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Abstract

Background: DNA double-strand breaks (DSBs) are highly cytotoxic and mutagenic.
MRE11 plays an essential role in repairing DNA by cleaving broken ends through its
3′ to 5′ exonuclease and single-stranded DNA endonuclease activities.

Methods: The present study aimed to in silico characterization and molecular
modeling of MRE11 from Phoenix dactylifera L cv deglet nour (DnMRE11) by various
bioinformatic approaches. To identify DnMRE11 cDNA, assembled contigs from our
cDNA libraries were analysed using the Blast2GO2.8 program.

Results: The DnMRE11 protein length was 726 amino acids. The results of HUMMER
show that DnMRE11 is formed by three domains: the N-terminal core domain containing
the nuclease and capping domains, the C-terminal half containing the DNA binding and
coiled coil region. The structure of DnMRE11 is predicted using the Swiss-Model server,
which contains the nuclease and capping domains. The obtained model was verified
with the structure validation programs such as ProSA and QMEAN servers for reliability.
Ligand binding studies using COACH indicated the interaction of DnMRE11 protein with
two Mn2+ ions and dAMP. The ConSurf server predicted that residues of the active site
and Nbs binding site have high conservation scores between plant species.

Conclusions: A model structure of DnMRE11 was constructed and validated with
various bioinformatics programs which suggested the predicted model to be
satisfactory. Further validation studies were conducted by COACH analysis for active site
ligand prediction, and revealed the presence of six ligands binding sites and two ligands
(2 Mn2+ and dAMP).

Introduction
The palm family emerged ~80 million years ago and represents one of the lineages that

radiated early in monocot evolution [1]. The genomic comparative analysis of date

palm with other species presents an ideal opportunity to investigate the dynamics of

angiosperm gene family evolution. The integrity of the genome is constantly threatened by

environmental influences and cellular metabolic processes. DNA double strand breaks

(DSBs) are among the most hazardous of all DNA lesions and arise from failures in genome

metabolism processes and from exogenous sources. In addition they are important pro-

grammed intermediates in DNA metabolism.
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DNA double-strand breaks are highly cytotoxic and mutagenic [2]. DSBs can arise

during replication and as products of ionizing radiation and genotoxic chemicals, but

are also endonucleolytically generated intermediates in meiosis, mating type switching,

and recombination [3]. DSBs are predominantly repaired by two pathways. Nonhomo-

logous end joining directly rejoins DSBs, whereas homologous recombination utilizes a

sister chromatid or homologous chromosome as a template for DNA resynthesis and

rejoining [4]. The MRE11-Rad50-Nbs1 (MRN) complex is a keystone complex that

recognizes double-strand break (DSB) damages and responds with nonhomologous end

joining (NHEJ) and homologous recombination (HR) pathways [5, 6]. In addition to the

repair of DNA DSBs and cell cycle checkpoint signaling, the MRN complex plays an

important role in telomere maintenance, mating type switching, meiotic recombination,

and suppression of gross chromosomal rearrangement [7]. MRE11 plays an essential

role in repairing DNA by cleaving broken ends through its 3′ to 5′ exonuclease and

single-stranded DNA endonuclease activities, as well as hairpin nuclease activities [8].

In addition, MRE11 provides a surface for other DNA repair proteins and checkpoint

factors which link the MRE11 complex activities to a wide variety of cellular processes

[9]. Structural studies of archaeal, bacterial and human MRE11 homologs have revealed

that MRE11 forms a dimer. These MRE11 homologs consist of the nuclease domain

containing the active site and the capping domain, which provides selectivity concerning

DNA substrates, and they dimerize through the interaction between the two helices by

forming a four helix bundle [10, 11]. The dimerization of MRE11 is crucial as it functions

as a frame for Rad50 and DNA binding [10, 11]. Nbs1 (also known as Nibrin or p95) is

only present in the eukaryotic MRE11 complex. Nbs1 plays key roles in the DNA-damage

checkpoint signaling functions of the MRN complex through interactions with a number

of proteins, such as Mdc1 (mediator of the DNA-damage checkpoint 1) and ATM [12].

