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Abstract
Background: The quantification of the spatial order of biological patterns or mosaics
provides useful information as many properties are determined by the spatial
distribution of their constituent elements. These are usually characterised by methods
based on nearest neighbours distances, by the number of sides of cells, or by angles
defined by the adjacent cells.

Methods: A measure of regularity in polygonal mosaics of different kinds in biological
systems is proposed. It is based on the condition of eutacticity, expressed in terms of
eutactic stars, which is closely related to regularity of polytopes. Thus it constitutes a
natural measure of regularity. The proposed measure is tested with numerical and real
data. Numerically is tested with a hexagonal lattice that is distorted progressively and
with a non-periodic regular tiling. With real data, the distribution of oak trees in forests
from three locations in the State of Querétaro, Mexico, and the spiral pattern of florets
in a flowering plant are characterised.

Results: The proposed measure performs well and as expected while tested with a
numerical experiment, as well as when applied to a known non-periodic tiling of the
plane. Concerning real data, the measure is sensitive to the degree of perturbation
observed in the distribution of oak trees and detects high regularity in a phyllotactic
pattern studied.

Conclusions: The measure here proposed has a clear geometrical meaning, establishing
what regularity means, and constitute an advantageous general purposes alternative
to analyse spatial distributions, capable to indicate the degree of regularity of a mosaic
or an array of points.
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Background
Patterns, in time or space, play a central role in biological systems. Natural patterns are
ubiquitous and are usually constructed by the spatial distribution of the constitutive ele-
ments of a particular system. Albeit pattern can not be defined rigorously, its geometric
features “recur recognisably and regularly, if not identically or symmetrically” [1]. Partic-
ularly interesting patterns are the mosaics, where the constitutive elements are spatially
arranged in a regular manner. Typical examples are the arrangement of retinal ganglion
cells in mammals [2], arrangements of epithelial cells, and spatial arrangements of plant
organs and cells. Closely related patterns are the ones formed by the arrangements or dis-
tributions of points in a plane; a typical example is the pattern of distribution of plant
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populations, which is of interest for ecologists since constitutes a fundamental character-
istic of that population. In this case the corresponding polygonal pattern is obtained by
the Voronoi tessellation associated to the distribution of points1.
The characterisation of patterns provide useful information. Ganglion cells in the mam-

mal retina, for instance, are distributed in an economical way such that the visual field is
optimally mapped [2]. Also, the adjacency of cells (called cell sociology by Chandebois [3])
is important for cell communication and signalling. Consequently the geometrical char-
acterisation of mosaics and particularly its degree of regularity is an important issue in
biological systems.
Among the existing methods to quantify the degree of regularity or poligonality of

spatial patterns are those based on counting the number of neighbouring cells [4] and
cell areas [5]. Recurring methods to study patterns of points are based on the distances
between nearest-neighbours (NND) [6, 7]. The poligonality index [8] was more recently
introduced and measures how far a tested polygon is from a regular polygon with an
interior angle β . Both methods will be described in Section “Existing methods”.
In this work, we propose a measure of the regularity of a spatial pattern based on the

condition of eutacticity, expressed in terms of eutactic stars. As we will see, the main
advantage of this measure is that eutactic stars are closely related to regular polytopes
thus it constitutes a natural measure of regularity, supported by geometrical meaning.
The proposed measure was tested with numerical and real data. Numerically, it was first
tested with a numerical experiment consisting of a progressive distortion of an hexagonal
pattern and then it was applied to measure the regularity of a Penrose tiling, a well known
non-periodic tiling of the plane with many interesting geometrical properties. The result-
ing measurements of regularity were compared with some existing methods. In real data,
we use the proposed measure to characterise the distribution of points defined by the
positions of Quercus individuals at three locations in the State of Querétaro, Mexico, and
to characterise a phyllotactic spiral pattern. From the obtained results, we conclude that
the measure based on eutacticity constitutes an advantageous general purposes alterna-
tive for analysing spatial distributions. It provides a single number indicating the degree
of regularity of the studied pattern, independently of the number of sides of the polygons
that compose the pattern. Also, the measure can be generalised in a straightforward way
to study a three-dimensional distribution of points or a polyhedral pattern.
This paper is organised as follows. In Section “Mathematical background”, a mathemat-

ical background necessary to describe existing methods and to introduce our measure
of regularity is presented. In Section “Results”, the proposed measured is applied to
numerical and real data. Finally Section “Discussion” is devoted to discussion and
conclusions.

