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Abstract

Background: X-ray dose from computed tomography (CT) scanners has become a
significant public health concern. All CT scanners spray x-ray photons across a patient,
including those using compressive sensing algorithms. New technologies make it
possible to aim x-ray beams where they are most needed to form a diagnostic or
screening image. We have designed a computer game, CT Brush, that takes advantage
of this new flexibility. It uses a standard MART algorithm (Multiplicative Algebraic
Reconstruction Technique), but with a user defined dynamically selected subset of
the rays. The image appears as the player moves the CT brush over an initially blank
scene, with dose accumulating with every “mouse down” move. The goal is to find
the “tumor” with as few moves (least dose) as possible.

Results: We have successfully implemented CT Brush in Java and made it available
publicly, requesting crowdsourced feedback on improving the open source code.
With this experience, we also outline a “shoot ‘em up game” CancerZap! for photon
limited CT.

Conclusions: We anticipate that human computing games like these, analyzed by
methods similar to those used to understand eye tracking, will lead to new object
dependent CT algorithms that will require significantly less dose than object
independent nonlinear and compressive sensing algorithms that depend on
sprayed photons. Preliminary results suggest substantial dose reduction is
achievable.

Keywords: Object dependent image processing, Computed tomography, Video
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Background
We would like to introduce two computer games for x-ray computed tomography

(CT), with the goal of capturing and using human intuition for reducing CT dose. The

first game is based on a generalization of a common computer drawing tool, called the

“brush”, which resembles art and drafting tools [1-6]. Here we create what we call a

“CT brush”. We have implemented the core of the CT Brush game and made it chal-

lenging with increasing levels of difficulty. The second game, CancerZap! [7], designed

based on watching absorbed grandchildren, allows players to shoot bursts of x-ray pho-

tons at “bad guys” (tumors) while trying to miss the “good guys” (normal tissues) as

much as possible, with the caveat that initially you can’t see either, and so the user

must start by “shooting in the dark”. As the images improve, you have to decide who is
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good or bad. Such games are an amalgam of the Where’s Waldo books [8,9] and the

Battleship game [10-14]. Thus, CT Brush is a “puzzle game” and CancerZap! is a “first

person shooter” game [15]. A form of the latter game, CancerZap!, has already found

its way into XLCT (X-ray Luminescence CT) software for sparse molecular images [16]

based on our previous suggestions [17]. A more general CancerZap! game is outlined

here, but has not yet been implemented.

In both games, as in golf, “the goal is to play as few strokes per round as possible”

[18]; or, in other words, the purpose of the game is to find the tumors with as low an

x-ray dose (the game score) as possible. Both games mimic standard absorption/scat-

tering x-ray imaging, but should be modifiable to create games that use x-ray phase

contrast imaging, which promises substantial x-ray dose reduction in itself [19-21].

Present CT scanners use shotgun approaches, spraying the patient with x-rays and

constructing an image from the projection data obtained in the process. The mathem-

atics is generally linear and nonadaptive, including that of compressed sensing

[22-29], although modern algorithms incorporate some a priori information such as

positivity [30-33], smoothness [34], piecewise continuity [35-38], streak suppression

[39,40], working around opaque objects [41-43], modeling [44-46], thickness of the

patient versus angle of view [34,47,48], etc. Here we consider what we have called

intelligently steered x-ray beams [17], the idea being that human intelligence might

lead to detection of tumors at lower dose than shotgun-based algorithms. If so, we

might be able to automate what people do, by recording and analyzing their search

strategies.

In medicine we calculate computed tomography images to detect problems inside

patients. While these scanners work, they do so at high x-ray dose, and the controversy

over this cumulative dose to the population, 49% of the per capita dose in the USA

[49], is hindering wider use of CT. There have been many algorithmic approaches to

dose reduction [50-53], but in our opinion much further dose reduction should be

possible. This is especially the case for our long term goal, which is the detection of

premetastasis breast and other tumors [17]. We found that detection of 2 to 4 mm

diameter premetastasis breast tumors, followed by their destruction, should lead to a

greater than 99% cure rate [54]. Others subsequently estimated this target at 2.7 mm

[55]. Our focus here is, then, on the detection of small tumors, rather than the quality

of the general CT diagnostic image. The reduced resolution of iterative CT algorithms

as dose is reduced [56] could be offset if the x-rays were directed more to the tumors

being sought, as we propose here.
Implementation

A 2D version of the CT brush

Please see Additional files 1, 2, and 3, which contain a binary JAR, the source code, and

the documentation, respectively.

The simplest brush tool is the eraser, which has a given size and shape, and sets all

pixels it encounters to zero as it is moved via mouse, joystick or track pad by the

player [57]. The drawing brush tool likewise fills in a swath of pixels with a given

value, design or color. Other tools have more subtle effects, such as “healing” (remov-

ing scratches, etc.), creating gradients, blurring edges or making smoke patterns as
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the tool moves. These tools can be used to create a digital painting from scratch,

guided by the mind of the artist.

