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Abstract

Background: In the present paper we will examine methodological frameworks to
study complex genetic diseases (e.g. cancer) from the stand point of
theoretical-computational biology combining both data-driven and hypothesis driven
approaches. Our work focuses in the apparent counterpoint between two formal
approaches to research in natural science: data- and hypothesis-driven inquiries. For a
long time philosophers have recognized the mechanistic character of molecular
biology explanations. On these grounds we suggest that hypothesis and data-driven
approaches are not opposed to each other but that they may be integrated by the
development of what we call enrichedmechanistic models.

Methods: We will elaborate around a case study from our laboratory that analyzed the
relationship between transcriptional de-regulation of sets of genes that present both
transcription factor and metabolic activity while at the same time have been associated
with the presence of cancer. The way we do this is by analyzing structural, mechanistic
and functional approaches to molecular level research in cancer biology. Emphasis will
be given to data integration strategies to construct new explanations.

Results: Such analysis has led us to present a mechanistic-enriched model of the
phenomenon. Such model pointed out to the way in which regulatory and
thermodynamical behavior of gene regulation networks may be analyzed by means of
gene expression data obtained from genome-wide analysis experiments in RNA from
biopsy-captured tissue. The foundations of the model are given by the laws of
thermodynamics and chemical physics and the approach is an enriched version of a
mechanistic explanation.

Conclusion: After analyzing the way we studied the coupling of metabolic and
transcriptional deregulation in breast cancer, we have concluded that one plausible
strategy to integrate data driven and hypothesis driven approaches is by means of
resorting to fundamental and well established laws of physics and chemistry since
these provide a solid ground for assessment.
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Cancer
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Background
Traditionally biochemical and molecular biology studies have relied heavily on small –
mechanistic– models in order to test hypothesis. A great deal of this way of working
depended on the intuition and insight of leading experts on highly specialized subjects
that define the lines of inquiry as well as the methods to be followed, mainly guided
by their own knowledge and experiences [1, 2]. Since the advent of high throughput
experimental techniques in genomics and proteomics, computational biologists, bioinfor-
maticians and theoretical biophysicists have developed analytical tools for the automated,
unsupervised analysis of huge amounts of biodata. Unlike the former case, these tech-
niques are rooted in probabilistic modeling, machine learning and statistical significance
to extract conclusions and is commonly argued that these are independent of the beliefs
and conceptions of the investigators, that is to say, theory-free [3]. The former approach
is usually termed hypothesis-driven and is conceived as bottom-up research whereas the
latter investigations have been known as data-driven and are conceived as top-down.
In the last few years a debate about the possible taking-over of the data-driven approach

and the imminence of the hypothesis-driven strategy obsolescence has emerged, partic-
ularly in the context of the Life Sciences. Many different points of view and perspectives
have been developed by scientists and philosophers and are not limited to the dichotomy
between those who support a data-driven approach and those who support a hypothesis-
driven preference of doing science. Such perspectives represent deeper epistemological
and sociological concerns regarding whether the notion of causality is still relevant, the
role of models and simulations, the purpose and usefulness of hypothesis in science, the
differences in ways of knowing as well as the differences in the cultures of doing science,
and the very nature of the Bio-disciplines as Science or Engineering [1], and among them,
being these approaches so different, how are we to reconcile them in an integrated frame.
The cornerstone on which the debate lies, is the question of whether data-driven or

hypothesis-driven research are better suited for generating knowledge from the great
amounts of data produced by powerful computers and algorithms that time and again
keep on growing in power and performance [4]. From the persective of a scientist, the
debate is about which is the best way to understand and explain a phenomenon, if it suf-
fices to deal with biological phenomena exclusively from a data-driven perspective, or if
this is not the case, how it is related to a hypothesis-driven strategy. Even more relevant
is that integration of both strategies is the emerging trend, and the questions might be
towards how is this integration taking place. Our approach is primarily centered on the
the third question. Based on our own experience on Cancer genomics we will present
how have we proceeded in integrating hypothesis-driven inqueries and Big data. In order
to develop our ideas, we also take advantage of the work that philosophy of biology has
already done on the subject.