Mathematical background
Existing methods

The NDD is a statistical method originally proposed for measuring spatial distribution in
plant populations and considers a population with N individuals distributed in an area A
with density ρ; if 〈r〉A =

∑
ri

N is the average distances between nearest neighbours, where
ri is the distance from the individual i to its nearest neighbour, then it can be shown [6]
that for a random spatial distribution of individuals the expected value of 〈r〉A is 〈r〉E =
1

2√ρ
. Therefore, the ratio
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R = 〈r〉A
〈r〉E (1)

measures the degree to which the distribution approaches or departs from a random one.
R ranges from R = 1 for a perfectly random distribution, R = 0 for a completely aggre-
gation to R = 2.1491 for an hexagonal pattern. The null hypothesis is a random pattern
and using the p-value, it is accepted for p > 0.05 according to the PAST software [9] used
in this work. The ratio of the mean NND to the standard deviation of the NDD has been
called conformity ratio and is also a commonly used measure [7]. A comparison of some
methods based on nearest-neighbour distances is presented in Ref. [10].
Considering the Voronoi tessellation of a set of points, the poligonality index [8] mea-

sures how far a tested polygon is from a regular polygon with interior angle β (= 60° for
an hexagon). That is, the measure considers how far each of the interior angles of the
polygons forming the Voronoi tessellation is from β . For this purpose, given the Voronoi
cell of a test point k, starting at an arbitrary neighbour, the Nk successive neighbours are
determined as one turns around its Voronoi cell in a clockwise fashion and the angles
αi defined by the adjacencies are stored. Then the poligonality index of the test point is
defined as [8]:

�α (k) = 1∑Nk
i=1 |αi − β| + 1

. (2)

This value ranges from 1, for perfect poligonality, to 0 for a lack of spatial order. If
β = 60°, the measure is called hexagonality index.

Eutactic stars

The notion of eutaxy (fromGreek eu=good and taxy=arrangement) is closely related with
regularity. The condition of eutacticity is expressed in terms of eutactic stars and thus
to explain the relationship with regularity we should first define what a star is. A star
in a n-dimensional space R

n is a set of M vectors {u1,u2, . . .uM} with a common ori-
gin and M > n. Thus, given a star, it is eutactic if literally it is well arranged or orderly
disposed. This fuzzy definition can be formalised by considering projections from higher-
dimensional spaces, as follows. A star of M vectors in R

n (where M > n) is eutactic if it
can be viewed as the projection of M orthogonal vectors in a M-dimensional space RM.
More formally, if P is a projector from R

M onto R
n, then a star S = {u1,u2, . . .uM} in R

n

is eutactic if there exist orthogonal vectors {U1,U2, . . .UM} in R
M such that ui = P (Ui),

for i = 1, 2, . . . ,M. The connection with regularity arises in the field of regular polytopes
as follows. A polytope is the general term of the sequence “point, line segment, polygon,
polyhedron, ...,” [11]. Thus, a polytope is the generalisation to higher dimensions of geo-
metric objects such as polygon (in two dimensions) or polyhedron (in three dimensions)
and consequently a regular polytope is a generalisation of the regular polyhedra (Platonic
solids) to an arbitrary dimension. Concerning eutaxy, the swiss mathematician L. Schläfli
[12] (who coined the name eutactic) proved that the vectors from the centre of any reg-
ular polytope to its vertices form an eutactic star. This fact establishes the relationship
between eutaxy and regularity: the star associated to a regular polytope is eutactic (the
inverse is not necessarily true: an eutactic stars is not necessarily associated to a regular
polytope).
The definition of eutactic stars as projections from orthogonal vectors in a higher

dimensional space can be put in a more practical form. This is achieved in a theorem due
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to Hadwiger [13]; let S = {u1,u2, . . .uM} be a star in R
n and let A be the n × M matrix

whose i-th column is formed by the components of ui with respect to the standard basis
of Rn. The star S is eutactic if and only if

