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Abstract

Background: In recent epidemiological models, immunity is incorporated as a
simplified value that determines the capacity of an individual to become infected or to
transmit the disease. Moreover, the quality of the immune response determines the
chances of infection and the length of time an individual is capable to infect others. We
present a model that incorporates individuals’ immune responses to, further, examine
the role of the collective immune response of individuals in a population during an
infectious outbreak.

Methods: We constructed a contagion model that incorporates the collective
immune response of individuals represented by the superposition of individual
immune responses (PIR). Multiple probability distributions are used to represent the
immunocompetence of different age groups, thereby modeling the concept of
Population Immune Response (PIR). Multiple experiments were conducted in which
the population is divided in different age groups for which each group has a unique
immune response quality and thus a different length for its immune periods. Finally, we
explored the effects of implementing different vaccination strategies in the population.

Results: The experiments displayed important variations in the outbreak dynamics as
a consequence of incorporating PIR in homogeneous and mixed populations. The
experiments showed that individuals with weak immune responses and those who are
immune to the pathogen play a significant role in shaping the outbreak dynamics.
Finally, after implementing different vaccination strategies, the results suggest that if
vaccination resources are limited, the vaccination should be targeted towards
individuals that spread the disease for a longer period of time.

Conclusions: Our results suggest that it is essential for the public health
establishment to increase their understanding of the characteristics of regional
demographics that could impact the quality of the immune response of the
individuals. The results indicate that it is necessary to further investigate mitigation
strategies to limit the capacity to transmit the disease by individuals that spread the
pathogen for extended periods of time. Ultimately, this study suggests that it is crucial
for public health researchers to identify appropriate targeted vaccination regimes and
to explore the link between PIR and outbreak dynamics to improve the monitoring and
mitigating efforts of ongoing and future epidemics.
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Introduction
The immune system of an organism provides an extraordinary defense against foreign
attacks. Once it recognizes matter as non-self, it activates multiple chemical and
physiological processes to control and eliminate the pathogen [1]. These processes
are collectively known as immune response. The immune system mounts a response
in an attempt to stop the growth of an invading organism in order to retain opti-
mal functionality of the host. Controlling such proliferation is beneficial for the
organism, since the quantity of foreign material affects the amount of time dur-
ing which the organism experiences infection. Further, the duration of the infec-
tious period, during which an organism might transmit the infection to others, is
directly related to the quantity of foreign material in the host. Hence, we conjec-
ture that the dynamics of an infectious disease epidemic in a population are driven,
among other things, by the organisms’ immune responses. This research establishes
this relationship through the integration of immune response into the population at
large.
The most recent approaches to infectious disease outbreak modeling incorporate non-

homogeneous components to the individuals to be modeled. Studies of the effects of
non-homogeneous populations on the dynamics of infectious outbreaks have shown the
importance of integrating individuals with heterogeneous characteristics [2]. Although
the amount of time a person is capable to transmit the disease varies among individuals,
many models set that value to be homogeneous for the population. Season and temper-
ature are some of the sources that influence that difference [3, 4]. However, we highlight
the capacity of the immune response to diminish the pathogen as a crucial component for
that variation as well.
In this paper, we describe the types of immune responses that occur during an infec-

tion, as well as conditions that can contribute to variations in immunocompetence among
individuals. Further, we discuss the relationship between immune response efficacy and
the length of the individuals’ infectious and latent periods. Next, we present two methods
to calculate the quality of the immune response of an individual. Most importantly, we
introduce the concept of Population Immune Response (PIR). This new concept defines
the collective immune response of individuals in a population as the superposition of
individual immune responses.

Background
Immune response and infection

To understand the role of the immune response during an infectious process, it is
necessary to address some essential concepts related to it. The primary elements of a
human immune response and the factors that determine their quality are defined below.
Further, the progression of an infectious disease in an individual after exposure to a
pathogen and the antagonistic role of the immune response are examined. Finally, the
concept of viral/bacterial load and its relation to the length of the infection periods is
described.

Immunity

The survival of an organism is highly correlated with the quality of its immune system
[5, 6]. The immune system provides two types of defense against invaders: innate and
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adaptive immunity. The innate response is non-specific to the pathogen and does not
provide a long lasting immunity. The major components of the innate response are:

• Physical barriers, such as tears and skin, block the entrance of possible invaders.
• The Complement system is composed of molecules that intensify the effect of other

immune functions.
• Macrophages are responsible to phagocytose, digest and present pathogens.
• Natural Killer Cells induce cytotoxic apoptosis (cell death) to infected cells.

A pathogenic invasion occurs once viral or bacterial material pass these first lines
of defense. Once they have crossed the innate defense, pathogens tend to migrate
to suitable locations for occupation and multiplication. Foreign invasion activates an
adaptive immune response that impedes the replication and migration of the pathogen to
attempt to free the host from the external threat. The adaptive response is specific to each
invader and is conducted by two main types of cells:

• T-Cells : Lymphocytes maturated in the thymus.
• B-Cells : Lymphocytes maturated in the bone marrow.