Integration

Systems Biology relies on two distinct approaches: a top-down, data-driven (DD) and
a bottom-up, hypothesis-driven (HD) perspectives. Although these two approaches
belong to such general frame, due to the great advancements in data-mining, sorting
algorithms and super-computing in general, there is a hype exalting the data-driven per-
spective virtues, apparently overshadowing the more traditional, hypothesis and model
based approach from molecular biology. This has trigger the alarm among scientists
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and philosophers who have suggested that an integration of top-down and bottom-up
approaches is needed [1, 5, 6]. The current call for the study of integration doesn’t end
with bringing HD and DD together, it also includes datasets integration, the integration
of explanations and even the integration of disciplines.
From the perspective of Philosophy of Science, integration may be a much older sub-

ject of analysis. Integration is a notion that might seem close to the idea of the unity of
science, an idea that states that concepts and laws can be reduced to the most fundamen-
tal elements [7]. In the context of Biology, philosophers have neglected the applicability
of such reducionistic view portayed by the ideal of the unity of science. Instead, they
have endorsed a pluralistic perspective regarding explanations. Philosophers of biol-
ogy consider that statistical and causal-mechanistic explanations are the most common.
Statistical explanations may be found in disciplines such as population genetics and evo-
lutionary biology. On the other side, explanations based on the idea of mechanisms
belong, for instance, to molecular biology [8–11]. Philosophers of biology are aware of
the diversity and uses of different strategies in generating biological explanations for
which, integration is not so much perceived as a way of unifying or reducing biologi-
cal explanations but as a way of bringing together entities and practices performed by
biologists [12, 13].
Among the most recent and interesting work regarding integration is the one of Sabina

Leonelli. Leonelli has studied the problem of data classification, vocabulary development
and bio-ontologies, as well as the problem of datasets integration as an epistemic issue. On
datasets integration she has analysed the case of plant biology to three different levels: 1)
inter-level integration in which data belonging to the same species but to different lev-
els of description are brought together in order to gain interdisciplinary and holistic
knowledge about the organism; 2) Cross-species data integration, which aims to obtain
knowledge about different manifestations of the biology of different species; 3) Transla-
tional data integration that has the purpose to obtain knowledge towards finding solutions
to societal problems [14–16]. Leonelli demonstrates that infrastrcuture and standariza-
tion involved in data-integration plays a crucial role in generating new knowldge. She
has also shown how epistemic goals lead the process of integration producing different
structural configurations of data.
Besides data integration, authors like O’Malley and Soyer have studied methods inte-

gration and explanations integration in the context of Data-driven and Hypothesis-driven
research [12]. O’Malley and Soyer have suggested that despite the classificatory virtues
brought by the distinction between Data-driven and Hypothesis-driven methodological
approaches, it is too broad to be of any analytical use. Instead these authors suggest other
strategies in order to achieve a better understanding of the dynamics of contemporary
biology and their practices. Such strategies have to do with how different methodologies
are combined in order to gain any knowledge about one biological system that otherwise
cannot be obtained using a sigle method. According to these authors, integration of meth-
ods in Systems Biology may imply the use of iteration in two different ways, one of them
is the simple iteration of a set of methods through which a “refinement of the model by
hypothesis testing” is achieved. The other one requires the iteration of the products of
DD and HD so to examine a biological domain or phenomenon [17]. The analyses of data
integration are also part of the strategies aforementioned. Data integration makes refer-
ence to the use of technical and theoretical processes in order to harmonize datasets in
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a way that they can be brought together and maximize their re-usability and re-analysis.
One final strategy is explanatory integration. Integration at this level may be conceived as
the use of techniques and means to bring together different models into a specific area of
inquiry along with their respective explanatory resources.
The kind of integration that is closer to our aims and views is the one studied by Ingo

Brigandt. Brigandt has explored the role of mathematical explanations and its integra-
tion with mechanistic explanations in the context of Systems Biology. On this regard, we
believe that there are two important contributions of his work to the understanding of
how explanations are being developed in contemporary biology. Philosophical accounts
on what is a mechanistic model are prone to think about them as a static structure.
Brigandt, in the same vein as William Bechtel, have added to the notion of mechanisms
a dynamical character. Such dynamical property is called by Bechtel functional dynamics.
Once dynamics are introduced to the concept of mechanism, mathematical explanations
have a place in the global explanation of the phenomenon (still explained in causal-
mechanistic terms). Dynamics becomes the open door in order to integrate mathematical
and mechanistic explanations. Integration takes place when the explanatory relevance of
mathematical explanations or ER as Brigandt calls it, is recognized as a component that
adds explanatory power to the mechanistic model. When mathematics are introduced
to causal-mechanistic models, a quantitative dimension complements the model that is
described in terms of qualitative interactions. The quantitative complementarity to the
qualitative model is explanatory relevant because certain knowledge is gained due to its
presence, that otherwise would not be possible.
In this paper we argue in favor of an integration. It is true that the idea of integrating