AA
T = λI, (3)

for some real number λ. Here AT denotes the transpose of the matrix A and I is the n× n
identity matrix.When experimental measurements are involved, a more suitable criterion
of eutacticity has been proposed [14]: if we define S = AA

T then the star producing A is
eutactic if and only if

ε ≡ Tr (S)√
Tr (SS)

√
n

= 1. (4)

Contrary to (3), criterion (4) has the advantage that the parameter ε is capable of indi-
cating the degree of eutacticity of a star which is not strictly eutactic, because the closer
this quantity is to 1, the more eutactic the star is. This property will be particularly useful
in this work. Actually, it can be proved that the lower bound of ε is 1/

√
n [14]. Since in

this work we will be concerned with polygonal patterns in the plane, stars are defined in
two dimensions (n = 2) and the lower bound of ε is in this particular case 1/

√
2 ≈ 0.7071.

Eutactic stars have been particularly useful in several realms beyond the field of regular
polytopes and even it has also been observed that the stars associated with the five ocu-
lar plates of sea urchins are eutactic through geological time, with some rare exceptions
[15]. In what follows, eutactic stars will be used to quantify the degree of regularity of a
polygonal pattern.

Ameasure or regularity based on eutacticity
The idea behind the use of eutactic stars to measure the regularity of polygonal patterns
is quite simple. To any polygon of the pattern it can be associate a star formed by the vec-
tors from the centre to the vertices of the polygon. A measure of the eutacticity of this
star, using (4), is a measure of the regularity of this particular polygon. The regularity of
the pattern can be then the average of the value of eutacticity of the stars associated with
each polygon of themosaic. In the case of point patterns, these can be associated to polyg-
onal patterns using Voronoi tessellations. In general, we can summarise the procedure as
follows.

1. Given a pattern of points, its Voronoi partition is calculated.
2. Consider the set of all polygons of the Voronoi partition.
3. To avoid non-representative polygons, remove from this set all polygons with at

least one vertex outside the convex hull. Let � be this set of representative
polygons and assume that it contains N elements.

4. Now consider the set containing a measure of the eutacticity of each polygon in �,
that is, from (4), {ε1, ε2, . . . εN }.

5. An estimation of the regularity of the tessellation is 〈ε〉 = 1
N

∑N
i=1 εi.

Since the abovemeasure averages the eutacticity values of the stars associated with each
polygon of the pattern, the presence of large voids of clustering can not be detected. This
can be alleviated by considering the dispersion on sizes of the vectors forming the stars,
since stars at the neighbourhood of a cluster should have larger size dispersion. Thus,
consider a star S = {u1,u2, . . . ,uN }. If ui = ‖ui‖, where ‖ ‖ stands for the Euclidean norm,
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then the average size of the vectors belonging to the star S is 〈u〉S = 1
N

∑N
i=1 ui, and the

dispersion on size of these vectors can be calculated by means of the standard deviation:

σS =
√√√√ 1

N

N∑
i=1

(ui − 〈u〉S)2.

Then, for a polygonal array composed of N polygons, the following measure of
regularity is proposed:

E =
〈

ε

1 + σs〈u〉S

〉
= 1

N

N∑
i=1

εi

1 + σsi〈u〉Si
. (5)

Notice that for tessellations composed by regular polygons εi = 1 and σεi = 0 for all i,
thus E = 1, which is the higher value of E. The lower bound of ε is 1/

√
2 but the higher

value of σεi depends on the dispersions on size of the vectors composing the star; the
more clustered the tessellation, the larger σεi and, consequently, the smaller E.
We should emphasise that the measure (5) is designed to indicate whether a mosaic is

regular (E = 1) or not (E 	= 1) but the closer this value is to one, the more regular a
mosaic is.