MRE11 from eukaryotes is formed by two regions: the N-terminal core domain containing

the nuclease and capping domains, and the C-terminal half containing the DNA binding

and GAR domains [5, 6]. While the N-terminal domain, which is responsible for Nbs1

binding and nuclease activity, is conserved in all species, the C-terminal domain is distinct

only in eukaryote MRE11 [5, 6]. The MRE11 gene has been identified in the genomes of

all of the eukaryotes sequenced to date, including the Arabidopsis MRE11 ortholog [13].

The homology between different MRE11 orthologs is the strongest in the N terminus

which contains four conserved phosphoesterase domains, but is less pronounced in the C

terminus of the protein which contains two DNA binding domains [14]. The N-terminal

region harbors an Nbs1 interacting domain [15], while at the C-terminal region interacts

with Rad50 [8]. Originally, MRE11 was identified in yeast (S. cerevisiae) as a gene required

for early steps of meiotic recombination, namely for induction as well as for repair of

meiotic DSBs [16]. In this study, we present and analyze for the first time an in-silico

characterization and homology modelling of MRE11 from Phoenix dactylifera v deglet

nour (DnMRE11) by various bioinformatic approaches, including motif analysis, second-

ary structure prediction, 3D structure analysis and phylogenetic tree construction.

Materials and methods
For homology model prediction of DnMRE11, we have developed a procedure which

combined old protocols employed in the previous works. Figure 1 show the overall

protocol of DnMRE11 model prediction.
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RNA preparation

Total RNA was extracted by modified CTAB method [17] from young leaves of Phoenix

dactylifera which were snap-frozen and stored at −70 °C until processing. RNA integrity

was confirmed using the Agilent 2100 Bioanalyzer with a minimum integrity number

value of 8. Equal amounts of total RNA from each tissue were pooled together for cDNA

preparation.

Preparation of cDNA library for transcriptome sequencing

The poly (A) RNA was isolated from 20 μg of the total RNA pool using Dynal oligo

(dT) 25 beads (Invitrogen) according to the manufacturer’s protocol. Following purifi-

cation, the mRNA was fragmented into smaller pieces at 70 °C for 5 min in the frag-

mentation buffer (Ambion) and reverse-transcribed to synthesize first strand cDNA

using SuperScript III reverse transcriptase (Invitrogen) and N6 random hexamers

(Takara). Subsequently, second strand cDNA was synthesized using RNase H (Invitrogen)

and DNA polymerase (Invitrogen). These cDNA fragments were further processed by end

repair using T4 DNA polymerase, the Klenow fragment of DNA polymerase, and T4 poly-

nucleotide kinase (NEB), and ligation of adaptors with Illumina’s adaptor oligo mix and

T4 DNA ligase (Invitrogen). The products were gel purified to obtain DNA approximately

200 bp long using Qiaquick Gel Extraction Kit (Qiagen) and enriched with PCR for

Fig. 1 Overall protocol of DnMRE11 model prediction
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preparing the sequencing library. The quality of the cDNA library was examined by

Agilent 2100 Bioanalyzer.

Illumina sequencing

The cDNA library was sequenced from both of 5′ and 3′ ends on the Illumina GA IIx

platform according to the manufacturer’s instructions. The conversion of the fluores-

cent images to sequences, base-calling and quality value calculation were performed by

the Illumina data processing pipeline (version 1.4), in which 75 bp paired-end reads

were obtained. EST reads obtained from sequencing were cleaned using Seqclean pro-

gram and assembled by CAP3 [18] using default settings. After assembly, to identified

DnMRE11 cDNA, a local BLASTX [19] was used to compare the assembled contigs

and singletons against the NR database and analysed using Blast2GO2.8 [20] to provide

Gene Ontology, BLAST and domain/Interpro annotation. Candidate mRNA for

DnMRE11 from Phoenix dactifera v degelt nour were identified in silico using FGE-

NESH prediction (http://www.softberry.com; with the monocot matrix). Evaluation of

DnMRE11 predicted protein was done based on the identification of domains in the

NCBI Conserved Domains Database (CDD), phytozome of June 2013 (http://

www.phytozome.net/) and the most recent version of HMMER (HMMERV3.0; [21]).