T-cells are highly specialized cells that not only coordinate (T-helper) and regulate
(T-regulatory) the immune response, but also destroy infected cells (T-cytotoxic). B-
cells secrete antibodies and perform pathogen presentation similar to the macrophages.
Antibodies are proteins that can mark an infected cell or a pathogen to facilitate its
elimination. Additionally, antibodies can stop the replication of the pathogens by imped-
ing their attachment to healthy cells. Both T-cells and B-cells provide immunity against
a pathogen by producing memory cells (T-memory and B-memory) during an infection
process. Similarly, immunity can be artificially induced by vaccination. Immunity against
a pathogen heightens the immune response to prevent future infections.
The efficacy of the immune response is determined by multiple factors. Many of them

are associated with the host, including age, physical fitness, gender, and nutrition [7]. Var-
ious studies report different causes for deterioration of the immune system throughout an
individual’s life-time. As the individual ages, limited capacity to defend against invaders
is caused by multiple alterations in T-cell and B-cell functionality [8, 9]. Likewise, nutri-
tion is a critical factor for the quality of the immune response of an individual. Studies
have shown a strong relationship between malnutrition and multiple immune response
deficiencies. These may include impairment of the complement system, cell mediated
immunity, and phagocyte functionality [10]. Obesity [11], high-cholesterol levels [12], and
low vitamin and mineral intake [13] are some of the nutrition related causes for those
immune response deficiencies.
In addition to access to health care, types and frequency of social interactions, gender

drastically affects the competence of the immune response [14, 15]. This is primar-
ily attributed to the blood levels of gonadal steroid hormones. Multiple studies have
shown androgens as natural immunosuppressors, as well as estrogens as humoral immu-
nity enhancers [16]. Moreover, physical fitness of individuals has a unique effect on the
immune response. Although positive immuno-stimulatory activity is observed with mod-
erate exercising, both lack of and excessive exercise produce an immuno-suppressive
response [17, 18].
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Infection

Diseases in individuals develop in sequential phases [19]. It is known that once a pathogen
invades a susceptible individual, he or she progresses through different infection stages:
Latent, Infectious and Recovered/Removed. The progression from one stage to another
occurs after the consummation of different time periods. These periods are known as
latent period and infectious period. The latent period is the amount of time necessary for
an individual to develop the capacity to infect others. Analogously, the infectious period
is the amount of time during which an individual is capable of transmitting the disease to
others.
An infectious agent replicates after it penetrates the host’s basic defenses. The efficacy

of the replication process can be quantified through the corresponding viral/bacterial
load (vbl) [20]. The vbl is the concentration of virus or bacteria in plasma at a certain
moment in time [1]. The vbl value is commonly used as an indicator for disease severity
[21] and the host’s capacity of transmitting it [22]. Since the immune system is responsible
for controlling vbl in the host, we conceive a direct relationship between them. A stronger
immune response restrains the growth of the external threat more efficaciously; Hence,
we conclude that the quality of the immune response affects the quantity of vbl during
infection.
We define 4 types of immune responses based on their quality: R0, R+, R−, R∗. The

quality of each response is determined by the severity of the infection and the length
of the infectious period of an individual with that type of response. A standard immune
response R0 represents the average response in a healthy individual. An individual with
this response remains infected for the same amount of time as the majority of the
population. Individuals with this response usually recover after the infection is eradi-
cated and rarely succumb to the disease. Individuals with the hyperimmune response
R+ will stay infected for a shorter period of time than the majority of the popula-
tion. R+ represent the immune response of those individuals with a superior count of
pathogen specific immune cells as compared to individuals with an average immune
response. This type of response guarantees the survival of the individual throughout
infection. The hypoimmune response R− represents the immune response of indi-
viduals with an immunocompromised immune system (eg. Cancer, Diabetes or HIV
subjects). A person with this response is infectious for a longer period of time than
the majority of the population. Individuals with this response have increased probabil-
ities to succumb to the disease. R∗ comprises individuals that are actively or passively
immune against a specific pathogen. Elements of the population with this type of
response will get infected for a short period of time, but never become symptomatic or
infectious.
To illustrate these concepts and their relationship to vbl, Fig. 1 portrays four con-

trasting scenarios of a primary viral infection. R0 results in consistent pathogen
replication until the immune response is strong enough to overcome the infection
and eliminate it. R+ produces a similar effect, but it is more effective than R0. In
contrast, R− is not capable of containing the infection. This will result in uncon-
trolled growth of the virus leading to chronic infection or death of the host. On the
opposite side of the spectrum, R∗ is more efficient at limiting pathogen replication
than all other responses. This results in smaller quantity of vbl in the host at all
times.
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Fig. 1 Four contrasting scenarios that depict the viral load in an individual over time as a function of the
quality of their immune response