DD and HD is a recurrent theme in Systems Biology [6, 18]. But along with O’Malley and
Soyer, we believe that the distinction between DD and HD is simply too broad for being
useful. From our point of view, the integration of the two main approaches in Systems
Biology could proceed as a process that would lead to the development of enriched mech-
anistic models. Enrichment implies two things: the first one is a hierarchical perspective.
As it has been already pointed out by others, Systems Biology and complex biological sys-
tems imply a multilevel organization [12, 19–22]. In this guise, we draw the idea from
our own experience that mechanistic models that describe the molecular relevant parts
and their qualitative interactions (such as transcription factor networks and pathways,
in which the chain of causal events between genes are stated), can be enhanced in a
meaningful way by adding certain porperties from the level below (e.g., physico-chemical
properties that determine local interactions at the molecular component level) and by
adding to the model the constraints derived from the level above (e.g., the set of emergent
patterns regarding transcription factors networks from the analyses of a gene expression
dataset). Second, any attempt to add a component to themechanistic model from the level
above or below has to be explanatory relevant as Ingo Brigandt has suggested [13, 19].
Proceeding in such fashion, DD and HD distinction can be avoided but the products
of their implementation can be successfully integrated. Finally, our goal in this paper is
present how we believe a model for transcriptional regulation coupled with metabolism
in cancer development may display important features of how mechanistic models are
genetated by integrating different entities and practices in Systems Biology.
Our paper is structured as follows: in section two we present a brief summary regard-

ing how researchers have conceptualized cancer. Section three introduces the idea
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that physicochemical modeling might be a well suited tool for integrating the former
approaches as used in biology. In section four we present our account on integrating
metabolism and molecular aspects on cancer by bringing together mechanistic models,
data-driven transcription factor networks and cell-level energetics. Finally we present
some general conclusions.

Cancer andmetabolism: a conundrum
Cancer is probably one of the best studied diseases. Historically, cancer has been studied
from a hypothesis-driven strategy and explained in terms of causal-mechanistic models.
Today, great amounts of data have been collected and processed about this disease (or
better, set of diseases), making possible to do research from a data-driven approach.
It is a known fact that tumor cells display striking differences in their metabolic func-

tions as compared to normal cells and often resort even to characteristic biochemical
pathways to supply for their energetic requirements. Due to this, neoplastic tissues
express tumor-specific enzymes belonging, in general, to the family of the glycolytic
enzymes (GEs). GEs interact with other modulators of tumor behavior (TMs) in order
to adapt their metabolic functioning to the extreme proliferative regime under hypoxic
conditions typical of tumor tissue [23].
The analysis of the interplay of GEs and TMs have recently called the attention of oncol-

ogy researchers since is hypothesized that inhibition of GEs or appropriate tuning of TMs
may leave tumors out of energy, while leaving non-tumor cells unaffected. It seems thus,
that therapeutic regulation of cancer-related energy production pathways may become
a substantial research area for pharmacological therapy in cancer [24]. Due to selective
advantages displayed by tumor cells, however, therapies must be applied cautiously in
order not to annihilate normal cells along with neoplastic ones. In this regard, it has been
discussed (in the context of pancreatic tumor cells) that a combination of agents that
inhibit both energy production and cell signaling may lead to the development of mul-
tiplexed therapy to target malignant cells effectively [25]. In the following sections we
will recount how cancer biology research has used different methodological HD and DD
strategies throughout its history.

The usual suspects: hypothesis-driven molecular oncology

Traditional thinking in cancer research has been focused in the role played by some quite
specific molecules termed oncogenes and tumor suppressors, both of which types com-
monly present mutations in their associated DNA loci. These mutations may be single
base changes, regional variations leading to copy number variants on their genes and
even chromosomal rearrangements associated with fusion genes or chimeric proteins. All
of these phenomena have been generalistically termed genome instabilities when they are
related to the onset and development of cancer [26].
Under this view, cancer is produced by the action of oncogenes (OG) -defined broadly

as genes with the potential to cause cancer- that are frequently either mutated, over-
expressed or both, in cancer cells in comparison to non-tumor cells [27]. Once these genes
are on, tradition says, cancer will appear. In the other hand there are the tumor suppres-
sor genes (TSG) that are, of course, molecules that protect the cells from cancer. If tumor
suppressors are mutated in such a way that there is a loss or reduction in its function, the
cells may become neoplastic [28]. Under this paradigm (presented here in an extremely
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over-simplified version), cancer research may be focused in finding such oncogenes and
tumor suppressors (and of course, every possible combination of them) and then look-
ing up for ways to disassemble the former and improving the latter, and make them work
together in order to reverse or avoid carcinogenesis.
Of course, there is much more involved in the OG/TSG theory of carcinogenesis. How-