Sequence alignments

The DnMRE11 protein sequence was submitted to profile-sequence searches with

NCBI, phytozome of June 2013 and most recent version of HMMER. We recovered

fifty MRE11 proteins of plants. Protein alignments were performed using MUSCLE

[22]. MRE11 proteins were prefixed with the corresponding genus and species initials.

Phylogenetic trees were constructed using Phyml software [23] based on the sequence

of MRE11 to determine the distribution and evolutionary trend of MRE11 in plants

using the Maximum likelihood method with 1000 bootstrapping replicates. The phylo-

gram was generated using EvolView software [24]. After alignement, the fifty MRE11

proteins of plants were submitted to the ConSurf server (http://consurf.tau.ac.il/) for

analysis. The ConSurf server assigns relative conservation scores to each residue, taking

into account the evolutionary relationships among the family of homologs. The scores

are normalized such that the average score is zero, and negative and positive deviations

represent the degrees of conservation and variation, respectively. Each residue is then

assigned a value 1–9 (1 for most variable, 5 for average, up to 9 for most conserved),

which is used for mapping the relative conservation on the molecular surface (see

Figure legends). Sequence alignment of DnMRE11, Aeropyrum pernix K1 (AepMRE11,

archaea), Homo sapiens (HmsMRE11, animals), Kocuria sp. strain UCDOTCP

(KocMRE11, bacteria), Saccharomyces cerevisiae (SacMRE11, fungi) and Galdieria

sulphuraria (GasMRE11, protista) was done by ClustalX and viewed with CLC

Genomics Workbench (http://www.clcbio.com/).

Homology modeling

PDB file of DnMRE11 protein was generated by Swiss-Model server (http://www.

expasy.org/swissmod/SWISS-MODEL.html). In order to build a model of protein

domain, Multiple Sequence Alignment was performed between full length DnMRE11
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protein sequence and another protein domain sequence in this database. To build the

model of the DnMRE11 protein with more homology, high resolution (1.80 A) structure

of DnMRE11 protein model in Swiss model server was selected as template.

Model reputation

The backbone conformation of the modeled structure of DnMRE11 with ligand was

calculated by analyzing the phi (Φ) and psi (ψ) torsion angles using Ramachandran plot

v 2.0 (http://dicsoft1.physics.iisc.ernet.in/rp/select.html), as determined by Ramachandran

plot statistics. The model was further analyzed by, QMEAN [25] and ProSA [26]. ProSA

was used for the display of Z-score and energy plots. The volume area dihedral angle for

fractional accessible surface area were done with VADAR (http://vadar.wishartlab.com/).

We used COACH [27] for protein–ligand-binding site prediction for structure-based

biological function annotation of DnMRE11. Predicted models were further refined

using a side-chain refinement protocol of Discovery Studio 3.5.

Results and discussion
The MRE11/Rad50 (MR) complex plays a key role in DSB repair. Homologs of MRE11

and Rad50 are found in all kingdoms of life and are essential for genome integrity [28].

After BLAST2GO analyse and searching in annotation results with the keyword

“double-strand break repair protein” from the 24,071 transcripts, one MRE11 cDNA

was identified (contig 6335). This cDNA has a significant homology with the MRE11

gene of Phoenix dactylifera v Khalas and other species with more than 90 % sequence

similarity (Additional file 1). The results of BLASTX and annotation show that this

cDNA is a potential candidate gene of the DnMRE11.