A CT brush consists of a “star” pattern of x-ray beams (rays) through a given point

in the patient (Figures 1, 2 and 3). The point at which all beams in the brush intersect

is called the “central point”. As the brush moves, both the central point and all of the

star lines through it are processed. The simplest design is to have a set of fixed, inter-

secting beams and move them from point to point within the patient, perhaps turning

them on and off as we go. This would allow us to control the dose. This could be

implemented in hardware using modern x-ray arrays, perhaps using Wolter lenses [58].

Note that while we are confining CT Brush to 2D images, it could readily be general-

ized to 3D, with, in general, a sharper point spread function for the images [17,59].

However, it would best be driven by a 3D joystick [60] and the images displayed in 3D.

Dose is controlled by two factors: the number of rays involved in the star of the CT

brush, and by the motion of the brush when the player holds the mouse button down.

As the player moves the CT brush with the mouse button down, all points along the

rays of the star-brush receive radiation, i.e., all of those rays are labeled as “selected”.

However, to minimize redundant dose, we do not count selected rays twice. This is

because the value of a given projection in this game is static, and so reprojecting a ray

will not yield any increase in image quality for the player. The player can see this effect,

because all of the projection lines in the star, which have not yet been irradiated, will
Figure 1 The welcoming messages and initially uniform image in the CT Brush game. Buttons are available
on screen to the player for increasing or decreasing the number of rays (n) or the width of the rays (w) at
any time during play. “New” starts a new game. “Refine” allows the user to run the iterative CT algorithm
(MART) to convergence. This does not add any dose. The rays are initially all green, meaning no dose has
yet been applied along them.



Figure 2 On hitting the “Finish” button, the player is asked to state how many gray circles have been found.
Here play was terminated early, and a wrong guess was made. Note that some of the rays are red, meaning
that they have been used before, and are therefore not adding to the dose. The dose used so far is reported
continuously on the bottom, along with the current number of rays and ray width. A correct guess advances
one to the next level of difficulty. Here the image size is 256 x 256 pixels.

Figure 3 Left: This depicts the star-brush in the CT Brush game, as seen by a player, after playing a while on a
256x256 pixels canvas. Both real objects and artifacts appear in the image, but the player does not know which
are which. The red lines represent selected rays (i.e., rays which have already been irradiated and analyzed), while
the green lines represent available, unselected rays. These lines are shown dynamically as the player moves the
brush. If the mouse button is down, the green rays become selected, turn red, and the dose is increased. Early in
the game, one is playing “blind”. Middle: further use of the CT brush starts to bring out more of the structure of
the hidden image, and (what will later prove to be) artifacts decrease. Right: refinement of the image by further
play clearly brings out the gray circle, which represents a possible tumor. The player might decide to stop at this
point and report the apparent count of tumors.
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be displayed as green; meanwhile, any projection lines in the star of the CT brush,

which have already been irradiated, will be displayed as red. Green means “available for

selection” and red means “already selected”. Thus the player is prevented from adding

dose that could not improve the image. Again, this protection from extra dose when a

ray is selected twice could be implemented in computer driven x-ray hardware.

If the player has a mouse with a wheel, the number of rays can be increased or

decreased by turning it. Otherwise there are screen buttons for increasing/decreasing

the number of rays. Screen buttons are also provided for increasing/decreasing the

brush width. The dose per star increases in proportion to both its number of rays and

its ray width. No detail is lost, since the rays that are bundled in a wide brush are calcu-

lated separately. In the current implementation, the views are equally spaced all the

way around. Options could be added for limited angle range [30,61-72] and for rotating

the CT brush, thereby generating a fresh set of rays, despite using the same number of

views in the star.

Using the CT brush, the player can select which subset of all possible rays across the

image to use for the MART algorithm. As the player brushes the hidden image, a

“canvas image” is generated. This canvas image is constructed using all of the ray sum

values from the rays selected thus far as the brush was moved. Therefore, the maximum

dose occurs if the player brushes all points in the canvas, with 180 rays in the star

(the maximum number of rays we have allowed in the computer program, each line

representing one degree around the central point). In other words, an image produced this

way would be equivalent to an image made using 180 projected, parallel views equally

spaced by 1 degree, and the same CT algorithm. In summary, the user of CT Brush is

selecting a subset of all possible rays. The smaller that subset, the lower the dose.

The CT brush, while having a focal point (the “central point”), extends across the

whole image, because each ray enters and exits at edges of the image (Figure 1, 2, and 3).

Therefore, as the brush is moved with the mouse down, data is acquired for every pixel in

the hidden image that is intersected by the brush’s star pattern. The trajectory of the central

point is tracked for later analysis. The raysum data is accumulated over time; so, as the CT

brush is moved, all points in the canvas image (i.e. the patient), touched by any ray in the

brush, may be updated to new values. These effects will fall off as the distance from the

current location of the central point of the CT brush increases [73].

The CT algorithm we used, MART, is iterative and ray based. Because the program’s

algorithms have to be run in real-time on consumer personal computers, some com-

promises were necessary, such as only doing refinement iterations when the player

clicks the “refine” button. Refining does not increase dose. The pattern of use of the

refine button is recorded using the tracking feature, permitting its later automation.