The integration of vbl can be utilized as a threshold to determine the commencement
and termination of the disease periods during an infection [23]. Figure 2 depicts the dura-
tion of the time periods for each scenario presented in Fig. 1. The length of each period
is determined by a transmission threshold. The transmission threshold (vbl∗) is estab-
lished as the quantity of vbl that is necessary for an individual to become infectious. The
latent stage commences at the infection point and terminates once vbl surpasses vbl∗.
Equivalently, the length of the infectious period starts at the end of the latent period
and culminates once the vbl falls below vbl∗. For example, Fig. 2b portrays a hypoim-
mune response R− during an infectious process. In this figure, the vbl growth rate at
the beginning of infection is similar to the rest of the other responses. Once vbl exceeds

Fig. 2 Duration of the infectious periods for each scenario presented in Fig. 1 as a function of vbl
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vbl∗, the immune response is not capable of containing the pathogen proliferation. An
individual with R− may experience a long or a short infectious period depending on
its capacity to fight the disease. If infection becomes chronic, the individual is infec-
tious period will be longer than that of an individual with the standard immune response
R0. Otherwise, if the individual succumbs to the infection, it will be moved to the
Recovered/Removed population earlier than the average individuals, resulting in a short
infectious period. An individual with a hyperimmune response R+ will have a shorter
than average infectious period. Figure 2c represents such a scenario. We observe that vbl
in Fig. 2c exceeds the threshold for a brief amount of time, resulting in a short infec-
tious period. Finally, since the R∗ response does not exceeds vbl∗, it results in a long
latent period and the individual never progresses to infection. This scenario is depicted in
Fig. 2d.
In general, these scenarios illustrate how the length of the disease periods are a function

of the viral load. It is possible to obtain those values from sources such as immuno-
logical, mathematical, or computational models. The model selected must simulate the
interaction between the pathogen and the immune system. Ultimately, from the model,
vbl is obtained to determine the length of the disease periods for each individual. In the
Methods section below, we present an example to determine the infectious periods by
simulating the disease trajectory in a host with the use of a mathematical model.

Immune response and epidemiology

Epidemiologists havemade use of different approaches to incorporate immunological fac-
tors into their models. Some models implement immunity as an effect of a vaccination
strategy [24] or as a period in which the individual cannot be infected after a primary
infection [25]. Moreover, other scientists have engaged in a comprehensive study of the
relationship between immune response and the population. Hellriegel [26] presents a
review of that relationship. In this review, the importance of integrating immunity and
epidemiology (immunoepidemiology) is highlighted. The author defines three different
approaches for this integration: Within-host, between-host and individual-to-population
dynamics. Furthermore, the author proposes different combinations of those approaches
to assess the role of immunity in determining epidemiological patterns. Following, we
present a description of multiple epidemiological models that incorporate immunologic
factors.
Dushoff [27] depicted a model in which the probability of the disease progressing

in an infected individual is not only determined by its own characteristics, but by the
level of disease in the population. That assumption is based on the suggestion that
an exposure with low pathogen load may lead to immunity or short lasting infection
and minimum disease transmission, while an exposure with high pathogen load may
lead to a longer infection and to greater transmission of the disease. To implement
that assumption, the model contains two individual classes: heavily infected and lightly
infected. Individuals can depart from one class to another as a function of the force of
infection.
Martcheva and Pilyugin [28] presented a Susceptible-Infectious-Recovered model in

which the immune status of the individuals increases during the infectious period. In this
model, the initial absence of immunity of individuals sets all of them in the susceptible
group. However, once an individual becomes infected its immune status increases over
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the course of infection. After an individual recovers from the disease, a possible reinfec-
tion is restricted by its immune status. However, immunity may decrease as a function of
time, increasing the probability of a secondary infection.
Vickers and Osgood [29] introduced a mathematical framework of population infection

dynamics in which individuals mount an immune response in response to infection and
the contacts between them are distributed in a simple contact network. The immune
response is represented by a population of differentiated and non-differentiated cytotoxic
immune cells. The social network is implemented by placing each individual in a Poisson
distributed network such that the incoming viral load of an individual is proportional
to the viral load of its neighbors. Each individual has a coefficient of connectedness to
determine the weight of the connection with each of its neighbors.
In this paper, we have adopted the Vickers−Osgood approach to construct a contagion

model that includes immune response quality which is based on the equations devel-
oped by Wordarz. Below, we have identified specific parameter values that demonstrate
howWodarz’s model could be used to represent the immune response of individuals in a
diverse population. We are using the Lévy and normal distributions to represent the qual-
ity of the immunocompetence of different age groups, thereby modeling the concept of
Population Immune Response (PIR).

Methods
Population immune response

Population Immune Response (PIR) is a new concept that captures the collective immune
response (IR) of individuals pi in a population P represented by the superposition of
individual immune responses. PIR is formally defined in Definition 1.1 below.

Definition 1.1. PIR = ⋃|P|
i=1 IRi(t) ∀ pi ∈ P in which IRi = {Ẋi, Ẏi, V̇i, Ẇi, Żi} in which

Ẋi, Ẏi, V̇i, Ẇi and Żi are functions from the set of Eqs. 1–5.