ever, even the refined versions of the theory face important challenges that have led to a
broadening of the scope of cancer research in recent times. The usual OG/TSG approach
to cancer research consists in: (version 1) finding a molecule whose activity is abnor-
mally high in malignant cells, hypothesizing that such molecule is an oncogene. Looking
for other processes that somehow activate a formerly inactive form of the molecule
(call that a proto-oncogene) and then studying the molecular interactions between the
proto-oncogene and its activators. These interactions, along with the structure of the
proto-oncogene and specially the activity of the oncogene are the foundations of car-
cinogenesis. Or (version 2) finding a molecule whose activity is repressed or absent in
tumors, hypothesizing that such molecule is a tumor suppressor. Then looking for pro-
cesses that inactivate the tumor suppressor (either by mutation or by other functional
processes), such interactions and the structure and function of the tumor suppressor
determine the origins of cancer. Or, more frequently, (version 3) a combination of sev-
eral instances of versions 1 and 2, i.e., cancer appears due to the presence of a number of
oncogenes activated by pro-malignant events that include a number of inactivated tumor
suppressors.
Thus, according to OG/TSG theories there are a number of important molecules (and

their associated pathways) that are the key players in cancer: Oncogenes such as RAS,
MYC, EGFR, VEGFR, WNT, ERK, TRK, etc. Fusion oncoproteins such as BCR/ABL and
tumor suppressors such as p53, BRCA, PTEN, CD95, and others. These are the usual
suspects, whenever there is cancer, these are the molecules that one should look for.
The approach just sketched, although successful to an extent in unveiling some issues

in cancer biology, is confronted with a number of problems. As is clearly exposed in the
review by Hanahan and Weinberg [26], one of the identifying marks of cancer is genomic
instability. Malignant cells often present extreme variations in their genomes, both at
the sequence (large chromosomal rearrangements, disparate copy number variants, lots
of mutations, etc.) and at the gene and protein expression levels (distinctive expression
profiles, aberrant proteins, etc.). Amidst such a large number of abnormalities, is not that
clear how can one distinguish between driver events and passenger events. To put it simple,
there is no easy way to distinguish abnormalities that cause cancer from abnormalities
that appear as a consequence of cancer. The onset of cancer is elusive, unless you actually
take action to initiate cancer (say in an animal model) but then your observations will be
necessarily biased.
Another example is the case of OG and TSG. The paradigmatic example of a TSG

is p53, a gene that is either mutated, deleted or abnormally functioning in more than
50% of human tumors. However, even if p53 has been extensively studied (possibly more
than any other biomolecule) for many decades, there is still no substantial advancement
in cancer prognostics and diagnostics based on its role alone. The reason is that while
its is known that DNA damage mechanisms (in whose repair is involved p53) are fun-
damental in carcinogenesis, it is now clear [26]) that this is by no means an isolated
process.
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The not-so usual suspects: data-driven quantitative analysis of high throughput

experiments

Recent years have witnessed the rise of the data-driven approach for the study of com-
plex diseases like cancer. This approach has been motivated both, by the overwhelming
complexity of biological systems and by the technological breakthrough represented by
high throughput (genome wide) genomic technologies and high computing data analysis
capabilities. Under the data-driven view, a problem like cancer is approached by a thor-
ough systematic genome wide study of cancer samples and controls. By analyzing the
statistically significant differences in molecular profiles (DNAmutations, gene expression
patterns, proteins, etc.) between cases and controls, usually combined with computa-
tional classification methods and database assessment (all of these, in principle, devoid of
any preconceived hypothesis) one looks for molecules and pathways that may be relevant
to cancer (or any other disease or phenotypic condition).
Interestingly enough, high throughput data-driven approaches have identified

molecules and pathways that, though relevant to cancer biology, do not belong to either
the OG or TSG classifications. Moreover, many of such processes were previously not
even considered related to cancer phenomenology. Such new targets have broadened
our knowledge about the molecular origins of cancer, while, at the same time, have
unveiled how little we knew (and still know) about the intricacies related to the origin and
development of malignancy. Energetic deregulation at the cellular level, immune system
adaptability, hypermutation pathways and genome instability, as well as abnormal inflam-
mation processes have emerged as fundamental to understand the origins of cancer and
not only (as it was previously believed) as unpleasant consequences of malignancy [26].
Other processes such as the ones related to aging, rescue from apoptosis and autopha-
gia to mild proliferative states (that may later become highly proliferative such as those in
cancer) and others, that are not yet established as hallmarks of cancer are also being found
more and more often to be relevant to the neoplastic condition in a series of data-driven
studies.
The particular case of the interplay between metabolic deregulation and gene expres-

