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Abstract

This paper analyzes a new semiphysiological ionic model, used recently to study
reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)].
The aim of the model is to reproduce action potencial morphologies and restitution
curves obtained, either from experimental data, or from more complex
electrophysiological models. The model divides all ion currents into four groups
according to their function, thus resulting into fast-slow and inward-outward currents.
We show that this simplified model is flexible enough as to accurately capture the
electrical properties of cardiac myocytes, having the advantage of being less
computational demanding than detailed electrophysiological models. Under some
conditions, it has been shown to be amenable to mathematical analysis. The model
reproduces the action potential (AP) change with stimulation rate observed both
experimentally and in realistic models of healthy human and guinea pig myocytes
(TNNP and LRd models, respectively). When simulated in a cable it also gives the right
dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing
correctly these restitution properties, it also gives a good fit for the morphology of the
AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic
geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP
propagation and the ECG. Thus, this simplified model represents an alternative to more
complex models when studying instabilities in wave propagation.

Introduction
Cardiac action potentials (APs) are electrical signals that trigger the synchronous con-
traction of the heart. As such, the regular propagation of the action potential is necessary
for ensuring a correct heart functioning. APs are produced as a result of ion currents
that cross the cell membrane, producing a net depolarization or repolarization of the
membrane as different currents are invoked in response to the transmembrane voltage
changes. The currents are produced by the movement of individual ions through ion
channels, which are specialized pore-forming proteins that span the cell membrane, form-
ing a pathway for ions to cross it. Each type of channel is highly selective for a specific type
of ion. The most common intracellular ion concentrations considered in cardiac models
are calcium, sodium, and potassium. Channelopaties due to mutations that modify the
ion channel function can perturb the form of the action potential, sometimes leading to
cardiac dysfunctions or altered AP propagation.
Following the pioneering mathematical description of the action potential by Hodgkin

and Huxley [1] in neuronal cells, the first cardiac models considered, in much the same
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way, the changes in the transmembrane potential produced by a sum of ionic gated cur-
rents. As more refined experimental data of the different currents and their dynamics
became available, more complex models of the AP for specific cardiac cells have been
proposed [2]. The quest of new models has been especially noticeable for several animal
species, as rabbit [3], guinea pig [4], rat [5], or dog [6]; and, most recently, for humans
[7-10]. Nowadays, one can find very detailed models in the literature where the descrip-
tion of ionic channel gating is given in terms of Markov processes [11], which permit
to link specific mutations to the model parameters. A known drawback of the Markov
formulation is the increasing complexity of the models and consequently the very high
computational cost associated to the simulation of few beats in a realistic heart geome-
try. Clearly, a highly realistic ionic model is ideal as a test bench, allowing to safely test
multiple hypotheses and making predictions without incurring any cardiac risk for the
patient, or to check conditions not easily reproducible in experiments. But, despite their
more realistic description, these models are often difficult to analyze, let alone amenable
for deep mathematical analysis.
In order to tackle the problem of modeling AP propagation in the computer, simpli-

fied models have also been proposed, from the very simple but unphysiological [12-14],
to the so-called semiphysiological models [15-19], somewhere in between the former and
the extremely detailed physiological models mentioned earlier. These semi-physiological
models preserve particular sets of properties of the action potential, as for instance, the
dependence of the AP duration (APD, time during which the voltage is above a certain
threshold, characterizing the duration of the excited state) or the conduction velocity
(CV, propagation speed of the AP pulse) on the stimulation period, known as resti-
tution curves. In this respect, these can be viewed as mesoscopic models, that bridge
the gap between dynamics at the molecular level (ion channel gating) and whole heart
description, being still manageable for both computation and theoretical analysis.
A widely used semiphysiological model is the one by Fenton and Karma [15], a three-

variable model of the cardiac action potential. This model uses three transmembrane
currents, i.e., fast inward, slow inward, and slow outward, which resemble the set of phys-
iological sodium, calcium, and potassium currents, respectively. In the Fenton-Karma
model, the variables are the transmembrane potential and two gating variables that are
used to regulate the inactivation of the fast inward and slow inward currents, respectively.
Despite its simplicity, the model can reproduce fairly the action potential duration (APD)
and conduction velocity (CV) restitution curves of more complex models or experiments.
However, it fails to reproduce accurately the AP morphology. This is a strong drawback
of the Fenton-Karma model. In fact, the model was originally created in order to describe
the propagation and properties of scroll waves. The underlying idea is that wave behavior
is determined by the restitution properties of the system. Thus, it has also been useful in
the study of cardiac alternans (a beat to beat modification in the duration of the AP, at fast
pacing rates), where the onset and subsequent evolution of alternans has been related to
the shape of the restitution curves. However, more recent results have shown that mod-
els with the same restitution properties, but different APmorphologies may give different
onsets for alternans [17]. The reason is that the dynamics of alternans is also affected
by electrotonic currents, that depend crucially on the form of the action potential [20].
Furthermore, electrotonic currents are also a determinant factor for the occurrence of
re-excitation and phase 2 re-entry in cases where the duration of the action potential is
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non-homogeneous in the heart tissue [21]. Typical examples are Brugada [22], or long QT
[23] syndromes, that may be caused by fast or delayed repolarization, respectively.
With the aim of providing models that fit better the AP morphology, a modification