CT brush playing levels

To facilitate unlimited playability, the CT Brush game generates levels for the player to

solve. Each “level” (i.e. level of difficulty) in the CT Brush game corresponds to a

hidden image comprised of gray and whole-tone (either white or black, depending on

the background color) objects. As the user progresses, he or she may access canvases

that are larger in height or width (or both), by up to 128 pixels per 5 levels. These lar-

ger canvases will appear randomly. Because the maximum number of objects is
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calculated randomly based on the dimension of the canvas, larger hidden images will

generally be more complex. In addition, beyond level 8, there is a 1/6 chance for the

grayscale of a level being inverted. The number of shapes per level is calculated by:

mindim/64 + random((mindim/11) - (mindim/64)) – where mindim = the minimum

dimension (height or width) in pixels. The reason higher levels are generally (but not

always) harder is because the larger the image sizes available, the more likely the user

is going to have a larger image. The randomness also provides the user with the occa-

sional easy level.

The goal of each level in the game is to find the number of gray circles in the hidden

image (Figure 3). Each gray circle in the image represents a tumor in a patient. All

objects in the hidden image vary in size, shape and quantity. The two possible shapes

are circle and triangle; the quantity and size of each object is proportional to the size of

the canvas. Every time the player successfully deduces the correct number of the gray

circles in a level, they progress to the next level. As the player progresses, the general

difficulty of the program should increase. However, if the player fails to identify the

correct number of gray circles in the image, they are returned to a lower level.

By default, the background color is black; however, once the player reaches level 8, all

levels ending with the digit 8 are “inverted” (i.e. a white background with black whole-

tone objects). Additionally, past level 8, there is a 1/6 chance that any level can be

inverted.

To further vary the difficulty of each level, we alter the number of pixels in the

hidden image. Each dimension (height and width) of the hidden image is calculated/

generated separately. The base size of the canvas is 256x256. Each dimension can be

randomly increased by 128 pixels for every 5 levels. For example, at levels 5–9, the

possible canvas sizes are: 256x256, 256x384, 384x256, and 384x384, and at levels 10–14

the possible canvas sizes are: 256x256, 256x384, 256x512, 384x256, 384x384, 384x512,

512x256, 512x384, and 512x512. In addition, because the number of objects is influ-

enced by the size of canvas (via a random number generator), larger canvases may

contain more objects to find.

While the number of levels currently possible is over 2 million (232 – 1), most players

will likely lose, give up, or get bored or die before they reach this level. Additionally,

the practical limit of the game depends on the speed and memory of the computer the

player is playing on. The code has been optimized to try to minimize the demand on

the CPU, as the CPU speed seemed to be the weakest link in most situations.

Variations could be readily incorporated in the program. For example, the hidden

image could be a real CT slice with real or simulated tumors in it.

Analysis/purpose of CT brush gameplay

The CT Brush game has a tracking feature, which causes the program to pipe specific

data to a TCP/IP connection [74]. The data tracked is comprised of: the current level

the player is working on, the hidden image for that given level, and the player’s brush

movements and refine requests. This data may be analyzed later to deduce patterns in

the user’s approach, which could help improve CT algorithm design. We thus hope to

find strategies which hone in on features of the image that result in a more dose-

efficient detection of tumors. If any of the player strategies could be ascertained and

formalized into a computer algorithm, then CT Brush algorithms could be automated
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and used to run hardware CT scanners. An automated CT Brush is, in effect, an intelli-

gent flying spot 3D CT [17,75].

Thus, the advantage of CT Brush is that it allows us to explore inside a patient,

attempting to hone in on the image information, while trying to keep total x-ray dose

to a minimum, perhaps at substantially less than the dose of shotgun CT imaging. An

analogy can be made to eye tracking of radiologists, in which the direction of their gaze

is recorded [76-78]. The difference here is that the image data is acquired as the gaze is

changed. In fact, eye tracking glasses or computer cameras [79] could be used to run

the CT brush.

As a step towards analysis of players’ actions, we may consider a process analogous

to eye tracking of a scene, such as the study depicted in Figure 4. The main difference

is that the scene is initially invisible (Figure 1). The hand/eye tracking by the user for

the game played in Figure 3 is shown in Figure 5. This visual approach may permit us

to use methods developed in studies of visual behavior [78,80-83] to learn what the

player pays attention to as he/she reconstructs the scene, such as in the construction of

a “story board” from gaze tracking [84-86]. It is plausible that displaying the history of

her/his hand/eye tracking might aid a player in deciding on future moves. This feed-

back, an on the fly version of the hand/eye tracking as in Figure 5 Right, could readily

be added to the CT Brush game.

CT brush mathematics

Any CT reconstruction is generally one possible solution to the equations describing

the relationship between raysums and the pixels or voxels of the image. Even with cross

sectional images in 2D we are dealing with a slab of voxels. So, in this section of the

manuscript, we will always refer to the image elements as voxels rather than pixels.