Results
Numerical data

The measure (5) is invariant under translations, rotations or scalings, as can be inferred
from (4) and (5) itself. The behaviour and sensitivity of the proposed measure can be
tested by applying a numerical experiment proposed in [8]. As starting point, an hexag-
onal lattice composed by 661 vertices with edge length equal to 1 is generated. Now,
controlled distortions of this structure are applied by randomly picking 200 vertices and
each one is translated by a vector with magnitude δ pointing to a random direction. The
resulting set of points were analysed by applying the proposedmeasure (5) as well as NND
(1) and the hexagonality index (2). The magnitude of the perturbation was varied from 0
to 1.2 in steps of δ = 0.1.
In Fig. 1a, the original hexagonal lattice (with dots) and its Voronoi tessellation is shown.

Two examples of perturbed lattices, with δ = 0.5 and δ = 1.0, are shown in Figs. 1b
and c, respectively. The behaviour of E, R (NND) and �α (k) (hexagonality index) versus
δ are shown in Fig. 2. All the measurements display the gradual decreasing of regularity

a b c

Fig. 1 Some examples of the numerical experiment that consists of perturbing an hexagonal lattice, as
described in the text, with perturbation magnitudes δ = 0.0 (a), δ = 0.5 (b), and δ = 1.0 (c)
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Fig. 2 Regularity measurements versus the magnitude of the perturbation δ. aMeasure proposed in this
work; b Hexagonality index; c NND

expected with the progressive perturbations and both the eutacticity and the hexagonality
index behave linearly with the progressive perturbations. The values of eutacticity range
from E = 1 for non perturbed data to E = 0.7824 for δ = 1.2. Similarly, the hexagonality
index ranges between �α(k) = 1, for no perturbations, to �α(k) = 0.53504 for the maxi-
mum perturbation. The NND index behaves also linearly and indicates an over-dispersed
or regular arrangement since values are larger than R = 1, with p < 0.05.
Notice that the behaviour of the three measures is similar and some comments about

this similarity can be said here. Despite that the NDD measure (R) shown in Fig. 2c show
a continuous decreasing, it can not be said that the regularity of the pattern is decreasing
accordingly. As it was mentioned in Section “Existing methods”, the NDD method was
designed to statistically differentiate between random, aggregate and over-dispersed (reg-
ular) distributions; besides the p value, that verifies whether the null hypothesis is fulfilled
or not, the departure from regularity or randomness must be asserted with a significance
test [6]. Concerning the hexagonality index, this continuous decreasing of the regularity
is expected since the numerical test consists of the controlled distortion of an hexagonal
array and even with the largest distortion factor applied (δ = 1.2), 47.5% of the polygons
have six edges, that is, distorted hexagons, against 21.5% with five, 16.6% with seven,
7.5 % with four, 5% with eight, 0.8 % with three, 0.6% with nine and 0.5% with ten edges.
A different scenario may arise if polygons with different number of edges are distributed
more or less equally, as we will see in what follows.
One of the most remarkable tiling of the plane is the so-called Penrose tiling. It has pen-

tagonal symmetry, it is non periodic but with long-range order and exceptional geometric
properties (for a general reference on Penrose tilings see Ref. [16]). Albeit no examples
of this kind of aperiodic patterns have been observed in a biological system, it is inter-
esting to apply the measures to this ideal structure. In Fig. 3 a fragment of a Penrose
tiling obtained by the dual generalised method [17] and its respective Voronoi tessella-
tion (resembling a cellular structure) is shown. The distribution of pentagons, hexagons



Contreras-Figueroa et al. Theoretical Biology andMedical Modelling  (2015) 12:27 Page 7 of 12

a b

Fig. 3 Fragment of a Penrose tiling (a) and its Voronoi tessellation (b)

and heptagons in this Voronoi tessellation is, respectively, 31.4%, 39.2% and 29.4%. The
measure based on eutacticity (5) yields E = 0.903, indicating that the pattern is highly
regular, whereas the hexagonality index (2) gives �α(k) = 0.443, which is too low for a
pattern, which is known to be regular. The NND index (1) gives R = 1.729, indicating that
the pattern is regularly distributed.

