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Abstract
Background: The electrocardiogram (ECG) is a diagnostic tool that records the
electrical activity of the heart, and depicts it as a series of graph-like tracings, or waves.
Being able to interpret these details allows diagnosis of a wide range of heart problems.
Fetal electrocardiogram (FECG) extraction has an important impact in medical
diagnostics during the mother pregnancy period. Since the observed FECG signals are
often mixed with the maternal ECG (MECG) and the noise induced by the movement
of electrodes or by mother motion, the separation process of the ECG signal sources
from the observed data becomes quite complicated. One of its complexity is when the
ECG sources are dependent, thus, in this paper we introduce a new approach of blind
source separation (BSS) in the noisy context for both independent and dependent ECG
signal source. This approach consist in denoising the observed ECG signals using a
bilateral total variation (BTV) filter; then minimizing the Kullbak-Leibler divergence
between copula densities to separate the FECG signal from the MECG one.

Results: We present simulation results illustrating the performance of our proposed
method. We will consider many examples of independent/dependent source
component signals. The results will be compared with those of the classical method
called independent component analysis (ICA) under the same conditions. The accuracy
of source estimation is evaluated through a criterion, called again the
signal-to-noise-ratio (SNR). The first experiment shows that our proposed method gives
accurate estimation of sources in the standard case of independent components, with
performance around 27 dB in term of SNR. In the second experiment, we show the
capability of the proposed algorithm to successfully separate two noisy mixtures of
dependent source components - with classical criterion devoted to the independent
case - fails, and that our method is able to deal with the dependent case with good
performance.

Conclusions: In this work, we focus specifically on the separation of the ECG signal
sources taken from skin two electrodes located on a pregnant woman’s body. The ECG
separation is interpreted as a noisy linear BSS problem with instantaneous mixtures.
Firstly, a denoising step is required to reduce the noise due to motion artifacts using a
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BTV filter as a very effective one-pass filter for denoising. Then, we use the
Kullbak-Leibler divergence between copula densities to separate the fetal heart rate
from the mother one, for both independent and dependent cases.

Keywords: Blind source separation, Fetal electrocardiogram extraction, Copula,
Bilateral TV filter, Dependent sources

Background
During pregnancy, monitoring the mother and fetus heart condition is primordial to col-
lect information about their health and diagnose possible diseases. A very popular way
to obtain the fetal ECG is recording it through skin electrodes attached to the mother’s
abdomen [1, 2]. The process of recording is usually complicated since the MECG is with
higher amplitude compared with the fetal one. In addition, the FECG is contaminated
by many sources of noise such as the electronic equipment, the patient respiration and
movement [3]. However, an effective signal processing study is needed in order to separate
magnificently the two wanted sources FECG andMECG components from the corrupted
mixture recordings. Since 1960, many signal-processing techniques have been introduced
to improve the quality of the FECG detection with varying average of success [4–6]. The
most popular techniques include adaptive filters [3], singular-value decomposition (SVD)
[7], wavelet transform [8], adaptive Neuro-Fuzzy inference systems to treat the nonlinear
relationship between the thoracic ECG and the maternal ECG component in the abdom-
inal ECG signals [5]. Another efficient work was the use of blind source separation (BSS)
[9]. The BSS aims to recover unknown source signals from a set of observations which are
unknown mixtures of source signals. In order to separate the mixtures, different assump-
tions on the sources have to be made. In the literature, the most common assumptions are
statistical independence of the source components and the condition that at most one of
the components is gaussian. Under these assumptions, the BSS problem is linked to the
well known problem of Independent Component Analysis (ICA), see for instance [10].
Further, it has been shown in [11] that, based on copula models, without the assumption
of the independence of the source components, we can still identify both mixing matrix
and sources uniquely (up to scale and permutation indeterminacies) of (free-noisy) mix-
tures of both independent and dependent source components. Motivated by various cases
where the ECG signals are dependent, we investigate, in the present paper, models of noisy
linear instantaneous mixtures of independent/dependent sources, for which we propose,
based on the previews works [11], a new BSS procedure. Indeed, the dependence may be
a consequence of numerous factors, for example, when the heartbeat of the mother and
foetus coincides.
The prposed technique is divided in two stages : the first one is a denoising process