Figure 3 summarizes how the effects of PIR on outbreak dynamics can be exploited and
how the concept can be applied to create a computational model. The model is divided

Fig. 3 Outline of a computational model that applies the concept of PIR
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into three modules: Population and Disease Database, Immune Competence, and Infec-
tious Disease Outbreak Simulation. A Population and Disease Database is required to
store the population and disease information. This database must include demographic
data for P that can be linked to the efficacy of an individual’s immune response and, hence,
determine the collective immune responses of P. The database information is exploited to
categorize the individuals into multiple clusters. These clusters are based on the demo-
graphic characteristics of interest in the study (eg. age, gender). Additionally, the database
contains information related to the disease itself, such as pathogenicity and pathogen
growth rate. The disease information is used to estimate the value of the transmission
threshold vbl∗.
Once the clusters have been created, the immune response upon infection for each

group is determined by the Immune Competence module. In this research, we exemplify
this calculation with a mathematical approach to model the immune response of an indi-
vidual during a viral infection. The model presented was first introduced by Arnaout
et al. [30] and expanded byWodarz [31]. This model captures the development of the dis-
ease in the host by portraying the interaction between host cells, viruses, and immune
response. The interaction between vbl and the immune response is captured at a cellular
level during the simulation of each cluster’s immune response. The result of every simu-
lation will return the values of vbl for each cluster. From every vbl value it is possible to
obtain the length of the disease periods for each cluster by incorporating vbl∗ as described
in the previous section. Ultimately, the length of the disease period of each individual is
calculated and incorporated into the simulation of the epidemic.
The Infectious Disease Outbreak Simulation will simulate the spread of a disease in a

population during time t. The simulation must incorporate every individual from P and
simulate the interactions between them. Each individual needs to be assigned unique
characteristics representative of his or her individuality and social activities. Some of
these characteristics are the length of the disease periods and the number of social inter-
actions per time interval. These values are usually calculated in a per day share. The length
of the disease periods of every individual will be assigned according to his or her clus-
ter membership. The incorporation of different clusters in the simulations will result in
different disease dynamics. Since the variation of length of the disease periods between
individuals is determined by their immune response, we conjecture that PIR is a crucial
driving force of the dynamics of an epidemic.

Modeling the immune response

The module Immune Competence determines the infectious and latent period of individ-
uals of every group from the population. To estimate those values it is possible to use
models that capture the interaction between a pathogen and the immune response on
a host. Multiple models have been proposed to simulate the immune system of an indi-
vidual during infection [32]. In each model, different sets of parameters and interacting
components are utilized to represent particular functions of the immune system.

Immune responsemodel

To illustrate the concept of PIR, we sought a mathematical model sufficiently complex to
capture the essential components of the immune response and capably represent different
diseases. Arnaout et al. [30] introduced a mathematical model that separates the immune
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response into two different types: lytic and non-lytic response. A lytic immune response
kills infected cells, whereas a nonlytic response prevents viral replication through soluble
mediators [33]. The flexibility of this model allows the study of the effects of each response
type during different disease infections. This mathematical model depicts the interaction
between infected cells (Y ), viruses (V ), and the immune response. The immune response
is represented as the quantity of virus-specific Cytotoxic T lymphocyte (CTL)(Z) and the
virus-specific antibodies (W ).Wodarz [31] expanded themodel of Arnaout et al. by incor-
porating uninfected cells (X). The Wodarz model is represented by the set of differential
Eqs. 1, 2, 3, 4 and 5. A description of the parameters of the model is presented in Table 1.

Ẋ = λ − dX − βXV (1)

Ẏ = βXV − aY − pYZ (2)

V̇ = kY − uV − qVW (3)

Ẇ = gVW − hW (4)

Ż = cYZ − bZ (5)

To study the immune system efficacy, we will focus on those parameters that determine
the strength of the immune response. As described in the previous section, alterations
of the immune system functionality are caused by multiple factors. For example, it is
known that an individual will experience chronic involution of the thymus gland as he/she
ages [34]. The involution of the thymus is considered one of the major reasons for the
decline of immune response quality since the thymus is responsible for the produc-
tion of naïve T-cells. Additionally, B-cell proliferation and efficacy are diminished due
to the immunosenescence derived from aging [34]. Studies have shown a decrease of
the B-cell population, reduction of antibody diversity, and decline of capacity to produce
pathogen-specific antibodies as the individual ages [35, 36]. In the mathematical model,
we represent this effect by incorporating individual age groups with different values for
the immunological parameters. The immunological parameters of the model are: g, q, b,
h, q, c, and p, as depicted in Table 1. Figure 4 depicts two simulation scenarios of the
mathematical model for different values of the immunological variables. The simulation
represents a standard immune response R0 and a hyperimmune response R+. The figure
illustrates the performance of each response during infection and its impact on the viral