The generalization from 2D to 3D is then conceptually straightforward. As we usually

deal with many more unknowns (voxels) than measurements (raysums), there is a

whole hyperspace of possible solutions. Most CT algorithms generate a single recon-

struction from this vast array of possibilities.
Figure 4 An eye tracking experiment by Alfred L. Yarbus [150] in which the eye movements have been
superimposed [84] on a painting "Unexpected Visitors" by the 19th Century Russian artist Ilya Repin. The eye
tracking is easier to appreciate if the two images are viewed as a stereo pair [151]. Figure 5 Middle and Right
may also be viewed in stereo.



Figure 5 Left: Same picture as Figure 3 Left (except that the game has been played a bit further), showing the
reconstruction at this early stage of the game, without the star of rays. Middle: The hidden image containing
one target “tumor” (gray circle) and the cluttering objects near and far. This image was hidden from the player
during gameplay. Right: The track of the central-points used in the game by the player, superimposed on the
hidden image, which the player couldn’t see. The long straight lines are hand/eye movements that were
straightened by the mouse interpolation algorithm. While the image on the left includes the target, it does not
accurately reconstruct any of the objects, and some artifacts appear that are comparable to the real objects. As
play continues, these artifacts can be seen to have disappeared (Figure 3, Middle and Right), perhaps because
the player paid some attention to them (Right).
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In previous work we showed how one could take an intelligent “walk” in the space

of solutions, and explore for the existence of substantially different solutions to the

same CT equations [73]. This “walk” was a “clunky” approach, in that one had to

design “objects” to be added to the image, or subtract objects in the image, and then

let convergence of the iterative equations take one back to the solution hyperspace.

The CT brush is much easier to use as an exploratory tool. Pointing at and brushing

over an area of possible interest is a much more natural operation. A given area can

be “scrubbed” with a CT brush until it is apparent that something interesting lies

there or not. If an edge shows up, the brush can be moved along the edge, to follow its

trajectory in the image. If the brush width is varied, the operation can be sped up with a

wider brush, or small details can be tested by using a finer brush.

To simulate this process in 2D, we begin with a square image U(i,j),i,j = 1,…,N

which is stored in the computer, but is not seen by the player (“hidden” or “unknown”

to the player). This could represent a cross section of a patient. The image is kept

hidden from the player, because in real life we would not have that image, and we

would have to decide how to collect the data to get just enough image detail to decide

on tumor detection.

We approximate the R rays through a point in the image by a binary (0 or 1 val-

ued) mask M(k,l,r),k,l = −N,,,N;r = 1,…,R. The dimensions of M are chosen so that if

its center at (k,l) = (0,0) is placed over any voxel (a,b) in U, the mask will completely

cover U. M is actually a stack of R masks, one for each ray r, because separate data

is available for each ray traversing the image. Mathematically, by using a binary

mask we avoid the problem and the computing time of calculating the “weight” to

be assigned to each pixel in a given ray [31]. In the software, however, we used a staircase

function, representing a binary ray-line (i.e., it is not anti-aliased), so that is not actually

stored. The mask summed over its rays is in effect a thresholded version of the point

spread function of an ART-type CT algorithm [63,65,67].

The raysum for a given ray r through point (a,b) in U may now be written as:
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S a; b; rð Þ ¼
XN

k¼−N

XN

l¼−N

M a−k; b−l; rð ÞU a; bð Þ ð1Þ

This formulation allows M to represent any kind of ray, including parallel, diverging
fan or cone beam, or converging [17,87]. We are assuming that the rays available from

the x-ray sources come in parallel bundles with uniform properties, so that the same

mask M may be used for all voxels. Put another way, M is translationally symmetric,

i.e., spatially homogeneous. Any (x,y,z) mechanical scan mode would fit these con-

straints; however, these constraints could be lifted.

We start with an initial image A0(a,b) = 1;a,b = 1,…,N, which would typically be a uni-

form image. Each time a ray is processed, or some other image processing operation is

performed, we increment the index on A. The general gameplay would consist of

“mouse down”, drag, and then “mouse up”, resulting in a sequence of voxels (ai,bi),i =

1,…,m representing the central points of the CT brush stars by which the player irradi-

ated the image. These voxels are recorded via the tracking system. If the player puts

the mouse down with a canvas image As, then the sequence of images up to As+m

would be generated and displayed.

Since we are dealing with the rays one by one, we may use the general ART-type [30]

computed tomography algorithm. The specific algorithm used to adjust the values of

the pixels along a ray may be additive ART [30], multiplicative ART (MART)

[30,88-91], streak suppression ART [39], or any other variant on this theme. In our

implementation of 2D CT Brush, we used MART, and considered each previously

unused ray of the CT brush in a clockwise order from horizontal:

1. Calculate the raysum for the ray (a,b,r) by traversing the hidden image U:

S a; b; rð Þ ¼
XN

k¼−N

XN

l¼−N

M a−k; b−l; rð ÞU a; bð Þ ð2Þ

2. Calculate the current estimate of the raysum for the ray (a,b,r) by traversing the
current estimate for the image Ai:

Si a; b; rð Þ ¼
XN

k¼−N

XN

l¼−N

M a−k; b−l; rð ÞAi a; bð Þ ð3Þ

3. Find new values for each voxel in the ray, represented by M(a-k,b-l,r)=1, such that:

Si + 1(a, b, r) = S(a, b, r). This step may be done differently based on the flavor of