using a bilateral TV [12, 13], while the second stage is about to separate the fetal heart
rate from the mother one, using the modified Kullbak-Leibler divergence between cop-
ula densities. The paper is organized as follows: In “Methods” Section “Principle of BSS”,
we present the general formulation of the blind source separation in a noisy context, and
in Section “Proposed approach” of “Methods”, we describe the two steps of this proposed
method. In “Results and discussion”, we present the performance of the proposed algo-
rithm on both dependent and independent ECG signals. Finally, we end this paper by a
conclusion.
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Methods
Principle of BSS
In this paper, we consider the noisy linear BSS model with instantaneous mixtures, the
operatorA corresponds then to a scalarmatrix, and we assume that the number of sources
is equal to the number of observations. The model writes

x̄(t) := A s(t) + n(t), t ∈ R, (1)

where x̄ ∈ R
p is the vector of observations, s ∈ R

p is the unknown vector of sources to be
estimated, n ∈ R

p is the vector noise, and A is the unknown mixing matrix. The Eq. (1)
can also be written as

x̄(t) := x(t) + n(t), (2)

with x(t) = A s(t) is the noise-free mixed vector signals. The aim here, is to estimate
the sources s(t) using only the observations x̄(t). The sources are recovered using the
following linear separating system

ȳ(t) := n x̄(t), t ∈ R, (3)

where ȳ(t) ∈ R
p is the noisy estimate of s(t), and n ∈ R

p×p is the separating
matrix. In noisy BSS, we come across the problem of the estimation of the noise-free
sources components; following Eq. (3), we only get noisy estimate of source. There-
fore, we would like to obtain estimates of the original sources s(t) with minimal noise.
In other words, it is not enough to estimate the mixing matrix, through (3). The esti-
mated source signals obtained by a direct BSS, for the noisy case, can be written as
follows

ȳ(t) := n x̄(t)

:= y(t) + n̄(t),
(4)

where y(t) := BA s(t) and n̄(t) = Bn(t). That is the noisy estimated source ȳ(t) is the
sum of y(t) the ideal estimated source, and the noise n̄(t). Ideally, we would like to retrieve
y(t) by denoising ȳ(t), but it’s rather difficult since the noise n̄(t) is unknown.
During last years, several algorithms have been proposed to tackle the noisy BSS

problem. In [14], the authors propose a two-step approach by combining the frac-
tion allower order statistic for the mixing estimation and minimum entropy criterion
for noise-free source component estimation. In [15], a whitening procedure is pro-
posed to reduce the noise effect. The proposed method is based on two steps: (i)
denoising of the observed signal x̄(t) before demixing; (ii) a simultaneous BSS pro-
cedure via minimization of the modified Kullbak-Leibler divergence between copula
densities.

Proposed approach
The proposed approach proceeds in two steps: Step 1: uses the bilateral TV model for
denoising the observed signals. Step 2: uses copula as the basic BSS block, which finds the
separating matrix, thus estimating the source signals.
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Step 1: signal denoising

We consider in this step the denoising problem using the bilateral filter [16]. Let x̄(t) ∈ R
p

be the noisy observed random vector signal, which is related to the ideal observed one:
x(t) ∈ R

p, using the following formulation

x̄(t) := x(t) + n(t).

Via Bayes rule, finding the ideal signal x is equivalent to solve the minimization problem
(5) using the Maximum a posteriori (MAP) [13].

x = argmax
x

{
p(x/x̄)

}
= argmax

x

{
p(x̄/x).p(x)

p(x̄)