Application to real data

The distribution of oak trees

Albeit the proposedmeasured (5) can be used to characterise general mosaic or point pat-
terns in any biological systems, it is illustrative to study the spatial distribution of plants,
which is important to understand the dynamics of the ecosystem of plant communities,
as well as the morphological and environmental factors that produce a particular spa-
tial pattern [18]. The NND measure has been applied to this problem but more specific
measures has been developed for this particular problem in ecology, namely, the Ripley’s
K-function [19] and the Spatial Analysis by Distance Indices (SADIE) [20]. In these meth-
ods the position of the plant defines a point in the plane, the null model is a completely
random distribution of points and the departure from the null model yields two alterna-
tives. In the first one, there is a high probability of finding points close together and the
patterns is called aggregated, clumpy or clustered. On the contrary, in the second case,
for a given point there is a low probability of finding points close to it and this pattern is
called over-dispersed or regular.
We used (5) to study the distribution of trees in localities with environmental influence.

Field data was acquired by sampling three oak forest in the state of Querétaro, Mexico:
1. Laguna de Servín, Amealco de Bonfil (20° 15′48′′N , 100° 15′23′′W ).
2. Escolásticas, Huimilpan (20° 24′57′′N , 100° 15′49′′W ).
3. Xajay, Amealco de Bonfil (20° 03′20′′N , 99° 58′02′′W ).
Forests with individuals of the genus Quercus are called Oak forests. Despite that in the

same forest could coexist different Quercus species, no distinction between species was
done on the sampled sites so that an univariate (single-species) analysis was performed.
Using a Magellan-ProMark 3 GPS with millimetre resolution, the trunk’s position of

each tree was registered and mapped onto a plane. The circumference at breast height
(CBH) of each trunk was registered as well as the number of damaged or destroyed trees.
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The three sampled locations turned out to be different, concerning its level of preserva-
tion. At Laguna de Servín, 181 individuals weremapped in a relatively flat area of 1576m2.
Laguna de Servín is located behind a road, showing human deforestation (27% of sam-
pled individuals were damaged). At Escolásticas, 115 trees in an area of 11 635 m2 were
sampled and despite that this location is a oak patch near to pasture and roads, it was the
less perturbed since only 3% of sampled individuals were injured. At Xajay 195 individu-
als within an area of 3 350 m2 were sampled. Even that Xajay is located on a top hill (3000
masl), human deforestation is common around the zone and about 4% of the trees were
cut down. The measured CBH average values were 75 cm for Laguna de Servín, 160 cm
for Escolásticas and 90.5 cm for Xajay.
The mapped points for each location is shown in Fig. 4. Plots are arranged in three

columns corresponding to each location: (a) Laguna de Servín, (b) Escolásticas, and
(c) Xajay. In each column, the mapped points are shown on top and its respective Voronoi
diagram at the bottom. Each set of points was analysed using the measures (5), (2) and (1),
and the results are shown in Table 1. Notice that here also the three measures yield sim-
ilar results: the highest value of regularity is obtained in Escolásticas, followed by Xajay
and Laguna de Servín. With the exception of Laguna de Servín, where p > 0.05, indi-
cating a random distribution (despite that R > 1), the NND measure indicates that in
Xajay and Escolásticas the distribution is regular but the significance of the departure
must be tested statistically. The eutacticity criterion and the hexagonality index were sen-
sitive to the degree of perturbation observed. It should be said however that the Voronoi
tessellation of the distribution of trees in Escolásticas, shown in Fig. 4, contains 44.6%
of polygons with six sides, against 21.6% with five, 19% with seven, 10.8% with four and

a b c
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Fig. 4 Oak forest sampled in three locations of the state of Querétaro, Mexico. The information of each forest
is arranged in columns: a Laguna de Servín, b Escolásticas and c Xajay. Their respective Voronoi tessellations
are shown below each one. Each point correspond to the trunk of a mapped tree and the (x, y) values are
given in geographic coordinates
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Table 1 Results of the spatial analysis applied to the three forests sampled