ART. In our implementation, multiplicative ART (MART) was used. Therefore, we

used the formula:

Aiþ1 a; bð Þ ¼ S a; b; rð ÞAi a; bð ÞM a−k; b−l; rð Þ
Si a; b; rð Þ ð4Þ

4. When the values of voxels along a ray are changed, so are the raysums for all of the
previously used rays that intersect the voxel. Therefore, at each step, or periodically,

the previously used rays would also need to be adjusted per the CT algorithm. Such

adjustments can be made iteratively until a convergence criterion is satisfied. With

all these voxels updated, we have the next image Ai+1. Clicking the “Refine” button

will perform one iteration of refinement, in our program. Thus, we track the
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number of refinements the player uses. The player sees the results of each iteration,

and can judge if further iterations are warranted.

Since the MART algorithm always leaves a raysum of zero as zero (Equation 4), the

initial image, while uniform, should not contain zeros in the region of interest. Thus

we set A0(a, b) = 1 ∀ (a, b). All of the equations in this section are implemented in the

Java method do_projection, which is located in the file path src/org/alvaregordon/

ctbrush/GFXMath.java in the appended software.

CT Brush could have been implemented by considering all of the rays through the

central point at once as in SIRT/SART (Simultaneous Iterative/Algebraic Reconstruction

Techniques) and its variants [70,92-97], or with variants on the ART algorithm itself

[39,89,90,98-101], including parallel computing versions [91,102,103].

Estimation of the reduction in dose with CT brush

For visual comparison of Figures 3 and 5 with “traditional” CT algorithms and use of

rays, in Figure 6 we show the reconstruction of the image (Figure 5 Middle) that was

unknown to the player, as reconstructed by MART with increasing numbers of parallel

projections equally spaced in angle. In Figure 7 we show line profiles [104], which give

another visual comparison.

For dose comparison, we need to find a common basis for comparing the irregular

usage of rays in CT Brush with traditional MART. While, of course, absorbed dose is

most important to patients, that is an object dependent measure. We thus decided to

use a simpler parameter, i.e., the number of unique rays. Since in CT Brush each
Figure 6 A sequence of MART reconstructions of Figure 5 Middle, with increasing numbers of views: 5, 6, 9, 18,
36, and 72, equally spaced in angle. These were generated by using the CT Brush code, looping the central-point
of the CT brush through all of the pixels (each initially set to 1), and refining until convergence. Such “traditional”
CT images provide a visual comparison with the player driven, object dependent CT Brush reconstructions in
Figure 3. Of course they have more uniform spatial resolution, as the point spread function is approximately
spatially homogeneous [63,65,67].



Figure 7 The top two rows (3 columns per row) contain the line profile plots for each of the line constructions in
Figure 6: 5, 6, 9, 18, 36, and 72 view MART reconstructions, respectively. The bottom row (2 columns) contains the
following line profiles: the line profile for an example of manual play on the left, and the line plot for the
hidden image on the right. All line profiles are sampled horizontally at the y-coordinate 145 of these 256x256
pixel images.
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distinct ray is used only once, corresponding to pointing an x-ray microbeam in a given

direction, this count would seem to be a good measure of the total emitted dose the pa-

tient is subjected to (Table 1).

However, two problems became apparent. As shown in Figure 8, if the star angles

have rational tangents, many rays overlap, and since each should not be counted more

than once, this leads to a difficult counting problem. On the other hand, if we deliber-

ately use star angles with irrational tangents, the overlap problem is reduced or elimi-

nated (Figure 9), and we obtain:
Table 1 Comparison of the relative emitted dose for all of the standard CT images
generated in Figure 6 compared to the manual CT Brush play of Figure 3 Right

R = # of views
per star

Angle between
rays

Total # of unique
rays T (Eq. 5)

Effective # of
rays E (Eq. 8)

Manual/T Manual/E

(%) (%)

manual play - 2,126 - - -

5 36° 262,400 1,618 0.81 131.4

6 30° 327,936 1,913 0.65 111.1

9 20° 524,544 2,930 0.41 72.6

18 10° 1,114,368 5,861 0.19 36.3

36 5° 2,294,016 11,747 0.093 18.1

72 2.5° 4,653,312 23,606 0.046 9.0

180 1° 11,731,200 58,771 0.018 3.6

All of these angles have irrational tangents. The stars used here all include the 0° ray, whose tangent is rational, so that
Equation 5 is used for T.



Figure 8 The problem of counting the unique rays for a given number of views is illustrated here on an
N × N = 4 × 4 picture with R = 4 views with rational tangents. We were able to place only 3 stars so that
none of their rays overlapped. Their centers are shown as red circles and their unique rays as dashed lines.
The missing rays are drawn as solid green lines. For the 16 pixels shown here, the total number of unique
rays is therefore T = 3R + 8 = 20. This is substantially less than T = RN2 = 4 × 16 = 64. Thus 31.25% of the
possible rays with this star are unique.

