1:n+1], where k = 1,2,...,q.

(4) Partition D into q complexes Cl,C2,...,Cq, each containing m points, such that

the first complex contains every q(j - 1) + 1 ranked point, the second complex con-

tains every q(j - 1) + 2 ranked point of D, and so on, where j = 1,2,...,m.

(5) Initialize L,T,ARmin, cn. For each Ck, call the SEM algorithm [19] and run it L

times;

(6) Unpack all complexes C back into D and rank the points in order of decreasing

posterior density.

(7) Check Gelman and Rubin (GR) convergence statistic. If convergence criteria are

satisfied, stop; otherwise, return to step 4.

The ISCEM algorithm is given below:

(1)Suppose Imin≤θ≤Imax , Imin and Imax are interval vectors of θ. The initial Imax is

set to be very large. Run the SCEM-UA algorithm and let the output parameter

vector with highest posterior density (po) be θo. Set Imax = θo.

(2)Run the SCEM-UA algorithm again, and let the output parameter vector with

highest posterior density (pw) be θw. If || po - pw || ≤ ε , where ε > 0, go to step (4);

otherwise set θo = θw.

(3) If po ≤ pw , let Imax = θw ; otherwise, let Imin = θw . Let po = pw, go to step (2).

(4) Output θw .

Results
Simulating Drosophila larval phototaxis dynamics with the model

To use our utility model to simulate the relationship between light intensity and

Drosophila larval photophobia, Equation (3) is rewritten as

f (t) = α ∗ l ∗ [1 − erf (β/
√
t)] (4)

in which f(t) denotes photophobia (assessed by AI), a and b are constants, l is light

intensity, and t is the time of light exposure (in minutes).

When the light intensity is large enough and/or the testing time is long enough, the

larvae may all crawl to the dark section of the plate (i.e. AI = 1). Under these circum-

stances, the larvae obtain no stimulus from the light. To account for this phenomenon,

if f(t) calculated from equation (4) exceeds 1, its value is set to 1; that is, an upper

bound of 1 is imposed on f(t).

To validate the model, we simulate experimental data. Best estimates of the model

parameters are obtained using the ISCEM method, which can realize parameter esti-

mation of complex functions and has a global optimal search capability. Experimental

data shown in Figure 2 are used as inputs.

Feeding these data into the ISCEM algorithm, the parameters of the model are

Table 1 w1118 larvae light avoidance indices at different light intensities (Experimental
data)

Light intensity 150lux 350lux 550lux 750lux 950lux

AI 0.2 0.4 0.7 0.8 0.9
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a = 0.001459, b = 0.56532

and the model equation becomes

f = 0.001459 ∗ 550 ∗ [1 − erf (0.56532/
√
t)] (5)

With the form of the model now specified, we then predict the time course of the AI

under light intensity 550 lux. The predicted data are compatible with experimental AI

records, as shown in Figure 2.

The comparison statistics between model prediction and experimental data are: mean

of error = -0.002, standard deviation of error = 0.14, mean of absolute error = 0.11,

standard deviation of absolute error = 0.09. The determination coefficient R2 = 0.42.

The F-value is 14.28 and F0.01(1,20) is 8.10. Because the F-value > F0.01(1,20), the

model passes the F-test. Considering that biological data are inherently prone to

experimental noise, the model provides good matches to the experimental data.

Validation of the model with experiment data from other light intensities

We externally validate the model further by investigating the relationship between AI

and light intensity. In estimates of external validity, some samples should be excluded

from the parameter estimation [22]. We replace 550 lux with varying light intensity l.

The model described by Equation (5) now becomes:

f = 0.001459 ∗ l ∗ [1 − erf (0.56532/
√
t)] (6)

Setting t = 11, we can compute the AI data for different light intensities (See Table 2).

The predicted data align well with experimental AI records, as shown in Figure3. The

Figure 2 Comparison between experimental data and model result (at 550 lux). Experimental data
are represented by asterisks, AI predictions (output by the model) by circles.
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comparison statistics between model prediction and experimental data are: mean of

error = -0.03, standard deviation of error = 0.07, mean of absolute error = 0.05, standard

deviation of absolute error = 0.04. The determination coefficient is 0.94. Given these sta-

tistics, we conclude that the data predicted from the model closely match the experi-

mental data.

Conclusions
In this paper, we build a utility model to simulate the light preference in Drosophila

larval phototaxis behavior. The model can successfully simulate both the dynamics of

larval redistribution and the relationship between avoidance index and light intensity,

suggesting that our model can be developed into a new form of decision making

model.

Fick’s second law of diffusion, the basis of the model, has been widely applied in

engineering and material studies in addition to biological/medical studies [23-27]. The

molecular diffusion process, which decreases the molecular concentration at the source

by spreading the particles through a wider volume, is mimicked in certain animal

behaviors. When the molecular concentration in the diffusion equation is replaced

Table 2 w1118 larvae light avoidance indices at different light intensities (Model
prediction)

Light intensity 150lux 350lux 550lux 750lux 950lux

AI(Model result) 0.18 0.41 0.65 0.89 1.0(1.12)

(Note: When light intensity is 950lux, the model predicts an AI of 1.12. Because this exceeds the imposed upper bound
of 1, it is set equal to 1.)

Figure 3 Comparison between AI value from Table 1 (experimental) and Table 2 (predicted).
Experimental data are represented by asterisks, AI predictions (output by the model) by circles.
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with the outside stimulus intensity, this model can simulate the processes of various fly

behavior preferences, such as phototaxis, thermotaxis, chemotaxis, odortaxis, etc.

[5,28-30].

As the molecular diffusion based utility model can correctly simulate the experimen-

tal data of larval phototaxis, it is natural to postulate that specific molecules diffuse

around and along the neural network to generate the phototaxis behavior. Currently,

how this biological mechanism functions is poorly understood. It is known that neuro-

peptides and neurotransmitters (such as acetylcholine that mediates signaling between

photoreceptors and secondary neurons) play key roles in larval phototaxis [6,9].

Further study on related neurotransmitters and signaling neuropeptides is required to

verify this model at the molecular level.

Since molecular mobility is the neural basis of animal behavior, it is reasonable to

postulate that all animal physiological and behavioral functions can be simulated with

such a model. For the larval photophobia investigated in this paper, the experimental

data matches well with model prediction. We anticipate that this utility model may be

applied to decision making behavior in humans, which is very similar to animal choice

behavior [31], though more experimental data are needed to confirm this. In any case,

the model may aid our understanding of the human decision making process. With

further optimization and refinement, the model could provide a new tool by which to

study generic decision making behaviors. To this end, the model must be tested over a

wide range of choice behaviors; this goal will be addressed in future studies.
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