Location E 
α(k) R

Laguna de Servín 0.6863 0.2095 1.058 (p > 0.05)

Escolásticas 0.7423 0.2355 1.1624 (p < 0.05)

Xajay 0.6926 0.2050 1.0805 (p < 0.05)

4% with eight sides. That is, most of the polygons have six sides, a fact that favours the
hexagonality index.
The regularity measured in Escolásticas can be also interpreted by taking into account

that this locality has the largest average value of the CBH. Ecologically, it indicates the
presence of long-lived trees that have reached a considerable size to divide the space
among its neighbours in an homogeneous way. Additionally, Escolásticas is the locality
with the less perturbation, yielding a higher value of regularity.

A spiral phyllotactic pattern

The arrangement of plant organs, also called phyllotaxis, has fascinated scientists and
naturalists for centuries, mainly because it is dominated by remarkable mathematical
relationships. Among the many different types of plant organs arrangements, perhaps
the most conspicuous and complex is the spiral pattern as in sunflowers. Since the 19th

Century, it was known the relation between the Fibonacci sequence and the phyllotactic
spirals (for a general reference see (Ref. [21] Ch.4)): the number of spirals (parastichies)
are generally consecutive numbers of the series 1, 1, 2, 3, 5, 8, 13, . . ., which is the Fibonacci
series, each of whose terms is the sum of the preceding two. The Fibonacci sequence is
closely related with the golden mean τ =

(
1 + √

5
)

/2, since if Fn is the n-th term of the
Fibonacci sequence, then Fn+1/Fn → τ in the limit n → ∞. Interestingly, the Penrose
tiling, as the shown in Fig. 3a, and the golden mean are closely related since the ratio
between the diagonal and the side of a pentagon is τ . In Fig. 5a the spiral phyllotaxis of a
flowering plant of the species Leucanthemummaximum is shown, where the spirals have
been drawn as a guide to the eye. The coordinates of each floret where found from the
digital image using the morphometric software package Image J [22] and in this way a
distributions of points in a plane was obtained, whose Voronoi tessellation is shown in

a b

Fig. 5 a Digital image of a flowering plant of the species Leucanthemummaximum, showing the spiral
pattern of florets (spirals are drawn on top as a guide to the eye). b Voronoi tessellation associated to the set
of points defined by the florets



Contreras-Figueroa et al. Theoretical Biology andMedical Modelling  (2015) 12:27 Page 10 of 12

Fig. 5b. The regularity of this tessellation was quantified using the measures (5), (2), and
(1). The measure based on the eutacticity yields E = 0.9114, as expected from a highly
regular pattern, whereas the hexagonality index (2) gives �α(k) = 0.4956, which is again
too low for a regular pattern. The NND index (1) gives R = 1.8693, indicating that the
pattern is regularly distributed.

Discussion
The condition of eutacticity offers a formal definition of regularity in geometric forms
that can be associated with a star of vectors. This fact is used to measure the regularity
of a polygonal array or a set of points since a star of vectors can be associated with each
polygon of the pattern or with the Voronoi polygon of a point. The measure thus pro-
posed has a clear geometrical meaning and constitutes a general purposes natural way to
measure regularity.
The measure is tested with numerical data by means of a numerical experiment con-

sisting of a progressive distortion of a hexagonal pattern and it was also applied to the set
of vertices of a Penrose tiling, a well known non-periodic pattern of the plane. In the for-
mer case, the measure behaved as expected and was able to detect small perturbations. It
should be said that the hexagonality index behaves also well and is equally sensitive as was
already reported in [8] but this could be expected since the distorted array is an hexago-
nal one. When applied to the Penrose tiling, the proposed measure yields that the tiling is
highly regular, as expected, whereas the hexagonality index is not able to detect this reg-
ularity since the polygonal array is composed by pentagons, hexagons and heptagons, in
almost the same percentage. In both cases, the NND measure performs well. We should
say however that this measure is useful in ecology for the specific purpose of detecting
random, clustered or regularly arranged patterns, then it has a statistical basis instead of
a geometrical one, as the measure proposed here. The quantification of the departures
from regularity or randomness, for instance, requires a significance test.
Concerning the application to the real data of distribution of trees in three oak forest