}
= argmin

x

{−log(p(x̄/x)) − log(p(x))
}

(5)

where p(x̄/x) represents the likelihood term and p(x) denotes the prior knowledge in the
ideal signal x. To solve this problem we need to describe the prior Gibbs function (p.d.f )
p. In this work, we use the bilateral filter TV as a p.d.f function since it is computationally
cheap to implement, and preserves the signal information. The expression of bilateral
p.d.f looks like

p(x) = exp

⎛⎝−λ

m∑
j=−m

α|j|‖x − Gjx‖1
⎞⎠ , (6)

where Gj implies a shift right of j samples. The scalar weight α (0 < α < 1), is applied
to give a spatially decaying effect to the summation of the regularization terms. m is the
spatial window size and λ the regularisation parameters.
Using the Eq. (6) and by substituting the expression of p( . ) in the Eq. (5), the solution

for denoising the vector x is then given through the minimization problem

inf
x

⎧⎨⎩1
2

∫
Rp

|x(t) − x̄(t)|2dt + λ

m∑
j=−m

α|j|‖x − Gjx‖1
⎫⎬⎭ , λ > 0. (7)

The first term in (7) measures the fidelity to the data, the second is a smoothing term
that controls the variation of x. The problem (7) admits a unique solution in the space of
bounded variation (BV) [16]. Computationally, the model (7) is usually solved by its for-
mal Euler-Lagrange equation but the convergence it hardly assured. To avoid this illness,
the minimizer of the corresponding discrete problem will be presented and solved using
the Primal-Dual algorithm [17], in Section “The denoising of the discrete observed signal”
hereafter.

Step 2: Separation of the MECG and FECG signals

The aim of the following step is to reconstruct an estimated source signal y(t) from the
denoised observed signal x(t). It has been shown in [11] that if we dispose of some prior
information about the density copula of the random source vector s(t), we can detect both
the mixing matrix and the sources uniquely for both independent and dependent sources.
Let Y := (Y1, . . . ,Yp)� ∈ R

p, p ≥ 1, a random vector, with cumulative distribution
function (c.d.f.)

FY (·) : y ∈ R
p �→ FY (y) := FY (y1, . . . , yp) := P

(
Y1 ≤ y1, . . . ,Yp ≤ yp

)
, (8)
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and continuous marginal functions

FYi(·) : yi ∈ R �→ FYi(yi) := P(Yi ≤ yi), ∀i = 1, . . . , p. (9)

The mutual information of Y is defined by

MI(Y ) :=
∫
Rp

− log

p∏
i=1

fYi(yi)

fY (y)
fY (y) dy1, . . . , dyp. (10)

It is called also the modified Kullbak-Leibler divergence (KLm), between the product
of the marginal densities and the joint density of the vector. Note also that MI(Y ) :=
KLm

( n∏
i=1

fYi , fY
)
is nonnegative and achieves its minimum value zero iff fy(.) =

p∏
i=1

fYi(.)

i.e., iff the components of the vector Y are statistically independent. To clarify more pre-
cisely the BSS step, we will study separately, the case where the source components are
independent, and the case where the source components are dependent.

Independent source components

Recall that the relationship between the probability density function and copula density
is given by

fY (y) =
p∏

i=1
fYi(yi)cY

(
FY1(y1), . . . , FYp(yp)

)
. (11)

Assume that the source components are independent. Using the relation (11), between
and applying the change variable formula for multiple integrals, we can show thatMI(Y )

can be written via copula densities as

MI(Y ) :=
∫
[0,1]p

− log
(

1
cY (u)

)
cY (u) du =: KLm

(
c∏, cY ) , (12)

where cY (u) is the density copula of Y , and c∏(u) := 1[0,1]p(u) is the product copula
density. Moreover, KLm

(
c∏, cY ) is nonnegative and achieves its minimum value zero iff

cY (u) = c∏(u), ∀u ∈[ 0, 1]p, namely, iff the components of the vector Y are independent.
Our approach consists in minimizing with respect to B, the following separation

criterion:

KLm
(
c∏, cY ) := E

[
log

(
cY

(
FY1(Y1), . . . , FYp(Yp)

)
c∏ (

FY1(Y1), . . . , FYp(Yp)
))] , (13)

where E(·) denotes the mathematical expectation. The function B �→ KLm
(
c∏, cY ) is

nonnegative and attains its minimum value zero at B = DPA−1, where D and P are,
respectively a diagonal and permutationmatrix. In other words, the separation is achieved
in B = argmin

B
KLm

(
c∏, cY ).