of the three-variable Fenton-Karma model has been proposed in [19]. This new model
includes an additional gate that modulates the slow inward current, in a fashion that
resembles the effect of the fast outward potassium current (Ito) in physiological models.
This allows to reproduce the notch in phase 1 of the AP typical of epicardial cells. In con-
trast to [19], in the present paper we specifically include the effect of the Ito. Following
the same idea as in the Fenton-Karma model, we divide the currents not by their carrier
ion, but by their function: inward or outward currents, and among these, slow and fast
currents, to a total of four. With this assumption, we show that it is possible to reproduce
all the important characteristics of AP propagation andmorphology. Here, we specifically
compare the results with more realistic models of electrical activity in human myocytes
[8] and guinea pig heart ventricles [4], and with available experimental data [24], includ-
ing action potential shape for different pacing rates, and different types of myocytes, i.e.
epicardial; endocardial; and midmyocardial cells.
The present model has been recently used to study reexcitations in tissue presenting

large dispersion of repolarization [25]. There, it was shown that reexcitation is due to a
slow pulse, induced by the L-type calcium current, that propagates from the region of long
APDs to the region of short APDs until it encounters newly excitable tissue. An interesting
advantage of studying this mechanism using this simplified model was the possibility to
obtain the characteristics of this slow pulse analytically.
The paper is organized as follows: in the next section we introduce the equations of the

model. Then, the AP morphology is studied, obtaining the proper parameters matching
with experiments and two detailed models: Luo-Rudy (LRd) model for guinea-pig [4],
and ten Tusscher et al. (TNNP) model of human ventricular cells [8]. A discussion of the
different currents and gates follows, as well as a more detailed comparison with other
semiphysiological models. In the next section, we perform simulations of AP propagation
in a three-dimensional model of the ventricles. In the concluding section, we provide
some future lines of research opened by this paper.

Mathematical formulation of the simplifiedmodel
The cellular transmembrane potential Ṽ (physical units are mV) satisfies the following
equation:

∂Ṽ
∂t

= ∇ · (D∇Ṽ ) − Iion − Istim
Cm

, (1)

where ∇ is the standard nabla operator, D = σ/(S̃Cm) is the anisotropic diffusion ten-
sor (units: cm2 ms−1), σ is the electrical conductivity (units: mS cm−1), S̃ ≡ S/Vol is
the cell surface to volume ratio (units: cm−1) and Cm is the membrane capacitance per
unit area (≈ 1μF cm−2). The simulations in a one-dimensional cable are carried out
by replacing the spatial derivative term ∇ · (D∇Ṽ ) by its one-dimensional counterpart
D∂2xxṼ in Equation (1). In the three-dimensional simulations, one must take into account
the inhomogeneous and anisotropic behavior of the diffusion parameter [26]. All com-
puter simulations have been performed using a simple Euler forward algorithm (for time
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integration) and finite spatial discretization in order to ensure current conservation up to
double precision arithmetic. The time step is fixed to dt = 0.01 ms. The uniform spa-
tial discretization mesh used in the simulations was set to dx = 0.02 cm for 1D and 2D,
and dx = 0.025 cm for 3D simulations. The current Iion is the sum of the ionic currents
flowing across the cell membrane including the ones exchanged by the pumps through
active transport (units are μA cm−2) and Istim is an applied external stimulation current.
To stimulate the cell we apply it during 1 ms with an amplitude of 1.5 times the threshold
stimulation value.
Realistic models include ion currents corresponding to all the existing ion channels