Sequence analysis of DnMRE11 protein

The DnMRE11 predicted protein length was 726 amino acids. The molecular mass was

81,54 kD, and isoelectric point of this protein was 6,25. The predicted localization for

the Eukarya domain of DnMRE11 by Predict Protein server was nucleus (GO term ID:

GO:0005634). The results of NCBI CDD, pfam and HUMMER analyses show

DnMRE11 is formed by three domains: the N-terminal core domain containing the

nuclease and capping domains (13 aa, 257 aa), the C-terminal half containing the DNA

binding (302 aa, 456 aa) [5, 6] and a coiled coil region with a hydrophobic surface

(Fig. 2a). This specific location on this coiled-coil region interacts with adjacent MRE11

and DNA binding sites on Rad50 and suggests a mechanism for ATP-dependent control

of the MRE11 exonuclease by Rad50, by unwinding and/or repositioning DNA ends into

the MRE11 active site [5, 6]. While the N-terminal domain, which is responsible for Nbs1

binding and nuclease activity, is conserved in all species, the C-terminal (DNA binding

and coil) domain is distinct only in eukaryotic MRE11 [5, 6].

Homology model structure analysis of DnMRE11 protein

The Swiss-Model server was used to predict the 3D sturcture of DnMRE11 based on

known crystal structures of homologous proteins (Fig. 2b). The lack of a 3D structure

for MRE11 in PDB motivated us to construct the 3D model for MRE11. The most

successful techniques for prediction of three dimensional structures of proteins rely on
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aligning the sequence of a protein of to a homolog of known structure. The highest-

scoring and validated model for DnMRE11 that exhibits the greatest amino acid se-

quence identity with the crystal structure is double-strand break repair protein MRE11

of Schizosaccharomyces pombe ScpMRE11 (PDB ID : 4FBK1.A), which is in the MRE11

superfamily. Only 404 residues of the N terminus (nuclease and capping domains) of

DnMRE11 have modelled with 100.0 % confidence by the single highest scoring

template (Fig. 2b). This protein is 43.33 % identical to the DnMRE11 protein across

54 % of amino acid sequence. The alignement of two secondary structures of

DnMRE11protein and the best template PDB : 4FBK1.A is shown in Additional file 2.

The stereochemical qualities of the predicted models of DnMRE11 proteins were

analysed through QMEAN and ProSA servers confirmation was evaluated by the

inspection of the Psi/Phi Ramachandran plots.

ProSA was used to check the three- dimensional model of DnMRE11 proteins for po-

tential errors. The program displays 2 characteristics of the input structure: its Z-score

and a plot of its residue energies. The ProSA Z-score of −9.5 indicates the overall

model quality of DnMRE11 protein (Fig. 3a). Z-score also measures the deviation of

total energy of the structure with respect to an energy distribution derived from random

conformations. The scores indicate a highly reliable structure and are well within the

range of scores typically found for proteins of similar size. The energy plot shows the local

model quality by plotting knowledge-based energies as a function of amino acid sequence

position (Fig. 3b).

QMEAN analysis was also used to evaluate and validate the model.

Fig. 2 a Domain features of DnMRE11; (b) 3D structure of DnMRE11

Rekik et al. Theoretical Biology and Medical Modelling  (2015) 12:23 Page 6 of 14



The QMEAN4 score of the model was 0.672 and the Z-score was −1.57 which was

close to the value of 0 and this shows the good quality of the model because the estimated

reliability of the model was expected to be in between 0 and 1 (Table 1). A comparison

between normalized QMEAN score (0.672) and protein size in non-redundant set of PDB

structures in the plot revealed different set of Z-values for different parameters

such as C-beta interactions (0.38), interactions between all atoms (−0.23), solvation
(−0.49) and torsion (−1.45) (Table 1).

The constructed homology model was also evaluated for structural and stereo chemical

efficiency. A Ramachandran phi-psi plot for DnMRE11 (Fig. 3c) revealed that 80 % of

residues lay in the core region (dark gray), another 15,5 % were in the allowed region

(light gray), 2,5 % were in generally region (very light gray) and only 2 % lay in the

disallowed region (white). The above analysis of the predicted structure provides solid

evidence that the predicted 3D structure of DnMRE11 is of good quality.