sion instabilities has been attracting attention recently [23, 24, 29]. For a long time, the
role that metabolic abnormalities may play in tumorigenesis was highly overlooked. It
was considered that large scale metabolic changes were a consequence of tumor growth
(which of course they are) with no involvement in the origins of neoplasia, something that
is less and less considered to be true.
Data-driven approaches are not free from shortcomings. Arguably, the strongest limita-

tion of the data-driven view is that, even under stringent statistical significance bounds, it
is extremely difficult to ascertain whether a discovery is providing a genuine hint that may
help us disentangle the complexity of disease or it is a false positive finding, an unavoid-
able question of our dealing with such large amounts of experimental data, relatively small
sample spaces (orders of magnitude smaller in number than corresponding parameter
and variable spaces) and biased annotation databases.
Large amounts of experimental data mean that, by chance alone, one may be able to

find a number of results that seem to be correct and even repeatable but are not real.
Since we are dealing with this, under the so-called dimensionality problem (i.e. a much
lower number of experimental samples than the number of variables) it is not possible
to overcome false positives by stringent re-sampling (all the contrary). Biased databases
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imply that one may find a true positive signal only to later discard it due to incomplete
(or incorrect) annotations. Under this light, even data-driven approaches are indeed not
free from hypothesis: which statistical or computational method we use and why, how we
determine thresholds, bounds and other free parameters, which database we use to look
up for; all of these are assumptions that are not provided by the data but, again, depend
on the individual (thus limited) capabilities of the PI or researcher.
Data driven approaches have revealed important genes and pathways in cancer. There

are a couple of well known examples. One of them is the discovery of computationally
infered gene expression signatures that have unveiled important features like breast cancer
subtypes [30, 31] and other tumors’ classification patterns [32]. Data-driven approaches
have also led to the discovery of master regulators in B-cell malignancies [33] and breast
cancer onset [29] and metastasis [34].
The second one is related to the construction and assessment of systematic strategies

for the meaningful computational analysis of high throughput data. Worth mentioning
is the role that crowdsourcing efforts may play. One of such crowdsourcing initiatives
is the DREAM Project [35] developed by a core of computational and Systems Biology
researchers at IBM’s Computational Biology Center and Columbia University [36].
The goal of the DREAM project is to create a formal self-assessment methodology in

which models in particular networks of interactions are inferred from data with a more
quantitative sense of the accuracy of the predictions by means of challeng[ing] researchers
in the field to perform predictions blindly on networks that have already been accurately
mapped and validated a so-called gold standard network but which are known to only a
few evaluators who do not participate in the analysis [36]. The DREAM initiative has been
quite successful by focusing on one or two different challenges each year for the last six
years. A similar approach may be find in the CAMDA project [37] initially focused on
techniques for DNA microarray data analysis and now broadened in scope to all kinds of
massive biological data.

Network addiction: a challenge

In the genomic literature there is still a reminiscence of classical genetics that lead us
to perform genome wide analyses while ending up discussing single gene issues or at
most talking about pathways involving individual molecules. This is of course changing:
gene interaction networks are more and more at the center of discussions on cancer phe-
nomenology. Researchers are realizing that the role of gene regulatory networks it is even
more important than individual gene contributions [38]. In the past, molecular oncol-
ogists argued about oncogene addiction claiming that despite cancer’s complexity, the
growth and survival of tumor cells may often be strongly limited by the inactivation of a
single oncogene [39] that may in turn provide for a rational target for molecular therapy.
More recent studies, however point-out to a more complex scenario in which tumors are
not addicted to a single molecule but rather to the action of specific pathways and even
whole networks in a phenomenon that has been called network addiction [38].
This shift of emphasis is way more than a semantic or cosmetic change, since it implies

a radically new way of looking at the molecular origins of disease. Under the network
addiction framework, different components of a cancer network may be deregulated
thus affecting the biochemical dynamics of the entire network and, ultimately, those of
whole cells and even populations of cells. We have already discussed the computational
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complexity involved in the inference of genome-level GRNs focusing on high through-
put molecular data. Additional complexities arise due to the combinatorial nature of
the different sub-networks or sub-pathways into which a genome-wide network can be
decomposed to look up for their oncogenic features playing the role of complex analogs of
OG and TSG.
Having already considered the challenges faced by high throughput data-driven