Dependent source components

In the case where the source components are dependent, we assume that we dispose of
some prior information about the density copula of the random source vector s. Note that
this is possible for many practical problems, it can be done, from realizations of s, by a
model selection procedure in semiparametric copula density models

{
cθ (·); θ ∈ θ ⊂ R

d},
typically indexed by a multivariate parameter θ , see [18]. The parameter θ can be esti-
mated using maximum semiparametric likelihood, see [19]. We denote by θ̂ , the obtained
value of θ and ĉθ (·) the copula density modeling the dependency structure of the source
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components. Obviously, since the source components are assumed to be dependent, ĉθ (·)
is different from the density copula of independence c∏(·). Hence, we naturally replace in
(12), c∏ by ĉθ , then we define the separating criterion

KLm
(
ĉθ , cY

)
:=

∫
[0,1]p

− log
( ĉθ (u)

cY (u)

)
cY (u) du

:= E

[
log

(
cy(FY1(Y1), . . . , FYp(Yp))
ĉθ (FY1(Y1), . . . , FYp(Yp))

)]
.

(14)

Moreover, we can show that the function B �→ KLm
(
ĉθ , cY

)
, is nonnegative and

attains its minimum value zero at B = DPA−1. The separation for dependent source
components, is reached in B = argmin

B
KLm

(
ĉθ , cY

)
.

Statistical estimation
The denoising of the discrete observed signal

In this section, we show how to estimate, in practice, x from the noisy observation x̄.
Recall that this estimation is obtained by solving the discrete version of the problem (7)
using Primal-Dual algorithm. We start with the following notation :

K = λ

m∑
j=−m

α|j|(I − Gj), (15)

and

F(Kx) = λ

m∑
j=−m

α|j|‖x − Gjx‖1, (16)

G(x) = 1
2

∫
Rp

|x(t) − x̄(t)|2dt. (17)

Using the notations above, the problem (7) becomes

inf
x

{ G(x) + F(Kx)} . (18)

Now we can apply the Primal-Dual algorithm to minimize the general problem (18),
where F and G are a convex functions and K is a linear operator. Thus, using the saddle
point problem [17], we now get the equivalent Primal-Dual problem

inf
x
sup
p

{
< Kx,p > +G(x) + F∗(p)

}
, (19)

where F∗ is the dual of the function F defined as

F∗(p) = sup
p

< p, x > −F(x), (20)

where p is a dual variable such as p ∈ R
p. Then, according to (20) and the definition of

using the definition of F in (16), we can check that

F∗(p) = δP(p) =
{

0 p ∈ P
+ ∞ p 
∈ P,

(21)

where P = {p : ‖p‖∞ ≤ 1} , before proceeding to the Primal-Dual algorithm, we have to
define the proximity operator functions F∗ and G. We define firstly the operator (I +
σ∂F∗)(p) using the projection on P, noted �P , as follows

(I + σ∂F∗)−1(p) = �P(p),
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where

�P(p) = p
max(||p||∞, 1)

,

and

||p||∞ = max
i,j

|pi,j|.

Also we define the operator (I + σ∂G)−1(x) using the definition of the function G as

(I + τ∂G)−1(x) = x + εx̄
1 + ε

.

Now we are ready to implement the Primal-Dual algorithm associated to the problem
(7). We summarize this algorithm in the following

Algorithm 1: The denoising step using Primal-Dual algorithm.
Data: x̄ the observed signal.
Result: z the obtained signal without noise.
Initialization: Choose ε, σ > 0, η ∈ [ 0, 1] ,

(
p0, x0

) ∈ R
n × R

n and set z0 = x0.
Do:

pn+1 =(I + σ∂F∗)−1(p + σKzn)

xn+1 =(I + ε∂G)−1(xn − εKᵀpn+1)

zn+1 =xn+1 + η(xn+1 − xn)

Where the operator Kᵀ is the adjoint of the operator K defined as

Kᵀ = λ

m∑
j=−m

α|j| (I − G−j)
BSS via copula

In this section, we show how to separate instantaneous mixtures after denoising step. The
idea is to solve the discrete version of the (1) without noise, defined by

x(n) := As(n), n = 1, . . . ,N . (22)

The source signals s(n), n = 1, . . . ,N , will be considered as N copies of the random
source vector S, and then x(n), y(n) := Bx(n), n = 1, . . . ,N are, respectively, N copies of
the random source vector X and Y := BX.