Fig. 3 a, b and c Structural validation of the DnMRE11 model using ProSA web tool. a ProSA overall Z
score,9.5 is indicated in graph as black dot. A negative value of overall energy profile confirmed the reliable
structural conformation of DnMRE11. b Energy profile of the DnMRE11 homology model. c Ramachandran
plot of the DnMRE11 model showing 80 % of amino acid residues in the core region (dark gray)

Rekik et al. Theoretical Biology and Medical Modelling  (2015) 12:23 Page 7 of 14



The overall structure of MRE11 proteins of fungi (Schizosaccharomyces pombe)

ScpMRE11 (PDB ID:4fbk) [29] and human HmMRE11 (PDB ID: 3t1i) [30], are relatively

similar compared with DnMRE11. Both nuclease and capping domain structures are

present and the structure of the DnMRE11 nuclease domain is more similar to the equiva-

lent domain from these MRE11 proteins (Fig. 2b) [10, 11].

The DnMRE11 core comprises two α/β fold domains, a larger N-terminal nuclease

domain and a smaller C-terminal capping domain (Fig. 2b, Additionnal file 2). The

DnMRE11 nuclease domain, which resembles the calcineurinlike Ser/Thr phosphoses-

terase, consists of five helices and 13 strands, and the capping domain is composed of

three strands packed by two helices on one face (Additionnal file 2).

Domain II, which consists of a three-stranded β sheet and two α helices, partially

caps the active site phosphodiesterase motifs of Domain I, suggesting that Domain II

plays a role in DNA substrate specificity (Fig. 2b). This Domain II cap appears to be a

unique MRE11 feature as no equivalent domain or fold is found in the protein phos-

phatases. In the capping domain of DnMRE11, substantial differences exist in the

length and orientations of the loops compared with those of template ScpMRE11. In

general, helices and loops in the DnMRE11 capping domain are relatively longer than

those of ScpMRE11 (Additionnal file 2, β 15).

These results show that the DnMRE11 capping domain with three strands is closer to

the canonical structure [10, 11].

Active binding site prediction of DnMRE11

A multiple-sequence alignment revealed that the DnMRE11 protein has low similarity

with homologs from others species, such as Aeropyrum pernix K1 (AepMRE11,

archaea), Homo sapiens (HmsMRE11, animals), Kocuria sp. strain UCD-OTCP

(KocMRE11, bacteria), Saccharomyces cerevisiae (SacMRE11, fungi) and Galdieria sul-

phuraria (GasMRE11, protista), with the exception of active site residues (Additional

file 3). Domain I contains five conserved phosphodiesterase motifs, which form the

nuclease active site [30] (Additional file 1). Predection of the active site location of

DnMRE11 protein by the DEPTH server (Additional file 4) showed the phosphodiester-

ase motifs (red color) situated between the nuclease and capping domain. The Domain

I fold and active site location resemblethe catalytic domain of calcineurin-like Ser/Thr

phosphatases and the DNA base excision repair enzyme apurinic endonuclease 1

(APE1). This resemblance suggests that the di-metal nuclease mechanism of MRE11 is

similar to the di-metal protein phosphatase mechanism of Ser/Thr phosphatases [31].

The active site of any protein is critical for its activity, thus blocking it with a suitable

ligand may result in inhibition of the protein either partially or completely. In this

Table 1 Z scores and energy of individual component of QMEAN for DnMRE11 model

Scoring function term Energy Z-score

C-beta interactions −170.63 0.38

All-atom pairwise −10397.83 −0.23

Solvation −32.72 −0.49

Torsion angle −76.09 −1.45

QMEAN4 score = 0.672 −1.57
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regard, it becomes highly essential to determine the amino acid residues of the protein

that forms the active site.