Table 1 Description of the parameters from the Wordarz’s Model

Symbol Definition

λ Production rate of uninfected cells

d Death rate of uninfected cells

β Infection rate of uninfected cells by viruses

a Death rate of infected cells

p Lysis rate of infected cells by the CTL response

k Production rate of virus by infected cells

u Decay rate of viruses

q Neutralization rate of viruses by antibodies

g Development rate of antibodies in response of virus exposure

h Decay rate of antibodies

c Development rate of CTL in response to infected cells

b Decay rate of CTL
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Fig. 4 Resulting viral loads and quantities of antibodies and CTL by simulating the Wodarz model with
parameters that represent a hyper immune response and a standard immune response

load. Although there is evidence that the quality of those variables is affected by the age
of the individual, determining its value only from age groups is not completely accurate.
Multiple factors besides immunosenescence can be involved in establishing the strength
of a specific immune response parameter; however, this is beyond the scope of this paper.

Modeling the immune response of the population

As described above, the quality of the immune response of individuals is determined by
multiple factors. However, given the scope of this research, we present an implementation
that only considers the effects caused by immunosenescence with the goal to associate
immunocompetence with demographic characteristics. This factor was selected given its
importance is highlighted in multiple studies [34–37]. Additionally, data for the length
of the infectious periods of multiple pathogens is commonly reported for different age
groups [38, 39]. In this implementation, the quality of the immune response of individuals
from different age groups was determined based on the reported data of disease peri-
ods for influenza. The World Health Organization (WHO) [40] reports that an infected
adult (group A) is capable of transmitting the flu virus from 5 to 7 days. Similarly, infected
children (group B) may infect others for up to 21 days with a median of 7–8 days and
immunocompromissed individuals (group C) could be infectious for weeks or months.
The immunocompromissed group includes adults 55 and older [41]. We included an
additional group (group D) that represents individuals that have gained immunity to the
disease either by natural or artificial immunization independent of their age. Consider-
ing that the infectious periods of each age group are determined based only on age, it
is clear that the variability observed in the length of the infectious periods within the
groups can be attributed to other factors such as gender, race, etc. Ultimately, each of the
age groups is appointed to represent one type of immune response from the 4 types of
immune response defined above, such that A = R0, B = R−1 , C = R−2 and D = R∗.
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Above, we exemplified the use of theWodarz’s model as a method to determine the length
of the infectious and latent periods of an individual. In this model, its parameters can be
modified to simulate different immune responses with distinct qualities. For the disease
described below, each age group is associated with multiple levels of immune response
efficacies and efficiencies. Further, as depicted in the previously, the quality of the immune
response can be represented by parameters g, q, b, h, q, c, and p from the mathematical
model. Considering that the length of the infectious period varies for each age group, the
parameters used to obtain the quality of the immune response of a group are not unique.
Thus, the values for the parameters to simulate the immune response of an age group
are calculated from a particular distribution of values. In Table 2 we present some of the
possible values used to simulate the immune response of individuals from each group.
However, the values for the simulations presented do not include all possible infectious
periods lengths nor all possible values for the parameter from their distribution. Figure 5
depicts the resulting viral load values for the simulations with the parameter values pre-
sented in Table 2. Further, from Fig. 5 we obtain the latent and infectious period for each
group by evaluating its intersection points with vbl∗. Assuming the time intervals as days,
the latent period (LP) is 5 days for all groups. Equivalently, the length of the infectious
period (IP) for each group is: IPA = 5, IPB = 7, IPC = 11, and IPD = 0. Members of group
D can be infected; however, considering the prime quality of their immune response, they
will never develop the disease and thus never become contagious. A similar process is
necessary to obtain all other infectious periods for each age group.
Determining the exact distributions for the parameters of the model in order to reflect

the biological, sociological, and immunological characteristics of an individual is beyond
the scope of this research. In this implementation, the lengths of the infectious period of
each age group are calculated using probability distributions such that each distribution
is an approximation to the data reported in the literature. Figure 6 depicts the probability
distributions of the infectious period in each of the groups previously defined. Group A
includes individuals between 14 and 55 years old and their infectious period is calculated
with a normal distribution with mean μ = 6 and standard deviation σ = 1.5. Group B
includes individuals with ages 0 to 14 and its represented with a Lévy distribution with
location parameter μ = 7 and scale parameter c = 1. The Lévy distribution is depicted
in Eq. 6. Finally, group C includes individuals 55 years old or more and their infectious

Table 2 Values used in the model to simulate each immune response group

Symbol A B C D

λ 30 30 30 30

d 0.1 0.1 0.1 0.1

β 0.01 0.01 0.01 0.01

a 0.5 0.5 0.5 0.5

p 0.2 0.1 0.05 0.1

k 0.4 0.4 0.4 0.4

u 2 2 2 2

q 0.006 0.01 0.0025 0.005

g 0.1 0.09 0.025 0.5

h 0.3 0.6 0.3 0.3

c 0.015 0.01 0.003 0.006

b 0.05 0.1 0.02 0.05
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Fig. 5 Viral load quantities for different types of qualities of the immune response obtained by simulating the
Wodarz’s model and using the parameters presented in Table 2

period is calculated with a Lévy distribution with μ = 8 and c = 4. Ultimately, in the
simulation every individual from each age group is assigned an infectious period following
the probability distribution of its group.

f (x;μ; c) =
√

c
2π

e−
c

2(x−μ)

(x − μ)
3
2

(6)

Fig. 6 Probability distributions of the infectious period for the age groups A (14–55 years old), B (> 55 years
old) and C (< 14 years old)
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In the following section, we present multiple experiments to analyze some of the effects
of PIR on the disease dynamics.