experimentally found in the cell membrane. In the present simplified model, we decom-
pose the total membrane current into only four components, i.e., Iion = Ifi + Isi + Iso + Ito,
where the sum contains a fast inward current Ifi (Na+ current plus the fast part of the
Ca2+ current); a slow inward Ca2+ current, Isi; a slow outward time-independent K+ cur-
rent, Iso; and a fast transient outward K+ current, Ito. The model does not consider the
intra- and extracellular concentrations of different ions, and therefore the effect of the
pumps is implicitly included in the previous currents. At this point, let us remind that
in the Fenton-Karma model, the three variables of the model are the membrane poten-
tial V (x, t), the inactivation gate h(t) of the fast inward current, and the inactivation gate
f (t) of the slow inward current; steady-state activation is assumed for both of these cur-
rents. In the present paper, we supplement the Fenton-Karma model variables with two
additional dynamical variables associated with the activation and inactivation of the Ito
current. The latter current being the essential novelty with respect to the three variable
model of Fenton and Karma [15]. Let us insist that it is crucial to take into considera-
tion this fast transient outward current to obtain accurately the characteristic notch in
the phase 1 of the AP, most noticeable in epicardial myocytes. This current was exper-
imentally studied in human hearts by Nabauer et al. [27] and Li et al. [24] and has
been suggested to contribute significantly to regional electrophysiological heterogeneity
in myocardial cells and tissue of several animal species. In particular, it is well known
that the human ventricle shows substantial transmural heterogeneity in AP morphology
related to transient outward properties. Furthermore, this current is sometimes related to
the occurrence of phase-2 reentry [28,29].
In the rest of the paper, in order to alleviate the mathematical notation, it is conve-

nient to rewrite Eq. (1) in dimensionless form by defining the membrane dimensionless
potential V = (Ṽ − Ṽres)/�Ṽ , which varies roughly between zero and one and where
Ṽres � −85 mV is the resting potential of the polarized membrane and �Ṽ = 100 mV.
One also defines the scaled currents Jfi = Ifi/[Cm�Ṽ ] (and similar expressions for the
others currents: Jso; Jto ; Jsi, which have all dimension of inverse time and units are ms−1).
The explicit expressions for these currents are given by:

Jfi = −gfi hm∞(Vfi − V ) , (2)

Jsi = −gsi d∞ f f ′∞, (3)

Jto = gto r s(V − Vto), (4)

Jso = gso k∞, (5)
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where Vfi and Vto are parameters indicating the reversal potentials of sodium and
potassium respectively. The four gate variables obey the classical saturation kinetics:

ḣ =[ h∞(V ) − h] /τh(V ) , ḟ =[ f∞(V ) − f ] /τf (V ), (6)

ṙ =[ r∞(V ) − r] /τr(V ) , ṡ =[ s∞(V ) − s] /τs(V ), (7)

where upper dots denote differentiation with respect to time. The expressions for the
steady-state values of the gates appearing in the current formulations, and the time
constants of exponential functions with which they converge, are:

m∞ = (V − Vc) �(V − Vc) , h∞ = f∞ = s∞ = 1 − �(V − Vc) ,

d∞ = �(V − Vc) (1 + tanh[β1(V − V1)] )/2 ,

f ′∞ = (1 − tanh[β2(V − V2)] )/2 ,

k∞ = V/Vc + �(V − Vc)(1 − V/Vc) ,

r∞ = �(V − Vr) ,

τh = τh+ − (τh+ − τh−)�(V − Vc),

τf = τf+ − (τf+ − τf−)�(V − Vc),

τr = τr− + (τr+ − τr−)�(V − Vr),

τs = τs+ − (τs+ − τs−)�(V − Vc),

where �(.) is the Heaviside function, Vr = 0.6, Vto = 0 and the rest of the parameters of
our model are given in Table 1 for human experimental epi, endo, midmyocardium, and
TNNP and LRd numerical models. Note that in the above expressions a+ subscript refers
to the time associated for a given gate to converge to one and, conversely, a − subscript
refers to the time associated for a given gate to converge to zero. The determination of the
numerical values of the parameters will be explained in the next section.

Table 1 Values of the parameters for the present model

Parameters Epi [24] Endo [24] M-cell [24] TNNP [8] LRd [4] Units

τh+ 17.9 10.8 11.3 90.5 25.8 ms

τh− 11.4 10.8 1.88 6.61 0.950 ms

τf+ 123 355 101 43.1 488 ms

τf− 183 52.3 228 181 25.4 ms

τr+ 2.51 7.54 2.15 13.5 5.10 ms

τr− 2.00 6.07 0.371 2.20 13.1 ms

τs+ 57.0 29.1 4.67 99.9 300 ms

τs− 10.6 10.4 1.75 4.34 7.11 ms

gfi 4.00 1.72 2.62 14.0 10.0 ms−1

Vfi 1.46 1.24 1.60 1.18 1.20 –

gso 0.0161 0.00891 0.0278 0.0498 0.0316 ms−1

gsi 0.176 0.414 0.103 0.138 2.32 ms−1

β1 3.99 22.8 27.1 11.8 6.90 –

β2 1.56 2.95 6.12 8.05 6.36 –

V1 0.529 0.522 0.668 0.200 0.453 –

V2 0.386 0.596 1.08 1.02 0.828 –

gto 2.10 0.300 1.36 9.82 2.50 ms−1

Vc 0.130 0.130 0.130 0.350 0.380 –

Vs 0.3 0.6 0.3 0.6 0.6 –
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Results
Comparison with experimental results and detailed electrophysiological models