approaches, quite especially those related to intelligibility and feature selection (i.e. how
to construct meaningful models from high throughput data), the problem of analyzing
cancer biology from the stand point of the network addiction paradigm may seem very
hard to tackle. In reference [29], we used an integrative approach based on the combi-
nation of several instances of data-driven discovery and several instances of hypothesis
driven modelization, aimed at providing some clues as to the role played (via network-
level pathway crosstalk) by metabolic deregulation in transcriptional instability associated
with primary breast cancer onset. The integrative approach used there, was firmly based
in both kinds of views (data- and hypothesis- driven), unified in the context of a non-
equilibrium thermodynamics framework. In the next section we will present some of the
main ideas behind such approach.

Results
After careful reflection on the way methods and approaches both from data-driven
and hypothesis-driven research were integrated in the referred work in the interaction
between metabolic deregulation and abnormal transcription patterns in breast can-
cer [29]. The main meta-methodological results may be summarized as establishing a
solid, well-founded theoretical framework (in this case based in laws of thermodynam-
ics and chemical physics) and using them to build mechanistic enriched models. We will
elaborate in these results in what follows.

Physicochemical modeling provides one theoretical framework to integrate omics and

computational Biology studies

In general, Computational Biology studies are rooted in the search for functional patterns
aimed at a statistical and/or probabilistic description. In contrast, part-based studies,
such as those present in experimental Molecular Biology tend to be more focused in the
interaction of the components leading to such functional patterns. From this perspec-
tive, cancer biology is perceived as a more phenomenological framework. In some sense,
the situation is analog to what happens in thermal physics: there is a phenomenological
representation or characterization given by thermodynamics, but there is also a prob-
abilistic description in terms of microscopic states as given by statistical mechanics. In
the end, both view points complement each other to the point that, in practice, they
have become together one undivided discipline. Statistical mechanics provides thermody-
namics with models and tools for calculation that allow for deeper understanding; while
Thermodynamics provides context and a systematic framework that bound and regulate
the theoretical representation models. Both views are unified in a formal structure: the
laws of chemical physics.
Physicochemical models thus allow the unification of the microscopic and macro-

scopic views of matter. In reference [29] we thus resort to physicochemical modelization
(under the tenets of non-equilibrium thermodynamics) as a means to unify the views
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of data-driven Computational Biology and hypothesis-driven cancer (molecular) Biol-
ogy. The rationale behind was that a series of studies rooted in thermodynamics have
already highlighted the fact that cell energetics may be playing a non-trivial role in the
onset and development of malignancy [40–43]. Cellular communication processes (such
as those regulating biochemical pathways) often rely on free energy transduction mecha-
nisms [44]. Free energy distributions inside the cells hence determine to an extent which
biomolecular processes are active and which are not, thus providing organisms with reg-
ulatory locks and triggers to control their functions. Abnormal energy profiles (such as
the ones present when cells are under metabolic deregulation) may allow for un-intended
biomolecular processes to happen. Under very special occasions, these processes may
induce cascades or avalanches of unexpected events driving the cells unto uncontrolled
states such as those found in carcinogenesis. These ideas are, of course not new [45]
but they have acquired new life in view of current genome-scale analyses of biological
phenomena [46].
In the particular case discussed in reference [29], we investigate the connection between

energetic deregulation at the level of cell metabolism and global transcriptional insta-
bility triggered by master regulators. Master regulators (MRs) are transcription factors
hierarchically located at (or near) the top of the cells’ transcriptional programme, i.e.,
are transcription factors for which a number of their targets are also transcription fac-
tors (even other MRs). The action of MRs may thus be able to trigger transcriptional
cascades in which a big number and variety of mRNA transcripts are synthesized (tran-
scribed) in a series of connected events. MR cascading phenomena is important for
certain stances in cell development, differentiation and proliferation, but their inappro-
priate function could lead the cells into neoplastic states [33, 34]. We find out that
non-equilibrium free energies provide a realistic description of transcription factor acti-
vation in the case of MRs. By studying their behavior at the gene regulatory networks
level, we can systematically find deregulated pathways. Since most deregulated pathways
found there were important in cancer biology, that work provided us with hints towards
a novel potential role of transcription factor energetics at the onset of primary tumor
development [29].
Wrapping-up, the emergence of statistical mechanics lead us to suggest a hierarchi-

cal way of thinking about integration. Just as thermodynamics and statistical mechanics
refer to different description levels, so it is for us the network and moleculular energetic
description levels as already mentioned in the paragraphs above. In what follows, we sug-
gest that integration of these two levels can be integrated as part of one middle ground:
the mechanistic models of Molecular Biology.