Figure 9 Here we show all of the stars through all 16 pixels of the same array as Figure 8, but with 5 evenly
spaced views for which the tangent is irrational, except for 0°. The total number of unique rays is thus 68. With
a slight rotation all of the rays could have irrational tangents, raising the number of unique rays to T=MN2 = 5 ×
16 = 80. Thus 85% of the possible rays with this star are unique, and with the rotation this would rise to 100%. Of
course, with truncation of rays to staircase functions, as we have done for the sake of computational speed, many
of the otherwise distinct rays end up with the same staircase function. This would not be the case if weights
between 0 and 1, rather than 0 or 1 only, were used [31].
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T ¼ RN2−N N−1ð Þ ð5Þ

The negative term is due to the 0° ray, whose tangent is rational. With a slight rotation
of all the angles, their tangents could all be irrational, so that:

T ¼ RN2 ð6Þ

The number of unique rays far exceeds what is reasonable for a digitized picture be-
cause we represent each ray by a staircase function, and many rays will have the same

or very similar staircase approximations. However, since we used stars going through

every pixel to emulate the standard MART algorithm, we indeed used the whole set

of these staircase functions M, so the result is better than we might otherwise anticipate

from MART. Furthermore, here we are using pseudoprojections [94,105,106], i.e., raysums

calculated from an already digitized image U, which make a small difference from real

world data.

Another way to estimate the number of rays is to pretend that all of them at a

given angle are equally spaced, with a width equal to the pixel width. These are not

the rays used by CT Brush. While this would be the ordinary way of coding MART,

it in general involves specifying weights [31], and thus comparison with CT Brush

as implemented here would be problematic. A bit of trigonometry shows that for

rays at angle θ the number of rays intersecting an N × N square is:

Nθ ¼ N 1þ tanθj jð Þ cosθj j ð7Þ

and the emitted dose becomes:

E ¼
XR

r¼1

Nθ rð Þ ð8Þ

Figure 3 Right was reconstructed by playing CT Brush accumulating 2,126 rays, as
calculated by the method shown in Figure 8. In retrospect the user started with 3

views, then refined with 4, 5 and 8 views, a mixture of angles with irrational and

rational tangents. We can see in Table 1 that the bounds formed by E and T com-

pared to this single example of CT Brush play are not tight, but do suggest that

substantial dose reduction is achievable via human computing.

Mouse interpolation

On the computer we used (2008 Apple MacPro – Two Quad-Core 2.8 GHz Intel

Xeon Processors, 20GB RAM, ATI Radeon HD 2600XT Graphics Card, and OS X

10.6.3 Server), we measured the mouse sampling rate as one sample per 16.5 msec.

This meant that pixel locations, read via the mouse, would not be consecutive

neighbors. Thus, mouse interpolation was required. For this, we used linear

interpolation [107].

CancerZap!, a first person shooter game

CT Brush proved a bit too abstract for children, inspiring us to think about an alterna-

tive, shoot ‘em up game. This would differ from CT Brush in the following aspects:



Figure 10 A mockup of what the screen might look like in a CancerZap! video game. The player shoots x-ray
photons at a scene that is rotating, with one object (the Martian eye [152]) in this case representing the “bad guy”
tumor. The gun’s lateral motion would correspond to a fan beam. As in CT Brush, the objects would only
become visible as they were shot at, accumulating x-ray dose. In the plane, the ornate figures would be
represented by simpler “footprints”, such as triangles and circles, shown here beneath them.
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1. What is seen in the front of the screen is a machine gun pointing away that shoots

lots of individual x-ray photons (Figure 10).

2. The gun swivels, so that it is creating, in effect, a fan beam.

3. The good and bad guys (normal and tumor tissues) are represented by lively action

figures standing on a platform, so there is a 3D scene to shoot at.

4. The platform keeps rotating like a merry-go-round, though perhaps reversing and

changing speed at random, providing moving targets, even though the action figures

don’t move across the platform. This simulates multiple views.

5. The player has to identify which figures are the bad guys. They might grimace, wear

weird clothes, collapse dead when shot too much, revealing their identification, etc.

6. The image being reconstructed is in some way a vertical projection of the action

figures onto the platform.

CancerZap! would allow us to explore intelligently steered dose reduction for

photon limited CT imaging, where Poisson noise effects are huge [17,108-115]. So it

would not be just for children.
Results and discussion
Our purpose here is to place the CT Brush game into the public domain, so that

experimentation can begin in developing object dependent strategies for x-ray dose

reduction in CT. Various problems in science are being solved via crowdsourcing

by taking advantage of human intuition [116-126]. Some of these are games that

are explicitly used in “human computing” for labelling images [127] or finding ob-

jects in images (that are not hidden from the player, as here) [128]. We anticipate

feedback well beyond our own limited imaginations, regarding this as a communal

effort. By making it fun and straightforward, we hope that all kinds of people, lay

to professionals, will contribute to the goal of x-ray CT dose reduction.

Our hope is that a combination of fun and altruism will draw people in to play

the game. We collected some qualitative responses from a small group, prior to
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writing the article, and the consensus was that the game was fun to play. We hope

this enjoyment will scale well to a larger audience. We also hope that an altruistic

attitude towards advancing science will draw some people towards playing the

game. In addition, because the program is open-source, we welcome other developers to

modify our source code and create fun game “mods”.