Independent source components

Experimentally, to achieve separation, the idea is to minimize with respect to B some sta-
tistical estimate K̂Lm

(
c∏, cY ) of KLm (

c∏, cY ), constructed from the data y(1), . . . , y(N).
Moreover, we can show that the criterion function B �→ KLm

(
c∏, cY ) is nonnega-

tive and achieves its minimum value zero iff B = A−1 (up to scale and permutation
indeterminacies), i.e.,

A−1 = arg inf
B
KLm

(
c∏, cY ) . (23)
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The de-mixing matrix is then estimated by

B̂ = arg inf
B
K̂Lm

(
c∏, cY ) , (24)

in view of (13), we propose

K̂Lm
(
c∏, cY ) := 1

N

N∑
n=1

log
(̂
cY

(̂
FY1(y1(n)), . . . , F̂Yp(yp(n))

))
, (25)

where

ĉY (u) := 1
NH1 · · ·Hp

N∑
m=1

p∏
j=1

k
(
F̂Yj(yj(m)) − uj

Hj

)
,∀u ∈ [ 0, 1]p , (26)

is the kernel estimate of the copula density cY (.), and F̂Yj(x), j = 1, . . . , p, is the smoothed
estimate of the marginal distribution function FYj(x) of the random variable Yj, at any real
value x ∈ R, defined by

F̂Yj(x) :=
1
N

N∑
m=1

K
(yj(m) − x

hj

)
, ∀j = 1, . . . , p (27)

where K(.) is the primitive of a kernel k(.), a symmetric centered probability density. In
our forthcoming simulation study, we will take for the kernel k(.) a standard Gaussian
density. A more appropriate choice of the kernel k(.), for estimating the copula density
,can be done according to [20], which copes with the boundary effect. The bandwidth
parameters H1, . . . ,Hp and h1, . . . , hp in (26) will be chosen according to Silverman’s rule
of thumb, see [21], i.e., for all j = 1, . . . , p, we take⎧⎨⎩Hj =

(
4

p+2

) 1
p+4 N

−1
p+4 �̂j,

hj = ( 4
3
) 1
5 N

−1
5 σ̂j,

(28)

where �̂j and σ̂j are, respectively, the empirical standard deviation of the data
F̂Yj(yj(1)), . . . , F̂Yj(yj(N)) and yj(1), . . . , yj(N).
The solution B̂ the estimate of the de-mixing matrix, can be computed by a descent

gradient algorithm, taking as initial matrix B0 = Ip, the p × p identity matrix.
We summarize the above methodology in the following algorithm.

Algorithm 2: Separation independent source components.
Data: x the observed signal without noise
Result: y the estimated source signal
Initialization: B0 = Ip, y0 = B0 x. ε > 0, μ > 0.
Do: • Update B and y

Bq+1 = Bq − μ
dK̂Lm

(
c∏,cY

)
dB .

yq+1 = Bq+1 x.
• Until ||B(q+1) − B(q)|| < ε

y = yq+1.

Dependent source components

The case where the source components are dependent, to achieve separation, the idea
is to minimize with respect to B some statistical estimate K̂Lm

(
ĉθ , cY

)
of KLm

(
ĉθ , cY

)
,
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constructed from the data y(1), . . . , y(N), ĉθ (u) is the copula density modeling the depen-
dency structure of the source components. Obviously, since the source components are
assumed to be dependent, ĉθ (u) is different from the density copula of independence
c∏(u). So as before, the separation matrix is estimated by B̂ = argmin

B
K̂Lm

(
ĉθ , cY

)
,

leading to the estimated source signals ŷ(n) = B̂ x(n), i = n, . . . ,N .
We propose to estimate the criterion K̂Lm

(
ĉθ , cY

)
through

K̂Lm
(
ĉθ , cY

)
:= 1

N

N∑
n=1

log
(
ĉY

(̂
FY1(Y1(n)), . . . , F̂Yp(Yp(n))

)
ĉ̂θ
(̂
FY1(Y1(n)), . . . , F̂Yp(Yp(n))

) ) , (29)

The estimates of copula density and the marginal distribution functions are defined as
before. The solution B̂ can be computed by a descent gradient algorithm. We obtain then
the following algorithm.