Mechanistic models enrichment: cancer transcriptional networks meet metabolism

The concept of mechanism is one that has been well developed by philosophers. One may
find different perspectives on what a mechanism is in the context of Biology, and par-
ticularly in the case of Molecular Biology. In general terms, mechanisms include several
entities and their causal interactions, which may be physical or chemical in kind.
Some definitions are the following:

Mechanisms are entities and activities organized such that they are productive of
regular changes from start or set-up to finish or termination conditions [47].



Hernández-Lemus and Siqueiros-García Theoretical Biology andMedical Modelling  (2015) 12:16 Page 11 of 15

...a structure performing a function in virtue of it component parts, component
operations, and their organization. The orchestrated functioning of the mechanism is
responsible for one or more phenomena [48].

A mechanism is temporally extended, where some of the entities involved change
their positions or their properties as a result of the mechanism’s action. [. . .]. What is
explained [by a mechanistic explanation] is the outcome state of a token mechanism,
or the behavior that is regularly produced by a type of mechanism ([13], p.74).

As it can be inferred from a previous section of this manuscript (section 2.1), can-
cer explained in terms of oncogenes and tumor supressors is remakably mechanicistic.
Data driven research and network-based accounts –which may count as a special case
of data-driven methods– are not that different since its main goal is to identify parts
and significant interactions –global interactions. Data-driven research (including net-
work analysis) is fundamentally a probabilistic enterprise, nevertheless, its aims are meant
to massively identify mechanistic patterns. In other words, the products resulting from
Data-driven research are not devoided of mechanistic meaning.
Along with such general notions of mechanism, we believe that it is necessary a hier-

archical modeling approach in order to obtain integration through a process of model
enrichment. The idea of hierarchical integration can be traced back to the second quarter
of the 20th century. Levels integration was the central idea of Organicism and the Theory
of integrative levels (from now on TIL) and it was developed in order to study biological
complexity. These approaches were a response to reductionism –to which they shared
a materialistic philosophy– but they were different in their ontology and epistemology
because they suggested that biological phenomena cannot be reduced to its basic com-
ponents. Instead, it was proposed that for being able to harness biological complexity, a
multilevel perspective is needed [21, 49–51]. In a similar way, we believe that the study of
different levels of organization may display different modeling and explanatory strategies
according to particular level properties and disciplinary traditions. We believe that such
is the case when a genetic transcription mechanism is studied from their energetics, in
which what we are seeing is not the mechanism but the energetics that regulate the inter-
action of its components, or when it is studied from a network perspective that allows to
see other similar –newly discovered– mechanisms, parts and interactions.
The integrative analysis presented in reference [29] will serve as an example of symbiotic

(so to speak) coexistence of data-driven and hypothesis-driven approaches. Integration
takes place in our example by means of bringing together tools that are commonly applied
to different levels of organization (sensu Organicism and TIL) to one class of mecha-
nistic models of transcription factors pathways. Integration, in these terms is what we
call model enrichment. Such a study starts with the analysis of a set of experimental
data coming from 1191 whole genome gene expression experiments. By means of sta-
tistical analysis, we determined a set of differentially expressed genes between cases
and controls. Once we had the set of significantly expressed genes, we proceeded to
mine the data (the list of differentially expressed genes) and mine databases looking
for both transcription factor activity and metabolic activity. This step implied the com-
putational mining of databases from a large list of somewhat undisclosed molecules.
These first activities were completly devoted to the identification of parts. The set
of genes that were selected because it is assumed that are involved simultaneously in
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metabolic and transcription factor activies, are the ones that should become the com-
ponents of the mechanistic model. Albeit there is a hypothesis regarding the connection
between genes that play a role in metabolics and in transcription, data-mining makes
possible to identify parts and interactions that are not limited to a unique transcrip-
tion/metabolic mechanism. It is more the case that mining big data will inform us not
just about one mechanism but also about many others that may respond to similar
principles.
We looked for metabolic and transcription factor activities assuming that there was