Results and discussion
A series of experiments were conducted to exemplify the computational model pro-
posed in the previous section. The simulation commences with the creation of a synthetic
population. From this population, individuals are divided uniformly into four groups.
Membership to three of the four groups is determined by the age of the individual. The
three possible age groups are adult (A), children (B), and elderly (C). Affiliation to the
fourth group is independent from the age of the individual but related to its immune sta-
tus (D). All non-immune individuals are members of one of the other three groups (A,
B, or C). Affiliation to a specific group was used to determine the quality of its immune
response. Hence, the quality of the immune response of A = R0, B=R−1 , C=R−2 and
D=R∗, as described above. We assume a disease in which the quality of the immune
response of members from group A is more effective than those from group B and C. In
the following experiments, the type of immune response and, consequently, the infectious
period for each group is determined by the Lévy distribution and normal distribution as
described above.
Once the lengths of the periods for each group have been determined, a computation

of the spread of a disease within the groups is required. For this simulation, we utilized
the Global Stochastic Contact Model (GSCM). The GSCM is a computational model that
simulates the spread of an infectious disease in a population during an infectious out-
break [2]. The GSCM simulates the interactions between individuals in the population
as the infection progresses. Based on multiple disease parameters, some of those interac-
tions result in the transmission of the disease from individual to individual. In the model,
multiple groups of individuals can be created. Each group is assigned values of specific
disease parameters to represent heterogeneous populations. Some of the disease param-
eters include contact rate, transmissibility, affinity between clusters, and infectious and
latent period lengths. For this simulation, we uniformly distributed the total population of
4000 individuals into the four groups previously described. Individuals from each group
were assigned a respective latent and infectious period. Since this simulation is designed
to explore the effects of the immune response, we assume all the other disease parameters
to be identical for all groups.

Experiment I

The first experiment explores the importance of incorporating different immune
responses into the population. This experiment is divided into four cases, with each case
consisting of a simulation of infectious outbreaks among homogeneous populations. The
populations in each case consist of communities in which all individuals are members
of only one of the immune response categories R. In each case, individuals are assigned
an infectious and latent period based on their immune response classification. All the
other disease parameters are identical among all individuals for all cases. Each simulation
started with the inclusion of a single infectious individual into the population. The result
of every case is the average of 50 simulations. A run is considered an outbreak if more
than 1% of the population is infected. Otherwise, herd immunity or a deficient pathogen
transmission is assumed. The results are summarized in Table 3. The table depicts the
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Table 3 Experiment 1 results: outbreak dynamics in homogeneous distributions of the population

(R, Cluster) Avg. Total Inf. Avg. Inf. at Peak Day of Peak Avg. End of Outbreak

(R0, A) 637.78 17.47 210 563.84

(R−1 , B) 2979.29 384.24 128 301.16

(R−2 , C) 3579.45 844.84 117 258.22

(R∗ , D) 1 1 1 1

average number of infected individuals, the average number of individuals infected at the
peak of the outbreak, the day in which the average peak occurred, and the average day
in which the outbreak ended. The table displays an increased number of infected indi-
viduals as the quality of the immune response decrease. Additionally, the outbreaks with
immunocompromised populations have an earlier peak and are shorter in duration com-
pared to the other outbreaks, due to the heightened count of infected individuals in those
experiments. In general, these results display the existence of a variation in the outbreak
dynamics by incorporating an immune response to individuals in a population.

Experiment II

The second experiment integrated groups A, B, C, and D to explore their effect on the
disease dynamics. Since we are interested in measuring the effects of PIR in the disease
dynamics, the rest of the characteristics of the population follow a homogeneous profile.
To measure the effect of PIR, we computed the total number of infected individuals in
each group and the proportion of the population that they infected. The results reported
are the average over 50 simulations with different random seeds. As before, each simu-
lation is initialized with a single infectious individual that is randomly assigned to one of
the four groups. The results are summarized in Fig. 7 and Table 4. In the table, we observe
that the distribution of the infected individuals is almost uniform. In contrast, the distri-
bution of the individuals infected bymembers of each cluster is biased towards members
from group C.