Future improvements

CT Brush is available online, with open code, permitting its further development

[129], and we hope to get feedback from readers and players. Here are some examples

for improvement of the CT Brush game:

1. The CT brush could be used sparingly, by reducing its x-ray intensity, thus

permitting a rough sketch of the patient at low dose, analogous to a scout

scan [130]. This would, of course, have to be a noisy image, but if any feature

caught the eye, it could be run over again with the CT brush set to a higher

intensity. A suspect region would then be sharpened up, or, alternatively,

smoothed out, depending on whether the apparent feature was really present

or just due to noise fluctuations.

2. Different weights could be assigned to rays in different directions, to allow following

of edges, etc. The direction of mouse movement could be used to automatically adjust

these weights. This approximates linear receptive fields in vision [131,132].

3. Rays could be anti-aliased.

4. CT Brush could be implemented with consideration of the order in which rays are

analyzed: ART algorithms converge most rapidly if the rays are considered in a

particular order, where consecutively processed rays are as close to mutually

perpendicular as possible [133]. The primary impact of this would be to reduce the

number of Refine steps to convergence.

5. Local dose could be kept under a given maximum, to avoid radiation burning, by

locking out rays that would cause the maximum to be crossed. Regions in which the

local dose had reached its maximum could be displayed to the player.

6. A palette of image processing operations [134] could be made available that could, for

instance, sharpen or smooth the image, apply various norms [135], create pseudocolors,

round up localized pixels into compact structures, apply histogram equalization, fit

models to the image [136,137], sketch in guesses for tumors based on hints in the image

at a given stage, erase suspected artifacts, etc. [73]. By hitting “Refine” a few times, the

altered image would be made consistent with the raysum data. This involves no cost in

dose, yet allows the player to bring in many kinds of a priori information.

7. In cases where the total angle range for the rays may be restricted [72], as in breast CT

[69,138-140] or electron or visible light microscopy [141-143], deconvolution of the

point spread function [62,63,65,67,144] corresponding to the CT brush could be

invoked, again with no cost in dose. Ringing artifacts could be damped by filtering and/

or iteratively applying “Refine”.

8. Cumulative dose used so far could be compared to the best (lowest) score obtained by

any player so far, via the Internet.

9. A multiuser version could allow players to compete in finding the first or all of the

tumors present, to challenge one another with different hidden images, etc.
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10. A library of realistic hidden images could be developed for radiologists to hone

their skills at detecting tumors inside various tissues at low dose, with the tumors

being real or simulated [145].

11. The hand/eye tracking could be made visible to the player, as a guide to what moves

they have already tried. Additional information about the tracking could also be

visualized: the number of rays in the star, number of rays of the star not previously

used, ray width, and time stamps.

12. Compressive sensing (CS) algorithms for CT could be included as part of CT Brush.

We can elaborate on the use of compressive sensing in CT Brush, as follows. In

general, the CT reconstruction problem can be formulated, in the noise free case, as

finding a solution to a matrix:

Ax ¼ b ð9Þ
where x is a vector representing the unknown image, A is a sparse measurement

matrix, and b is the data (raysums). Here we are using the notation and vocabulary of

recent papers on CS in CT [28,29]. In particular, CS has been applied to a set of rays

selected randomly and independently of the image (using the commercial optimization

software MOSEK [146]). Not surprisingly, performance was worse than with uniformly

selected rays [147]. The situation is a bit different in CT Brush, because the rays are se-

lected by the player in an image dependent manner. This means that with the addition

of each ray by the player, the matrix A and the data b are changed, and all of the com-

ponents of x (the pixels or voxels) have to be recalculated. Instead of applying the

MART algorithm, which is ray based and therefore simple to implement with deferred

refining, we could consider solving a separate global CS problem at each step:

Aixi ¼ bi; i ¼ 1; 2; 3;…Ntumor sð Þfound ð10Þ

The index i refers to the rays consecutively added by the player. This “progressive
compressive sensing” algorithm could be attempted in future work, addressing three

questions: 1) can the CS software be run fast enough to keep up with the hand/eye mo-

tion of the player? 2) does CS reduce the total number of rays needed for the player to

reach a decision, Ntumor(s)found? 3) Will image-dependent dictionaries [148,149] lead to

further CS improvement in the image? CS CT via Equation 10 has the advantage over

MART (Equation 4) of calculating values for all the pixels, whereas MART only calcu-

lates values for pixels along the rays used so far, but that very fact also slows the CS

computation in comparison with MART.

With open source code, alternative CT algorithms to MART, including CS, may be

added by participating programmers. The experience gained from many people playing

CT Brush should improve our concept of how to develop CancerZap!.