The COACH server analysis demonstrated that two Mn2+ ions are coordinated in

each of the two apparently functional nuclease sites and the crucial amino acid residues

forming the active site of DnMRE11 include ASP20, ASP60, ASN127, HIS225, HIS253

for the one Mn2+ ion (Fig. 4a) with derict interraction with residues ASP60, HIS225

and HIS253 (Fig. 4a). The second Mn2+ interract with ASP20, ASP60, HIS253 and

HIS255 (Fig. 4b). The COACH predicts also that the MRE11 active site binds dAMP

mainly via the phosphate moiety, which is bound by HIS22, ASP60, GLU286, HIS253,

HIS255 and THR280 (Fig. 4c). The double coordination of the dAMP phosphate by

both active site metals resembles the binding of phosphorylated protein residues in

Ser/Thr phosphatases, further supporting a common phosphoesterase mechanism

between MRE11 and Ser/Thr phosphatases [31]. One conserved residue in eukaryotic

MRE11 proteins, Glu286 (Fig. 4c), forms H-bonds with HIS253 and stabilizes this histi-

dine. The same active site binding substrates were found using the FunFOLD server

[31] and the 3DLigandSite server [32].

Comparing structures of HmsMRE11 (Homo sapiens, PDB : 3T1I) [30], PfMRE11

(Pyrococcus furiosus, archaea PDB ID: 1II7, [33]), Sp MRE11 (Schizosaccharomyces

pombe [29], PDB : 4fbkA) and DnMRE11 protein, we conclude that the residues which

bind the metals and dAMP are the same at the active site for all these species. While

there are overall similarities between the active site of DnMRE11, bacterial and archaeal

MRE11 proteins, some differences are observed. These differences are largely limited to

Fig. 4 The 3D structure of DnMRE11 showing its binding site. The proposed binding modes of Mn2+ and
dAMP molecules are shown in stick format and noncarbon atoms are colored by atom type. Critical residues
for binding of the first Mn2+ (a), second Mn2+ (b) and dAMP (c) are shown in this figure. The pink balls
corresponding to the Mn 2+ ions and dAMP molecule are colored in yellow. Hydrogen bonds are shown in
this figure with dotted lines
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residues that interact with metal coordinating residues, and all these residues are

conserved in eukaryotes.

When we compared with the HmsMRE11sequence, we found the residues Arg80,

Asp86, Asn116, and Pro120 of DnMRE11 that contribute to Nbs1 binding [29] are also

conserved (Additional file 3), thus these residues may be involved in binding Nbs 1 by

DnMRE11. The accessible surface areas in the amino acid sequence of DnMRE11 were

predicted using the VADAR servers for model prediction (Additional file 5). We have

predicted the ASA of each amino acid in the sequence along with the fractional

residual volume available for the amino acids in the main as well as in the side chains.

The quality of the model with respect to the stereo packing and 3D profile quality were

also predicted using the VADAR server. The area accessible to water molecules on the

protein structure is said to be accessible surface area (ASA), which was measured in

square angstroms or as fractional ASA ranging from 0 to 1.

Hydrophilic residues occupied a large fraction of ASA with hydrophobic residues

forming only a small fraction (Additional file 5). ASA values both for the whole structure

and side chains were predicted using VADAR. The majority of residues in DnMRE11 have

ASA scores less than 0.8, indicating tight folding the generally leaves residues inaccessible

to water molecules. We estimated the accessible surface areas of all residues of the active

site and the Nbs1 binding site that are involved in the DnMRE11 3D structure using the

VADAR server.

The ASA scores of the active site (Mn 2+ binding sites) were near zero (Asp 20 : 0,01;

Asp60 : 0.03; His225: 0; His253 : 0.22; His255 :0,17) indicating the residues are not access-

ible to water molecules and confirmed that domain II (the capping domain) hides the

active site. However, Nbs binding sites are exposed to surface (ASA scores > 0,8).

The plant MRE11 gene family

We selected 50 genes in 41 taxa that appear to belong to the MRE11 family. The distri-

bution of MRE11 genes among the various species is shown in Table 2.