in the state of Querétaro, Mexico, some comments are as follows. Albeit as mentioned
in Section “Results” specific measures has been developed for this particular problem
in ecology, the proposed measure was capable to detect irregularities that seems to be
related with the level of the forests preservation. The hexagonality index was also capa-
ble to detect these irregularities but, as mentioned in Section “Application to real data”,
the Voronoi tessellation associated with the most preserved forest turned out to be the
one with most polygons with six edges. Contrary to the measures proposed for ecolog-
ical problems, as the NND, the measure based on eutacticity is not capable to discern
between over-dispersed and clustered distribution, which is of interest to ecologists. We
should say however that in general the spatial order is not necessary defined by clustered,
over-dispersed or random aggregations. The measure proposed here gives a geometric
alternative with a range of values that indicate if a mosaic or an array of points is more
or less regular based on geometrical concepts. The combination of this measure with
statistical methods already proposed would bring complementary information about the
space availability for plant and its neighbours. Finally, when applied to a phyllotactic spiral
pattern, the proposed measure detected a high regularity, as expected.
The measure (5) then is capable to detect regular patterns and to provide a measure of

the regularity. This makes the measure useful in several realms where star of vectors can
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be defined, for instance to detect regularities in complex networks [23, 24], where links
emanating from a node define a vector star.
An additional advantage of the proposed measure, is that can be easily generalised to

study a three-dimensional distribution of points or a polyhedral pattern, by considering
three-dimensional vector stars. Actually in this case it is enough to set n = 3 in Eq. (4).

Conclusions
In this work we propose a general purposes measure of regularity in polygonal mosaics or
point patterns in biological systems. It assigns a single value to themosaic or the collection
of points in the plane indicating its degree of regularity.
The measure performs well and as expected while tested with numerical data. In an

example with real distribution of oak trees, the measure is sensitive to the degree of
perturbation observed, which produces a less regular distribution of trees. In a sec-
ond example with real data, the measure is capable to detect the high regularity of a
phyllotactic spiral pattern.
The main advantage of the proposed measure over other methods used for this pur-

poses is that it has a clear geometrical meaning since the condition of eutacticity rests
on the property of regularity, thus constitutes a natural way to measure regularity, which
is independent of the type of polygons that form the pattern. It has also the advantage
that can be used for studying three-dimensional distribution of points or polyhedral pat-
terns. The measure for regularity here proposed has a clear geometrical meaning and
constitutes an alternative for analysing spatial distributions in different systems or arrays,
capable to indicate the degree of regularity of a mosaic or an array of points.

Methods
A measure for regularity for polygonal mosaics of different kinds in biological systems is
proposed. It is base on the condition of eutacticity, expressed in terms of eutactic stars,
which is closely related to regular polytopes. All the input data consisted of the (x, y) coor-
dinates of sets of points coming from two sources: numerically generated and measured
from real data. In both cases these coordinates were handled with Wolfram Mathemat-
ica 10.3 [26]. Voronoi tessellations and convex hulls were calculated with the built-in
functions included in the Computational Geometry Package, now built into the Wolfram
System. The procedure to associate a star vector to each Voronoi polygon, to calculate
its value of eutaciticy and the numerical algorithm described in Section “Numerical data”
were all codified as user-definedMathematica functions. The hexagonality index was also
codified as a Mathematica function. The value of NDD for a given set of points (numer-
ically generated or measured) was obtained with the PAST software [9]. Concerning real
data, the (x,y) coordinates of the trunk’s positions of oak trees were obtained by means of
a Magellan-pro Mark 3 GPS with millimetre resolution; these coordinates were stored in
a file, which was after imported into Mathematica. The (x,y) coordinates of the florets in
the studied phyllotactic pattern were found from the digital image of the flowering plant
using the morphogenetic package ImageJ [22] and the resulting file was then imported
into Mathematica.

Endnote
1For an introduction to Voronoi tessellation’s see for instance (Ref. [25] Ch. 2).
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