In previous work [73] we showed how an intelligent walk in the hyperplane of solu-

tions to a set of underdetermined CT equations allows one to hone in on the structures

present in the unknown image. Now that computers are so much faster than in 1973, it

becomes practical to explore similar ideas in real time games. As CT dose has become

a major issue in radiology, we hope that these games will lead to intelligent algorithms

and new designs for CT scanners that reduce the dose to the minimum for the screen-

ing or diagnostic task at hand.
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Conclusions
Nonlinear and object dependent algorithms abound in computed tomography. Com-

pressive sensing is beginning to show how to best use linear methods. However, all of

these depend on spraying the patient with x-ray photons. The major improvement in

gaming CT Brush and CancerZap! approaches to CT algorithms is that the very act of

aiming the x-ray beams becomes object dependent. This is why we suggest that these

games point a way to significantly greater dose reduction in x-ray CT. Preliminary

results of playing CT Brush suggest that emitted dose might be reducible by a factor

of 2 to 10 compared to current practice.

Availability and requirements

○ Project name: CT Brush

○ Project home page: http://home.cc.umanitoba.ca/~alvare/ctbrush

○ Operating system(s): Platform independent

○ Programming language: Java

○ Other requirements: Java 1.5 or higher

○ License: Creative Commons 3.0 by-sa

○ Any restrictions to use by non-academics: none
The file ctbrush.jar is the Java JAR archive for the CT Brush game. This file may be

used to run the Java applet. Currently, the only parameters available to the applet are

the track parameter and the port parameter. Each of these parameters is optional. If

the track parameter is set to anything, other than blank, the CT Brush applet will track

the player’s brush strokes and progress. By default, this tracking information will be

sent to port 4444. However, an alternate port may be specified, by passing a “port”

parameter to the applet.

The tracking information is represented as “pseudo-functions”, where only one func-

tion is allowed on each line. Each level is preceded by a line containing ten (10) equal

signs (‘=’). In addition, the triangles and circles describing a level are preceded, on each

line, by four (4) space characters.

Each pseudo-function is followed by parentheses. Inside the parentheses, parameters

may be passed. These parameters are generally numbers, which are represented in the

table below by the number sign (‘#’); however, some of the pseudo-functions also pass

boolean values (denoted as ‘bool’) as parameters:
level(#:#:#) – indicates that the player has progressed to a new level. The first

number passed is the level number, the second number is the width of the level

canvas, and the third is the height of the level canvas.

t(#,#,#:bool) – indicates where a triangle is located within the current level canvas. The

first 2 numbers are the x and y coordinates of the triangle. The next number is the

size of the triangle. Because all of the triangles are right-angle isoceles triangles (with

two 45 degree angles and one 90 degree angle), the size corresponds to either of the

non-hypotenuse sides. Lastly, the boolean corresponds to whether the triangle is gray

half-tone (true) or full tone (false).

http://home.cc.umanitoba.ca/~alvare/ctbrush
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c(#,#,#:bool) – indicates where a circle is located within the current level canvas. The

first 2 numbers are the x and y coordinates of the circle. The next number is the

radius of the circle. Lastly, the boolean corresponds to whether the circle is a gray

half-tone (true) or full tone (false).

m(#,#:#^#_#) – indicates a player mouse-brush movement within the level. The first

two numbers, from the left, are the X and Y-coordinates, respectively; the third

number corresponds to the width of the brush; the fourth number corresponds to the

number of rays in the brush; the right-most number corresponds to the rotation of the

brush. Currently, brush rotation is not implemented; however, it may be easily added

in future versions.

r() – indicates the player has chosen to perform a refinement action.

g(#) – indicates the player has finished the level, and guessed the number of gray

circles. The number passed by this pseudo-function is the player’s guess.

The file ctbrush.zip is a zip file that contains all of the Java source code for CT Brush.

The source code files are located in the “src” directory. The zip file also contains some

optional files and directories, to assist users with editing and building the code: the files

“build.xml” and “app.properties” may be used to build the CT Brush project using

Apache Ants; the directory “nbproject” may be used to open the CT Brush code with

NetBeans.

The file ctdocs.zip is a zip file that contains all of the JavaDoc API documentation for

the CT Brush project. All of the JavaDoc API documentation is in HTML format. To

view this documentation, please load index.html (contained within this file) into a

web-browser.
Additional files

Additional file 1: The file ctbrush.jar is the Java JAR archive for the CT Brush game. This file may be used to
run the Java applet. Currently, the only parameters available to the applet are the track parameter and the port
parameter. Each of these parameters is optional. If the track parameter is set to anything, other than blank, the CT
Brush applet will track the player’s brush strokes and progress. By default, this tracking information will be sent to
port 4444. However, an alternate port may be specified, by passing a “port” parameter to the applet.

Additional file 2: The file ctbrush.zip is a zip file that contains all of the Java source code for CT Brush.
The source code files are located in the “src” directory. The zip file also contains some optional files and directories,
to assist users with editing and building the code: the files “build.xml” and “app.properties” may be used to build
the CT Brush project using Apache Ants; the directory “nbproject” may be used to open the CT Brush code with
NetBeans.

Additional file 3: The file ctdocs.zip is a zip file that contains all of the JavaDoc API documentation for the
CT Brush project. All of the JavaDoc API documentation is in HTML format. To view this documentation, please
load index.html (contained within this file) into a web-browser.
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