One of the main goals of the present model is to reproduce the AP morphology mea-
sured in experiments, or obtained with more complex mathematical models, for different
types of myocytes and different pacing rates. Hence, the present model is an extension
of the Fenton-Karma model, but with the ability of reproducing the AP morphology and,
particularly, the notch in phase 1 faithfully.
We have validated our model in two ways: firstly, we have fitted experimental APs

for human endo-, mid- , and epicardial ventricular cells choosing the appropriate model
parameters. Secondly, we have also fitted the AP morphologies of two of the most
currently used theoretical models in the literature: ten Tusscher et al. [8] for human ven-
tricular myocytes (TNNP), and Luo-Rudy [4,30] for guinea pig (LRd), but also widely used
in other contexts.We have fitted the parameters of ourmodel such that the APmorpholo-
gies, as well as the correct conduction velocities, at different pacing rates were obtained.
Themodel parameters are determined by using a standard nonlinear optimization routine
fromMatlab based on the Levenberg- Marquardt algorithm, that minimizes the square of
the difference between the model action potential and the objective template. One sub-
tlety of the optimization process used here is that we have imposed a slightly larger weight
in the zone corresponding to the notch of the AP that is mostly influenced by the Jto
current. The codes used for the fit, as well as more information about the model can be
found in [31].

Comparisonwith experimental human cell ventricularmorphologies

As a first use of our model, we show in Figure 1 the comparison between experimental
data of AP morphologies and the present model. We have fitted the model to the exper-
iments of Li et al. [24], that were done at pacing rates of 1 and 2 Hz. As it is clear from
Figure 1, the model reproduces well the deep notch observed in epicardial cells; the more
accentuated action potential duration of M-cell; as well as the variation of the action
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Figure 1 APmorphologies calculated from the simplified model and compared to the experimental
data by Li et al. [24] for different myocytes: A) epicardium, C) endocardium, D) mid-myocardium.
Dashed lines represent the experimental data at two pacing rates, i.e., BCL=500 and 1000 ms. The APs
obtained from the simplified model are represented by solid lines. B) Restitution curve APD(DI) for the
parameters corresponding to different fits. The values by Li et al. are indicated by filled triangles.
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potential duration with the stimulation rate in all cases. Indeed, the inclusion of the tran-
sient outward current in the model allows to fit perfectly the notch in the transmembrane
voltage after the initial depolarization phase.
Let us mention that human data provided by other authors [24,27,32,33] differ slightly.

The cause of the discrepancies being presumably due to the variation in the temperature
of experiment, the heart rate stimulation, and if the right/left heart side ventricle were
used. In the present paper, we considered the experiments done by Li et al. [24] because
in the same paper the authors present the three different types of myocytes at several
physiological heart rates.
In Figure 2 we compare typical experimental conduction velocities for epicardial cells

[34] and the ones obtained with our model, for two different values of the diffusion coef-
ficient. Although the dispersion in the experimental data is significant (maybe because of
different diffusivities or slightly different sodium conductance), the results provided by
our model agree well with typical observed conduction velocities in epicardial cells.

Comparisonwith detailed ventricular electrophysiological models

Following the same protocol, we have also fitted our model to the epicardial human
ventricular model developed by ten Tusscher et al. [8]. In this case, since we have access
to data of both APD and CV-restitution, we perform a simultaneous optimization search
of the model parameters for both curves, obtained simulating Eq. (1) in a 1D cable.
Here the comparison of the AP morphology has been performed at four pacing peri-
ods, i.e., 270, 300, 500, 1000 ms. Due to the memory of the TNNP model the data of
the AP comparison are obtained when the stationary state is achieved. We also include
the CV at those periods in the objective function that we minimize. This is an opti-
mization problem in a highly dimensional parameter space, with presumably many local
minima. It is therefore difficult to ascertain if a given solution of the minimization pro-
cedure is the best possible one. However, as it was the case with the experimental data,
the comparison between the simplified model and the TNNP model is very good, as it
can be seen in Figure 3. For comparison sake we also show the results obtained with
the model proposed by Bueno et al. [19] (BCF model), with the parameter set they
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Figure 2 CV-restitution curve for the parameter set corresponding to epicardial cells and diffusion
constantsD = 1.54 × 10−3 cm2/ms (as in Tusscher et al [8]) andD = 1 × 10−3 cm2/ms [15]. For
comparison we also show the results by Yue et al, for various experimental set-ups [34].
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Figure 3 Comparison of different models. A) APs morphologies from the simplified model (solid line) and
those obtained from the simulation of the TNNP model (long dashed line). Four different pacing rates
(BCL=270, 300, 500, 1000 ms) have been used for determining the parameter set of our model. Restitution
curves B) APD(DI) and C) CV(DI) for our simplified model and the TNNP model. For completeness we also
include the results of the 5 variable BCF model, with their parameter values for the fit to the TNNP model.