Algorithm 3: Separation dependent source components.
Data: x the observed signal without noise
Result: y the estimated source signal
Initialization: B0 = Ip, y0 = B0 x. ε > 0, μ > 0.
Do: • Update B and y

Bq+1 = Bq − μ
dK̂Lm(ĉθ ,cY )

dB .
yq+1 = Bq+1 x.

• Until ||B(q+1) − B(q)|| < ε

y = yq+1.

Results and discussion
In this section, both synthetic and real experiment are tested to confirm the performance
of our proposed method, and compare it to the BSS via independent component analysis
[6] approach. We start firstly by the synthetic experiment.

Synthetic data

Independent source components

In the first set of experiments, we use a two synthetic simulated independent MECG
and FECG represented in the Fig. 1. We construct two noisy mixtures of the FECG and
MECG signals, using a mixing matrix A = [ 1, 0.8; 0.8, 1]. A centered gaussian noise with
standard deviation 0.1 was added to the normalized mixtures, so that the signal-to-noise
ratio equals –20 dB. The obtained signal mixture are represented in the Fig. 2. In the Fig. 3,
we show the separate FECG and MECG obtained by our proposed method, while in the
Fig. 4, we present the obtained ones using the BSS via independent component analysis
in the separation step and TV approach [22] in the denoising step. For more assessment,
the accuracy of source estimation is evaluated through the signal-noise-ratio SNR(dB)

defined by

SNRi := 10 log10

⎛⎜⎜⎜⎝
N∑
k=1

si(k)2

N∑
k=1

(yi(k) − si(k))2

⎞⎟⎟⎟⎠ , i = 1, 2. (30)
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Fig. 1 Two synthetic simulated independent MECG and FECG

Fig. 2 Two noisy mixtures of the FECG and MECG signals



Ghazdali et al. Theoretical Biology andMedical Modelling  (2015) 12:25 Page 11 of 20

Fig. 3 FECG and MECG obtained by the proposed method using independent copula

Fig. 4 FECG and MECG obtained by ICA method (FECG and MECG are nearly independent)



Ghazdali et al. Theoretical Biology andMedical Modelling  (2015) 12:25 Page 12 of 20

The SNR is a term that refers to the measurement of the level of a signal as compared
to the level of noise that is present in that signal.
In other hand, as a measure of the dependence between FECG and MECG signals, we

use the Kendall’s τ , which is defined in terms of concordance as follows. Let (Y1,Y2) and(
Y ′
1,Y ′

2
)
be random vectors, then the population version of Kendall’s τ is defined as the

difference between the probabilities of concordance and discordance:

τ = P
[(
Y1 − Y ′

1
) (
Y2 − Y ′

2
)

> 0
] − P

[(
Y1 − Y ′

1
) (
Y2 − Y ′

2
)

< 0
]
. (31)

These probabilities can be evaluated by integrating over the distribution of
(
Y2 − Y ′

2
)
.

So that, in terms of copula, Kendall’s tau becomes to

τ := 4
∫∫

[0,1]2
C(u1,u2)dC(u1,u2) − 1. (32)

We have τ ∈[−1, 1], and note that, under independence of the margins, we have τ = 0.
In the Fig. 5 we present the mean of SNR’s of the two simulated ECG signals together

with the criterion of separation value vs iterations and, in the bottom of the Fig. 5 the
associated Kendall’s τ . We can see that our criterion and Kendall’s τ converges to 0 when
the separation is achieved.

Dependent source components

In this subsection we show the capability of the proposed method for dependent sources
to successfully separate two dependent mixed MECG and FECG signals. We dealt with
instantaneous mixtures of two kinds of sample sources:

1 ECG signal vector sources with dependent components generated from
Ali-Mikhail-Haq (AMH) copula with θ̂ = 0.4, the estimated Kendall’s τ of the source
is equal τ(S) = 0.22 (presented in Fig. 6).