a role played in the coupling mechanisms at the molecular level. This required us to
mine for thermodynamic parameters of suchmolecules. We obtained data about the free-
energies of formation of the recently disclosed molecules. A specific non-equilibrium
thermodynamical model and the data about the components free-energies, gave to our
model a bottom-upmeaning in two ways: first, the themodynamical model provided us a
notion of what are the possible interactions between genes according to the system’s ener-
getic and enthropic constraints. Second, free-energies are quantitative properties of the
mechanism components that dictate plausible orderings of the parts and plausible routes
for events to follow, in other words the direction of the mechanism dynamics. What we
did by using this bottom-up approach, was adding to our model properties from the level
underneath the mechanism in which we were interested, as well as the theoretical tools
from that lower level.
Once we had the list of genes, transcription factors and energetics coming from

the previous step, we performed data mining for associated biochemical pathways and
protein-protein interactions, as well as probabilistic reconstruction of gene regulatory
networks. By integrating both protein-protein interaction pathways and transcription fac-
tors networks it was possible to identify to what different pathways belong the set of genes
and their products. We found that these pathways are deregulated (e.g., apoptosis, DNA
repair, glycolisis), and that the cell has no alternative paths to compensante such deregula-
tion. This part can be seen as an exploration of the level atop from which a global context
for the parts of our model was defined. By these means, the parts of our model were
placed –without a previous hypothesis– in their respective biological processes, but also
it displayed how different components are active in different processes and how different
processes may be interconnected.
Finally we built an integrative model that points out to transcription factors (TFs)

as molecules whose expression is activated at low energies. This may be related with
the fact that TFs are involved in the transcriptional activation of other genes. Hence,
we can in principle expect that they are synthesized in primal stages when energy
is started being released in the cells by metabolic processes. Transcriptional target
genes (TGs) will be, in general synthesized later at higher activation energy levels.
Still, within the group of TFs there may be some genes that are upstream in the tran-
scriptional cascades, termed master regulators (MRs). Such MRs must present even
lower activation energy barriers. By means of the combined approach just sketched, we
were able to identify a small set of putative MRs that potentially are influencing the
transcriptional cascades characterizing the differential gene expression profiles under
primary breast cancer phenotypes. In the overall, the biological meaning of our exam-
ple is that the model represents a mechanisms of lock-in-the-trigger, for transcriptional
cascades.
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Conclusions
In this work we have discussed about the recent debate on whether Data-Driven and
Hypothesis-driven approaches to science (in particular regarding Systems Biology) are
meant to be juxtaposed or confronted with each other, or if one of these is intended to act
as a counterpoint to the other, or in any case how are these two disimilar and apparently
disparate views on science to be reconciled. This debate has been recently fueled up with
the recent advent and promisory success of big data science that for some may point out
to an upcoming disruption of hypothesis-driven approaches to scientific inquiry. Such
a view, although not generalized at all shed some light on important matters such as
the role of causality as is usually understood in the further development of science. We
argue that this is not the case and that, in fact, Data-driven science is not Hypothesis-free,
i.e. data driven research is not independent of the beliefs and views of the investiga-
tor, rather such hypoteses are immersed in the methods of inquiry used to deal with
data.
In line with these thoughs (following several other scholars such as Brigandt and Bech-

tel, for instance) we wonder how integration is taking place in the emerging frame of
Systems Biology. No doubt there is a debate on the roles played by Data-driven and
Hypothesys-driven research, but just like we do in our everyday practice, many other
researchers in System Biology believe that key to reconcile such views on science –that
actually are not at all new– within a useful and well-structured framework is integration.
As in molecular Biology, explanations in Systems Biology are mechanistic. Following

Brigandt [13, 19] we believe that the notion of explanatory relevance is primal criteria
for integration, one that might be useful beyond mathematical and mechanistic models
integration. In our case, explanatory relevance is the criteria –or at least one of them–
for developing and enriching mechanistic models. We exemplified our ideas discussing
some work done in our laboratory regarding system’s level modeling of transcriptional
regulatory networks in cancer and its relation with metabolic deregulation. Such work
integrated information from Data-driven and Hypothesis-driven research coming from
several sources and theoretical tools (i.e., complex networks theory and non-equilibrium
thermodinamical models) into what we called enriched mechanistic models. Our view of
enrichment by integration requires that any attempt to add a component to the mech-
anistic model –being from the description level above or below the actual mechanism–
must make an explanatory difference compared to a version of the model that lacks that
component.
The idea of enriched mechanistic models is just our first sketch of howmodels are being

generated in Systems Biology and how integration is occuring. We hope the notion can
shed some light to the study of contemporary Biology practices. We also hold that fur-
ther studies involving interdisciplinary teams working both in science and in philosophy
and sociology of science will prove extremely useful with view of having a better under-
standing (both at the operative and the epistemical level) of how to integrate data and
hypotheses in order to produce intelligible models in Systems Biology.
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