provide for their fit to the TNNP model. The large disagreement between the BCF and
TNNP models suggests that there is most presumably a typo error in some of the BCF
parameters [19].
Another important physiological model is the LRd model for guinea pig [4,30] (where

we consider the last version of the model, obtained from [35]). In Table 1 we provide
the parameter values for the fit to the LRd model. In this case, the comparison between
our model and the LRd model was again done at four following pacing periods: 100, 250,
500 and 1000 ms. The LRd dynamic model (using D=10−3 cm2/ms) gives an approximate
propagation speed of 52 cm/s at large DI. This value compares well with the actual velocity
∼ 50 cm/s obtained with our model with parameter values fitted to the LRd model (see
Table 1).

Gates dynamics and transmembrane currents

To obtain a better understanding of the newly proposed model, we will briefly discuss
the shape of the different currents entering into the formulation of our model. The cur-
rents in our simplified model have all dimension of inverse of time (units ms−1). In
order to perform a direct comparison with the currents in more complex models they
must be multiplied by the factor Cm�Ṽ to obtain the corresponding dimensional current
in μA cm−2.
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• Jfi: fast inward current. It corresponds mainly to the Na+ current in more detailed
electrophysiological models. For instance, in the TNNP model [8], it is expressed by

INa/Cm = GNam3hj(Ṽ − ENa), (8)

where m is an activation gate, h is a fast inactivation gate, and j is a slow inactivation
gate. The sodium conductance in the TNNP model is equal to GNa = 14.838 nS/pF.
Straightforward dimensional analysis allows to compare this value for the
conductance to the one in our model gfi = 14ms−1 (nS/pF ≡ ms−1, see the value
given in the ninth row and fourth column of Table 1). For the gates dynamics, some
simplifications are done in the model. The dynamics of the activation gate m is fast
(in realistic models τm ∼ 0.1ms), so we take its steady state value, given in Figure 4
(although this may lead to a decrease in the numerical accuracy of the model, see
[36]). Therefore, it opens at V > Vc, (for the fit to TNNP, we set Vc = 0.35,
equivalent to Ṽ = −50mV). The product of the steady state of the inactivation gates
h and j is modeled by a step function �(V − Vc). The time constants for opening
and closing are τh+ = 90.5ms and τh− = 6.61ms, respectively, which again are of the
order of magnitude of those found in the TNNP model. The Nernst potential ENa is
typically in the range ENa �[ 40 − 70]mV, while in our case we have set Vfi = 1.18,
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Figure 4 Comparisons of gates dynamics. Top panels: fast inward current:m gate (left) corresponds to the
activation gate; h gate (right) corresponds to the fast inactivation gate. In both sides, the simplification of the
present model relative to more complex models is clearly seen. Our model is represented by a solid line, the
TNNP model is indicated by a dashed line and the LRd model is indicated by a dotted line. Lower panels:
Comparison of the steady state values of the activation and inactivation gates of the transient outward
current Ito .
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corresponding to Ṽ = 33mV. The time constant τh+ is related to the recovery of the
gates from inactivation, and gives the CV restitution properties of the propagating AP.

• Jsi: slow inward current. This corresponds approximately to the Ca2+ current in
more detailed electrophysiological models, responsible for the formation of the
plateau (phase 2) in the AP. The principal component is the current ICaL, that, in the
TNNP model is given by

ICaL/Cm = GCaL d f fCa
4ṼF2

RT
Caie2ṼF/RT − 0.341Ca0

e2ṼF/RT − 1
(9)

This current depends on the intra- and extracellular Ca2+ concentrations denoted by
Cai and Ca0, respectively. The current defined by Equation (9) possesses three gates,
two voltage dependent gates d and f, and a third one fCa that depends on the calcium
concentration. In the present model we do not include the calcium concentration
dynamics, and therefore all the gates are only voltage dependent. We assume that
voltage activated gate d is fast, therefore we neglect its dynamics and rather take its
steady-state value. Formally, it means that the dynamics of calcium current is slaved
to voltage dynamics, so the last part of ICaL gives an effective voltage activated gate.
In the model, the dependence on voltage is given by two sigmoidal functions that
determine the voltage range at which this current is active. In conclusion, all the
dynamics associated with calcium lies in the voltage inactivation gate f, that operates
at a time scale of τf+ ∼ 43ms for opening, and τf− ∼ 181ms, for closing. The time
constant τf− is related with the AP duration, while τf+ determines the AP restitution
properties.