Phylogenetic analysis was performed on the multiply aligned plant MRE11 proteins

sequences, by the protein-maximum likelihood, using the Saccharomyces cerevisiae

MRE11 SacMRE11 out as an outgroup (Additional file 6). This analysis revealed the

presence of two major clusters corresponding to separate MRE11 gene subfamilies of

monocots and eudicots species. Cluster 1 (blue) contains MRE11 sequences identified

in the Liliopsida (monocots) group. Cluster 2 (red) contains MRE11 proteins from

eudicots. A subcluster contained MRE11 sequences that were found in stem eudicotyle-

dons (grey). We found that TspMRE11 and MicMRE11 (Chlorophyta, light blue),

PhpMRE11 (Embryophyte, Green) and AmtMRE11 (Magnoliophyta, yellow) are separated

from monocot and eudicot proteins. We found many duplication events in this tree. In

cluster I, two duplication events were found between the two paralogous MRE11 proteins

of the species Phoenix dactylifera DnMRE11 (Deglet nour variety), KhMRE11 (Khalas var-

iety) and between the MRE11 paralogs of the species Musa acuminata (MuaMRE11X1,

MuaMRE11X2). Two sequences, SeiMRE11X1and SeiMRE11- like, were identified which

cluste red closely together within cluster 1, suggesting that these paralogues were

generated by a lineage specific duplication event. Other duplication events were

unresolved as in cluster II, Cicer arietinum (CumMRE11X1, CumMRE11X2) and
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Table 2 List of accession numbers and list of taxa of plants used in this study

Viridiplantae Ncbi accession code Uniprot accession code

Chlorophyta

Tetraselmis sp. GSL018 TspMRE11 JAC79210.1

Micromonas sp. RCC299 MicMRE11 C1ECB4

Embryophyta

Physcomitrella patens PhpMRE11 G4XIR1

Magnoliophyta

Amborella trichopoda AmtMRE11 W1P0X4

Stem eudicotyledons

Nelumbo nucifera NenMRE11X1
NenMRE11X2

XP_010277930.1,
XP_010277931.1

Eudicotyledons

Genlisea aurea GeaMRE11 S8C042

Nicotiana tomentosiformis NitMRE11X2 XP_009613836.1

Nicotiana sylvestris NisMRE11X2 XP_009787661.1

Solanum tuberosum SotMRE11like XP_006341147.1

Solanum lycopersicum SolMRE11 XP_004246548.2

Vitis vinifera VivMRE11 XP_002281726.1

Morus notabilis MonMRE11 EXB89636.1

Prunus mume PrmMRE11 XP_008226714.1

Malus domestica MadMRE11X2 XP_008366397.1

Fragaria vesca subsp. vesca FrvMRE11like XP_004294486.1

Populus trichocarpa PotMRE11 XP_006370340.1

Ricinus communis RicMRE11 B9SIE0

Cucumis sativus CusMRE11like XP_004154884.1

Cucumis melo CumMRE11X1,
CumMRE11X2

XP_008454628.1
XP_008454629.1

Medicago truncatula MetMRE11 KEH38818.1

Cicer arietinum CiaMRE11likeX2,
CiaMRE11X1

XP_004487655.1
XP_004487654.1

Glycine max GlmMRE11like XP_003539581.1

Eucalyptus grandis EugMRE11 XP_010060498.1

Citrus clementina CicMRE11 V4URY3

Citrus sinensis CisMRE11like XP_006464669.1

Eutrema salsugineum EusMRE11 V4LH60

Brassica rapa BrrMRE11 XP_009119960.1

Capsella rubella CarMRE11 R0EVY8

Arabidopsis thaliana ArtMRE11 AED96476.1

Liliopsida

Musa acuminata subsp.
Malaccensis

MuaMRE11X1
MuaMRE11X2

XP_009412711.1
XP_009412712.1

Phoenix dactylifera v Deglet
nour

DnMRE11

Phoenix dactylifera v Khalas KhMRE11 XP_008803852.1

Zea mays ZemMRE11 NP_001151499.1

Sorghum bicolor SobMRE11 C5YGR2
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Cucumis melo (CumMRE11X1, CumMRE11X2). Relationships among MRE11 genes

from monocots, stem eudicots, core eudicots, Chlorophyta, Embryophyte and Mag-

noliophyta were inferred from the conserved nuclease, capping and DNA binding

regions. The ConSurf server was used to extract information about important resi-

dues, which are of functional value. This server provides evolutionary conservation

scores for residues, which could be correlated with biological function. In our case,

the ConSurf server predicted that residues of the active site and Nbs binding site

have high conservation scores (dark pink in Table 3). Among these, D20 and P120

were found to have high scores, indicating evolutionary conservation and hence

important functional roles (Additional file 7 and Table 3). Approximately 85 % of

the residues are conserved among the nuclease and capping domains shown in

Additional files 3 and 7.