Fig. 7 Cumulative number of individuals infected by members of every cluster of the population per day
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Table 4 Experiment 2 results: number of infected and infected by members of the four age groups in
a heterogeneous mixing of the population

(R, Cluster) Infected members Infected by members of this cluster

(R0, A) 472.82 371.13

(R−1 , B) 472.86 599.68

(R−2 , C) 475.44 920.93

(R∗ , D) 471.62 0

In Fig. 7, we observe that members from group C are responsible for infecting the
majority of individuals in the population. Individuals from this cluster also have the high-
est total infection rate at all times during the outbreak. These effects are a consequence
of the incompetent immune response of the members of this group. This deteriorated
response cannot control the viral growth, resulting in a larger than average vbl among its
infected individuals. Due to the excessive quantity of pathogens, the level of vbl exceeds
vbl∗ for a longer period of time as compared to the other two groups of individuals. Con-
sequently, members from this group have an increased opportunity to infect others due
their longer infectious period. Although the number of infected individuals in group D
is similar to that of the other groups, members from this group present a special behav-
ior. Since members from group D cannot transmit the infection to others, the number of
individuals infected bymembers of this group is zero. Equation 7 depicts the relationship
between infection rates among all clusters. Let IA, IB, IC, IDbe the number of individuals
that have been infected throughout the epidemic by groups A, B, C, D respectively.

ID < IA < IB < IC (7)

Experiment III

The third experiment measures the role of PIR in a non-homogeneous population during
an infectious outbreak. In this experiment, we represent different demographic distribu-
tions by splitting the population in three groups: A, B, and C. Group D is not included in
this experiment since the role of this group is analyzed in Experiment IV. In Experiment
III, we conducted 50 simulations in varied distributions of the the general population.
The distributions are constructed by varying the number of individuals assigned to each
group. The experiment commences by assigning all 4000 individuals from the population
into group A. Consequentially, individuals will be removed from A and added to the other
immune response groups (B and C) in increments of 5% per each group until |A| = 0. We
present the results of these simulations, from an average of 50 runs with different seeds
for each simulation, in Fig. 8 and Table 5.
Figure 8 depicts the number of infected individuals during multiple outbreaks with dif-

ferent combinations of A, B, and C. Figure 9 portrays the outbreak dynamics for the same
distributions of the population. In both figures, we observe an increase in the size of the
epidemic as more individuals from A are moved to B and C. Individuals from those two
groups present a higher infectious period resulting in increased probabilities of infecting
other individuals from the population. The figures also depict a variation in the duration
and peak of the outbreak based on the number of individuals from B and C. The dura-
tion of the outbreak is reduced as the number of individuals in those groups increases.
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Fig. 8 Resulting outbreak curves for different combinations of population distributions

This effect is produced since individuals from those groups infect the susceptible individ-
uals at a faster rate. This results in an exhaustion of susceptible individuals earlier in the
outbreak.
Table 5 displays the total number and the percentage of infected individuals at the end of

the epidemic, the day and number of infected individuals at the peak, and the duration of
the outbreak. In the table, we observe that the proportion of infected individuals increases
as a larger number of individuals from B and C are introduced to the population. The
results indicate that the presence of more individuals with a weakened immune response
in the population not only affect the duration and magnitude of the outbreak, but the
percentage of infections as well.

Experiment IV

The fourth experiment attempts to measure the effect individuals from group C have on
the outbreak at large under the assumption of different vaccination strategies. Targeted

Table 5 Experiment 3 results: outbreak dynamics during multiple simulations with different
combinations of A, B and C

Population percentage Population infected Peak Duration

(R0, A) (R−1 , B) (R−2 , C) Total (Percentage) Day (Infected Ind.) Day

0 50 50 3547.42 (88.68) 117 (724.04) 213

10 45 45 3395.28 (84.90) 121 (587.42) 225

20 40 40 3289.58 (82.26) 127 (523.55) 234

30 35 35 3243.12 (81.09) 127 (461.9) 234

40 30 30 2962.73 (74.08) 134 (363.02) 254

50 25 25 2871.67 (71.80) 138 (321.45) 253

60 20 20 2578.54 (64.47) 145 (239.25) 271

70 15 15 2046.03 (51.16) 164 (152.75) 303

80 10 10 1766.96 (44.18) 170 (114.85) 317

90 5 5 1216.59 (30.42) 220 (44.36) 387

100 0 0 637.78 (15.94) 255 (17.42) 355
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Fig. 9 Resulting outbreak dynamics for different distributions of the population

vaccination of individuals from group C was selected since the previous experiments
showed that members from this group cause the majority of the infections in the pop-
ulation; thus, generating interest in containing the force of infection originated from
individuals in this group. Three vaccination strategies were implemented to represent
different intervention scenarios. Each strategy consists of removing a percentage of indi-
viduals from group C and incorporating them into the immunized group (D). In this paper
is assumed that the population was all vaccinated before the onset of the epidemic. Each
vaccination strategy removed 0%, 10% and 20% of the members from C, respectively.
The 0% strategy represents a zero-intervention scenario. This scenario is simulated utiliz-
ing the same population and values of disease parameters as in Experiment II. The other
two intervention strategies also use the same values of disease parameters for each group,
but with a modified population distribution. Similar to the previous experiments, a single
infectious individual was randomly assigned to a group at the beginning of each simula-
tion. The final result was obtained by averaging the outbreak dynamics over 300 runs for
every strategy. The results from this experiment are divided in two parts: total number
of infected individuals in P and total number of individuals infected by C. The results are
depicted in Figs. 10 and 11, respectively.
Figure 10 illustrates the different outbreaks in P after each vaccination strategy is imple-