• Jto: transient outward current. This current corresponds to the transient K+ current
responsible for the notch in the action potential. In the TNNP model it is expressed
by :

Ito/Cm = Gtors(Ṽ − Ek). (10)

For the reversal potential we take Vto = 0, which corresponds to Ṽ = −85mV, while
typical values in the literature are EK � −100mV. For the gates, once again we adopt
the simplified formulation through step functions for opening (or closing) at
Vr = 0.6, corresponding to a potential Ṽ = −25mV, similar to the TNNP model. In
our model, the dynamics of the gate s is similar to the inactivation gate of Na+, and
closes in a time scale of ∼ 4ms. For the activating gate r, we have a time scale for
opening of ∼ 13ms. A comparison of the steady state values of the gates as a
function of the transmembrane potential is shown in Figure 4.

• Jso: slow outward current. This current corresponds to the slow (mainly K+)
repolarization currents. Among the slow potassium currents, one can distinguish: IKs,
IKr , IK1, ... but all in all, their sum is almost constant. We therefore maintain the
assumption of the FK model that this current depends on a single gate at steady state.

In Figure 5 we show the AP and currents for the LRd model. We have grouped the cur-
rents into four groups corresponding to the classification in our model. It should be noted
that our fast inward current Jfi corresponds to the sum of the sodium current INa plus the
fast part of the calcium current ICaL, in more realistic electrophysiological models, as for
example in the LRd. The current corresponding to the pumps INaCa and INaK has been
grouped with the sum of the potassium currents, that collectively correspond to the Jso of
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Figure 5 Comparison of the currents between the LRdmodel (top) and our simplified model
(bottom), for the corresponding parameters given in Table 1 (fifth column).

the simplified model. We should stress that these currents do not have a direct electro-
physiological meaning, since we are dealing with a reduced model, but a comparison with
the currents in realistic models helps to clarify the meaning of the different currents in
the simplified model.

Comparison with other simplifiedmodels
In this section we compare our model with other existing simplified models proposed in
the literature. Two of the simplest models of cardiac dynamics contain only two variables.
These are the models by Mitchell and Schaeffer [16] and by Aliev and Panfilov [14]. In
both cases the equation for the transmembrane voltage includes just two currents, one
outward Jout and one inward Jin, such that dV/dt = Jin − Jout . Besides the equation for
the transmembrane voltage, there is an additional equation for a gate variable that, in [16]
modulates the inward current, while in [14] modulates the outward current. Despite their
extreme simplicity, these models present restitution properties and morphologies that
resemble those of cardiac cells (except for the missing notch in phase 1 of the AP). Inter-
estingly enough to mention, in the model by Mitchell and Schaeffer it is even possible to
calculate the APD restitution curve analytically, under certain constraints in the parame-
ters. This, together with the conduction velocity at a given pacing rate (or the maximum
CV) fixes univocally all the coefficients in the model. Once this is done, there is no more
freedom to fit the shape of the CV-restitution curve. Unfortunately, for typical restitution
curves found in human cardiac cell, the previous constraints are not fulfilled and, thus,
the simple expressions for the APD-restitution do not hold.
The Mitchell-Schaeffer two variable model is a simplification of the Fenton-Karma

model [15]. In the latter the inward current is split into a fast, Jfi and a slow Jsi component.
This model is able to fit both APD and CV-restitution curves at the same time, however it
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does not fit properly the morphology. A further simplified model was proposed by Bueno
et al [19], including an additional gate that modulates the slow inward current, mimick-
ing the effect of the transient outward current Ito. This modification implies the need
to introduce different values of the parameters at different levels of the transmembrane
voltage, through the inclusion of Heaviside functions. In the present paper, we follow a
similar approach but, instead of modulating the slow inward current as it is done in the
BCF model, we explicitly introduce a fast outward current similar to the physiological Ito,
an approach that we reckon more natural. This approach, for instance, has been useful to
study Brugada syndrome [25,29], where the loss of the dome is achieved just changing the
conductance of this new current Jto.
In Figure 6 we show the APD and CV restitution curves obtained for the different sim-

plified models. For our model and BCF we consider the values fitted to human ventricular
epicardial cells, while for themodels by Aliev-Panfilov andMitchell-Schaeffer we consider
typical values of the parameters cited in the original papers. The latter do not correspond
to human cells.