Fig. 5 Average output SNRs, criterion value, and Kendall tau, versus iteration number (FECG and MECG
sources are nearly independent)
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Fig. 6 ECG signal vector sources with dependent components generated from AMH copula

2 ECG signal vector sources with dependent components generated from Clayton
copula with θ̂ = 0.5, the estimated Kendall’s τ of the source is equal τ(S) = 0.34
(presented in Fig. 7).

The Figs. 8 and 9 show the two mixed signals of the MECG, FECG using AMH and
Clyton copula respectively with additive Gaussian noise with standard variation σ = 0.1.
In Figs. 10 and 11, we have shown the obtained separate FECG and MECG using AMH
and Clyton copula respectively. While in the Figs. 12 and 13 we present the obtained
ones using the BSS via independent component analysis associated to AMH and Clyton
copula respectively. In the Figs. 14 and 15 we show themean of SNR’s of the two simulated
ECG signals associated to AMH and Clyton copula respectively compared with the ICA
together with the criterion of separation value vs iterations and, in the bottom of the
Fig. 15 the associated Kendall’s τ . It can be seen from the simulations that the proposed
method is able to separate, with good performance, the mixtures of dependent source
components. We can also remark that our criterion converges to 0 when the separation is
achieved.
Comparing the proposed method with the ICA for FECG and MECG separation, both

methods give a promising results. However in the case of dependence, the ICA fails while
our proposed method is still working with a high accuracy.

Real data

The real cutaneous electrode recording used in the experiments is displayed in Fig. 16,
which were obtained from the web site1 contributed by Lieven De Lathauwer. The signals
in Fig. 16 were recorded from eight skin electrodes located on different emplacement of a
pregnant woman’s body. The sampling frequency was 250Hz and the sampling time 10 s,
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Fig. 7 ECG signal vector sources with dependent components generated from Clayton copula

Fig. 8 Two noisy mixtures of the dependent FECG and MECG signals using AMH
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Fig. 9 Two noisy mixtures of the dependent FECG and MECG signals using Clayton

Obtained MECG using AMH copula 

Obtained FECG using AMH copula 

Fig. 10 FECG and MECG obtained by the proposed method: AMH copula
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Obtained MECG using Clayton copula

Obtained FECG using Clayton copula

Fig. 11 FECG and MECG obtained by the proposed method: Clayton copula

Fig. 12 FECG and MECG obtained by ICA method (Dependence is modeled by AMH copula)
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Fig. 13 FECG and MECG obtained by ICA method (Dependence is modeled by Clayton copula)

so each signal is composed of T = 2500 samples. The first five recordings correspond to
electrodes located on the mother’s abdominal region. In this work, we choose only two
from the recording five abdominal signals. Firstly, the estimation of the source signals and
the mixing matrix via a BSS method. In the middle of the Fig. 16, we show the obtained
FECG andMECG signals using our method, while at the bottom of this figure, we present

Fig. 14 Average output SNRs, criterion value, and Kendall tau, versus iteration number (The dependence of
FECG and MECG sources is modeled by AMH copula)
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Fig. 15 Average output SNRs, criterion value, and Kendall tau, versus iteration number (The dependence of
FECG and MECG sources is modeled by Clayton copula)

Fig. 16 The results of the proposed approach for real ECG signals, compared with the ICA method
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the obtained FECG and MECG using the ICA method. We can see that the proposed
approach separate magnificently the two signals without loss of informations compared
with the ICA method. Noticed that the proposed method can be applied in other mixed
electrophysiological recordings include abnormal signal, electroencephalograms (EEGs)
and electrocardiograms (ECGs). This is the objective of a future work.

Conclusion
A new approach of blind source separation (BSS) for the FECG and MECG separation
from two noisy ECG signals was introduced for both independent and dependent ECG
sources. The main idea is based on the minimization of the Kullbak-Leibler divergence
between copula densities to separate the observed data, and a BTV filter as a pretreat-
ment step for denoising. The accuracy and the consistency of the obtained algorithms are
illustrated by simulation, for 2 × 2 mixture-source.

Endnote
1 http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html.
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