mented. We observe that the 0% strategy produces the greatest number of infected
individuals and results in the highest infection rate per day compared to the other strate-
gies. On the other hand, the 20% strategy is more effective at limiting the progression
of the disease due to its high number of members in group D. This results in the low-
est number of infected individuals among all strategies. Further, we observe a variation
in the length of the outbreak for each strategy. The 0% strategy results in the shortest
outbreak compared to the other two strategies. This effect is caused by the increased
number of individuals with weak immune response in that strategy. The further reduc-
tion of individuals from C, in the other two strategies, results in a reduced opportunity
to infect susceptible individuals that could, potentially, spread the disease even further.
Consequently, the number of infections is reduced and the pathogen spread less aggres-
sively, providing a larger population of susceptible individuals for future transmissions as
opposed to populations with a more aggressive progression.
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Fig. 10 Total number of infected individuals from the population per day after different vaccination strategies

Figure 11 illustrates the cumulative number of individuals infected by members from
group C for each vaccination strategy. Here, the number of individuals infected by group
C behaves similarly to the total number of infected individuals in Fig. 10. We observe
that the 0% strategy causes the greatest number of individuals infected bymembers from
group C. Furthermore, the 10% and 20% strategies decrease that count according to the
intervention type, resulting in a reduced number of individuals infected by group C. More
importantly, this result confirms the strong relationship between this group and the gen-
eral outbreak. We observe that Figs. 10 and 11 display similar patterns for each respective
outbreak. In general, these results indicate that if only a limited number of vaccines are

Fig. 11 Cumulative number of individuals infected by members from group C after different vaccination
strategies
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available or vaccination resources are limited, the vaccination should be targeted towards
the individuals that are most likely to spread the disease over longer periods of time. More
realistic strategies, such as gradual roll-out vaccination, can be applied to study the effect
of high-risk groups to the outbreak at large, but this is beyond the scope of this research
and will be explored elsewhere.

Conclusion
In this paper, we highlight the importance of integrating the viral/bacterial load into an
infectious outbreak simulation. This value is utilized to measure the progression of the
disease in the host and the host’s capacity of transmitting it. More importantly, we empha-
sized the direct relationship between the quality of the immune response and the quantity
of the viral/bacterial load. Our results indicate that stronger immune response controls
the growth of the pathogen more efficaciously and therefore affects the length of the
infectious periods. For the experiments described in this paper, we assume a transmission
threshold for the viral/bacterial load, above which an individual is capable of shedding
the pathogen. Once the viral/bacterial load surpasses this threshold, the individual will
become infectious and able to infect others until his or her load falls below that threshold.
Hence, individuals with a hypo-immune response function can be assumed to propagate
the disease for a longer period of time.
In this paper we introduced the new concept of Population Immune Response (PIR).

PIR captures the collective immune response of individuals in a population represented by
the superposition of individual immune responses. A computational model that captures
the effects of PIR on the outbreak dynamics has been presented. The model is divided
into 3 compartments: Population and Disease Database, Immune Response Model, and
Infectious Disease Outbreak Simulation. Ultimately, the output of this model is the
simulation of the disease dynamics during the infectious outbreak.
Multiple experiments were conducted to analyze some of the effects PIR has on the

disease dynamics. The first experiment explores the variation in the outbreak dynamics
as a consequence of incorporating different types of immune response into all individuals
in a homogeneous population. The next set of experiments divided the population into
three age groups and an immunized group. Each group was characterized by a unique
immune response quality and thus a different length for its immune periods. A simulation
experiment was conducted to study the spread of a disease within and among each of
the groups. The experiments showed that individuals with weak immune responses and
those who are immune to the pathogen play a significant role in shaping the outbreak
dynamics. Finally, we explored the effects of incorporating targeted vaccination into the
model by implementing different vaccination strategies directed to the individuals that
are most likely to spread the disease over longer periods of time. The results suggest that
if vaccination resources are limited, the vaccination should be targeted towards those
individuals.
In general, our results suggest that it is essential for the public health establishment

to increase their understanding of the characteristics of regional demographics, specially
those that could impact the quality of the immune response of the individuals. The results
indicate that it is necessary to further investigate mitigation strategies to limit the capacity
to transmit the disease by individuals that are more likely to spread the pathogen for
extended periods of time since they play a key role in the epidemic at large. Ultimately, this
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study suggests that it is imperative for public health researchers to identify appropriate
targeted vaccination regimes and to explore the link between PIR and outbreak dynamics
to improve the monitoring and mitigating efforts of ongoing and future epidemics.
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