Two dimensional simulations
In this subsection, we will check that our model reproduces the complex spiral wave
dynamics observed in realistic cardiac models (for a comparison of spiral wave dynam-
ics in several cardiac models, see [37]). In order to do so, we take a piece of uniform
epicardium tissue and apply an ectopic activation to study the stability of the artificially
created spiral wave and its dynamics. Spiral tips may follow different types of trajectories,
from circles to flower like patterns to chaotic meanderings [38,39]. The spiral tip is deter-
mined by the algorithm described by Fenton and Karma in the reference [15]. The wave
tip is defined as the point where the excitation wavefront meets the repolarization wave-
back of the AP. This point (xtip, ytip) is the intersection point of the lines V = Viso and
∂tV = 0. The arbitrary choice for Viso only slightly modifies the meander trajectories. In
this article, we have chosen Viso as a half of the maximum depolarization potential value,
i.e. Viso ≈ (�V )/2.
In Figure 7 it is shown the spiral dynamics for the LRd model and our present model.

The size of the 2D domain is 10x10 cm. The time integration spans 4,000 ms and only a
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Figure 7 Comparison of the spiral dynamics obtained with the original LRdmodel (Upper) and our
present model (Lower) with the parameters given in Table 1. On the left it is shown a typical snapshot of
the spiral wave; in themiddle it is shown the tip trajectory and on the right a time series of the transmembrane
voltage taken at a fixed point in the two dimensional domain. Note that the potential for the LRd model has
been renormalized to fit in the range [ 0 − 1.5] in order to ease the comparison. The tissue size is 10x10 cm.

fraction is shown. The spirals are stable and the spiral tip experiences a meander that is
comparable for both the original LRdmodel and ourmodel. Here we should point out that
as the spiral dynamics is not directly related to the APD and CV curves, this comparison
constitutes an additional test for the validity of our model. However, given the strong
memory effects in the LRd model, a very precise comparison is difficult to make, since
the spiral form and dynamics is slowly changing with time. Quantitatively, the period of
the spiral wave for the LRd model is T = 104.8 ms (APD=86.8 ms and DI=18 ms) and
for our model fitted for LRd, the spiral period is T = 102 ms (APD=83.8 ms and DI=18.2
ms). The high frequency of the spiral waves is the reason for using the four different BCL
in the fitting of the AP morphology in section II (especially the high frequency rate at
BCL=100 ms). Actually, due to the spiral motion, the period varies slightly from point to
point in the two dimensional domain (Doppler shift). The size of the spiral core is also
comparable and is of the order of 1cm (see Figure 7).

Three dimensional simulations and ECG calculations
Cardiac arrhythmias, especially those occurring in the ventricles, are intrinsically three-
dimensional phenomena whereas direct experimental observations are only mostly lim-
ited to surface recordings. Other techniques like plunge electrodes can and have been
used to obtain intramural information, albeit at coarse spatial resolutions [40], and tran-
sillumination is another technique that can be also used in some circumstances [41].
Therefore, it is in general difficult to identify the exact nature of the arrhythmic states
and the mechanisms causing their initiations. In this respect, computer simulations of the
propagating action potential throughout the heart constitute an invaluable tool to get a
better insight into these mechanisms.
In this section we exploit a three dimensional computer model of the rabbit heart

ventricles to further compare the original LRd model and our new model. In particu-
lar, we compute and compare the pseudo-ECGs [42] resulting from the AP propagation
for both models. The details of the numerical scheme used in this section can be found
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in the paper by Bragard et al. [43]. The geometry of the ventricles are corresponds to
the rabbit heart [26] and we have also included the anisotropy of the conductivity ten-
sor which is very important in order to achieve realistic simulations of the propagating
AP. Here, the numerical grid is composed by cubic voxels of 0.025 cm size and the time
step of the explicit scheme is set to dt = 0.01 ms. Using such a small time step ensures
to capture the smallest time scale linked to the depolarization of the heart myocytes
(≈ 1 ms). The values for the longitudinal diffusion D‖ = 10−3 cm2/ms and trans-
verse diffusion D⊥ = 6.75 × 10−5 cm2/ms are taken from the paper by Aguel et al.
[44] and reflect the fact that the conduction velocity is more than three times faster
along the fibers than in the plane transverse to the fibers (i.e. transverse isotropic dif-
fusion tensor). In addition to the geometry and the fiber anisotropy, we have modeled
the complex fast conduction system (His bundle and Purkinje fibers [45]) by a time
dependent external activation along the endocardial layer as it is done in the article
by Boulakia et al. [46]. Indeed, the time sequence of the depolarization of the ventric-
ular tissue is important for the reconstruction of the ECG. Here, in the rabbit heart
ventricles, we have represented in black the location where the activation is initiated
(see Figure 8). The detail of the sequence of the firing is as follows: At t=0, the fibers
between the base and the mid-septum are fired; at t=5 ms, the fibers between the mid-
septum and the apex are fired and, finally, the remaining fibers are fired at t=10 ms.
In the present paper, the ECG has been reconstructed using the heart dipole technique
[47]. This technique consists in solving the forward problem of electro-cardiography
with a monodomain approximation [46] and assuming that the torso is an homogenous
medium. This is the simplest manner to compute the pseudo-ecgs but still gives satis-
factorily qualitative results. The method consists in adding all the microscopic dipoles