Most of the variation within this region occurs in the capping domain.

Conclusion
In silico analysis of DnMRE11 was conducted by motif analysis and phylogenetic tree

construction using PhyML. The ConSurf server predicted that residues of the active

site and Nbs binding site have high conservation scores. A model structure of

DnMRE11 was constructed using Swiss-Model server using homology-based modelling

Table 2 List of accession numbers and list of taxa of plants used in this study (Continued)

Setaria italica SeiMRE11X1,
SeiMRE11like

XP_004976962.1
XP_004974387.1

Oryza brachyantha OrbMRE11like XP_006652883.1

Oryza sativa Group Japonica OrsMRE11 Q7XQR9

Brachypodium Distachyon BrdMRE11like,
BadMRE11

XP_003571409.1
XP_010240488.1

Aegilops tauschii AetMRE11 EMT05178.1

Triticum turgidum TrtMRE11 Q4GX62

Triticum aestivum TraMRE11 W5B7S5

Hordeum vulgare HovMRE11 F2DMY1

Table 3 The table details the residue variety in % for each position in the query sequence. Each
column shows the % for that amino-acid, found in position (‘pos’) in the MSA

Amino acid position of actif site Pourcentage of concervation Consurf grade

D20 100 9

H22 98 9

N127 98 9

H225 98 9

H253 98 9

H255 98 9

Amino acid position of Nbs binding site

R80 94 9

D86 98 9

N116 98 9

P120 100 9
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and validated with ProSA, QMEAN servers and Ramachandran plot analysis, which

suggested the predicted model to be satisfactory. Further validation studies were

conducted by COACH analysis for active site ligand prediction, and revealed the

presence of six ligands binding sites and two ligands (2 Mn2+ and dAMP).

Additional files

Additional file 1: Results of BLASTX and annotation of a potential candidate cDNA of the DnMRE11.
(PNG 148 kb)

Additional file 2: Structure guided sequence alignment of DnMRE11 with Schizosaccharomyces pombe
(4fbk.1.A) MRE11. (PNG 103 kb)

Additional file 3: The alignment between DnMRE11, Aeropyrum pernix K1 (AepMRE11, archaea), Homo
sapiens (HmsMRE11, animals), Kocuria sp. UCD OTCP (KocMRE11, bacteria), Saccharomyces cerevisiae
(SacMRE11, fungi) and Galdieria sulphuraria (GasMRE11, protista). Conserved residues are red. The five
conserved phosphodiesterase motifs, which form the nuclease active site, are showns in this figure with roman
numbers. (PNG 770 kb)

Additional file 4: Prediction of the active site location of DnMRE11 by the DEPTH server. (PNG 133 kb)

Additional file 5: Fractional accessible surface area of DnMRE11. (PNG 94 kb)

Additional file 6: Phylogenetic maximum likelihood tree showing the evolutionary relationships among
MRE11 proteins from 50 plant species. Tree was created using the MUSCLE alignment tool and EvolView
software. Bootstrap values are indicated in tree adjacent to the relevant branches. Eudicotyledons are highlighted
in pink, Chlorophyta in light blue, Liliopsida (monocots) in blue, Embryophyta in green, Magnoliophyta in yellow,
and stem eudicotyledons in grey. (PNG 186 kb)

Additional file 7: Results of ConSurf analysis mapped onto the MRE11 structure (residues 1–404) using the
maximum likelihood method. Shown on the left is the space filling view of the protein; right, the opposite side
following a 180° rotation about the y axis. Conserved residues are darkest pink, variable residues are cyan, and
others are white. (PNG 241 kb)
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