Figure 8 Geometry of the rabbit heart ventricles. The dark traces are the locations where the excitation of
the ventricles is initiated (time course of 10 ms). Not shown in this figure is the anisotropy of electrical
conductivity of the cardiac tissue. The box size is 152x138x130 voxels (dx=dy=dz=0.025cm). The left ventricle
corresponds to the lower part of the figure and the right ventricle is located in the upper part of the figure.
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(created at the depolarization fronts) into a single vector which is called the heart dipole
vector as follows:

�J =
∫
V

�r∇ · (D∇V ) dV , (11)

where in Equation (11), V represents the integration volume (ventricles) and �r is the vec-
tor joining the geometrical center of the heart to the microscopic dipoles created by the
moving fronts. The next step consists in projecting the heart vector on some standard
directions in order to compute the different derivations of the ECG. In our case, because
of the crude approximation used for the torso, we are unable to compute the chest leads
[46]. As the main interest of this section was to compare our model with the LRd model,
we will only compute the standard lead I and check if they are qualitatively the same.
For the comparison of the pseudo-ecgs we have stimulated both our model and the LRd

model at a period of BCL=400 ms during several beats. In the case of the LRd model,
and because this model is known to have memory effects associated to the slow dynamics
of ion concentrations, we have started the simulation from an initial condition obtained
from a separate one dimensional simulation of one thousand beats. The electrical orga-
nized activity associated with the AP propagation is well captured in the corresponding
pseudo-ECGs as shown in Figure 9. We observe that after few beats both models (ours
and LRd) converge as expected. It should be noticed that the T-wave indicating the repo-
larization phase of the ventricles is inverted in both ECGs in Figure 9. This is due to the
fact that our description of the ventricles lacks to include the transmural heterogeneities,
i.e. different APDs of the cardiac myocytes in the epi- , mid- and endocardium tissues
[46,48]. From the computational speed point of view, the difference between our model
and the LRd model is striking. In order to have a fair comparison, we have simulated both
models on the same single processor, thus avoiding differences linked to parallelization
speed variations. For the LRd model the simulation lasted for 68 hours, while only 4h30’
for our model. Therefore a gain of approximately a factor twenty in computational speed.
As mentioned in [46], if we want to address the inverse problem of electro-cardiography
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compared the cases of the original LRd model (solid line) and our simplified model (dashed line).
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the speed is a crucial factor to take into account because one has to solve many times the
forward problem to get an approximation of the inverse problem. The use of a simplified
model is one way to deal with the speed issue.

Conclusions and further works
In this paper we have analyzed a semi-physiological cardiac model that has been used
previously to study reexcitation in a medium with dispersion of repolarization [25]. The
model reproduces well the action potential morphology of different cardiac cells from
experimental data and also from more complete physiological models.
The CV-restitution and the pseudo-ECG’s in a realistic model of heart ventricles have

also been satisfactorily compared. One concludes that to study AP propagation our
present simplified model is a good alternative to the most costly physiological models.
The gain in computer speed is around a factor of twenty and the need for computer mem-
ory (RAM) is also greatly reduced. In certain situations it also allows to obtain analytically
some characteristics of propagation [25], which, in a realistic cardiac model, would be
intractable. A limitation of the model is the absence of memory due to the lack of the slow
dynamics of ion concentrations. This makes unfeasible to fit simultaneously dynamic and
S1-S2 restitution curves and may not give a good comparison with realistic models under
situations where the stimulation frequency is abruptly changed. In the near future, we
plan to refine the present three dimensional simulation to include the important trans-
mural heterogeneities [49], in order to study transmural reexcitations and to obtain more
realistic ECGs from the 3D model.
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