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adequate control strategies. The attention that was given to the 2009 A/HTN1pdm09
flu pandemic has made it possible to collect detailed data on the occurrence of
influenza-like illness (ILI) symptoms in two primary schools of Trento, ltaly.

Results: The data collected in the two schools were used to calibrate a discrete-time
SIR model, which was designed to estimate the probabilities of influenza transmission
within the classes, grades and schools using Markov Chain Monte Carlo (MCMQ)
methods. We found that the virus was mainly transmitted within class, with lower levels
of transmission between students in the same grade and even lower, though not
significantly so, among different grades within the schools. We estimated median
values of Ry from the epidemic curves in the two schools of 1.16 and 1.40; on the other
hand, we estimated the average number of students infected by the first school case to
be 0.85 and 1.09 in the two schools.

Conclusions: The discrepancy between the values of Ry estimated from the epidemic
curve or from the within-school transmission probabilities suggests that household
and community transmission played an important role in sustaining the school
epidemics. The high probability of infection between students in the same class
confirms that targeting within-class transmission is key to controlling the spread of
influenza in school settings and, as a consequence, in the general population.
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Background

Epidemic models are being extensively used to understand the main pathways of spread
of infectious diseases, and thus to assess control methods. Generally, they are fitted to
rather aggregated datasets reporting the number of new cases (possibly stratified by age
or other variables of interest) in each time interval (often a week, although sometimes
daily reports are available, especially at the initial outbreak of an infection). In some
cases, data on all individuals of a small community have been available [1], and this has
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allowed obtaining a better understanding of the person-to-person spread. Still, the ques-
tion arises of whether small isolated communities are representative of disease spread in
more usual contexts. The attention that was given to the 2009 A/HIN1pdmO9 influenza
pandemic has made it possible to collect detailed data on the epidemic spread in more
typical contexts. Schools are well known to represent hot spots for epidemic spread
[2-11]. Contact rates within schools are generally higher than outside, as was noticed in
[3, 12, 13]. Using detailed data on an outbreak of 2009 pandemic influenza in a school,
Cauchemez et al. [14] estimated the different infection probabilities within each class,
or grade, and in the whole school, as well as quantified the spread through other house-
hold members, and were also able to assess the role of heterogeneities in contact rates.
In this work we provide estimates for transmission rates of 2009 A/HIN1pdm09 pan-
demic influenza at the three levels of class, grade and school by analyzing data on the
occurrence of influenza-like illness (ILI) symptoms among pupils of two primary schools
in Trento (Italy). The data were collected retrospectively in December 2009, a few weeks
after the epidemic peak, through a questionnaire delivered to the parents of the pupils
attending the two primary schools. The overall vaccination rate in the age-group was
extremely low in Italy (0.3 %) and the use of antiviral drugs was recommended by the Ital-
ian Ministry of Health only for severe cases of pandemic influenza and for symptomatic
patients with underlying medical conditions [15]. Although we did not ask specific infor-
mation about responses to influenza, it seems unlikely that antiviral or vaccine use have
significantly affected the epidemic dynamics in the two schools. We developed a discrete-
time SIR model to analyze the collected data, where the transmission parameters were
then estimated via Markov chain Monte Carlo methods, appropriate to make param-
eter inference in presence of missing data [16, 17]. In order to understand the power
of the method, we also applied the algorithm to simulated data, generated to repro-
duce a school structure, under several hypotheses on the transmission dynamics. This
work on simulated data made us, on the one hand, get a better interpretation of the
results obtained, showing for instance to which degree parameters are identifiable; on the
other hand, assess the loss in accuracy resulting from missing data and other sources of

error.

Methods

Data

In December 2009 we delivered a questionnaire to the parents of the pupils of two primary
schools in Povo (school A) and Villazzano (school B), two suburbs of Trento (Italy). School
A consisted of 307 students divided into 14 classes of 5 different grades, while school
B consisted of 214 students divided into 10 classes of 5 different grades. As far as we
know, no significant changes occurred in the school composition during the study period
(October-December 2009). The questionnaire (see Section A in the Additional file 1 for an
abridged English translation) reported a description of ILI symptoms, asked the parents to
report whether any member of the family had experienced ILI symptoms in the preceding
months and, if that was the case, to report the date of symptoms onset (or an estimate of it)
for each member of the family, similarly to what was done in [3, 4]. Table 1 and Fig. 1
describe the data collected in the two primary schools. Complete data are available in
Additional files 2 and 3. The information provided on all the other members of the
families were scarce and for this reason they were excluded from this study.
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Table 1 Summary of the main features emerging from the questionnaires collected in schools A and
Bin Trento, Italy in 2009

School A School B
School size 307 214
Number of classes 14 10
Number of responses 260 168
Number of ILI cases 121 103
Response rate 85 % 79 %
Reported Attack rate 46 % 61 %

Epidemic model and parameter estimation

The epidemic process is described using a discrete-time SIR model, with a time step
of 1 day. Following [18], we assume that the incubation period (time from infection to
symptom occurrence) is on average 2 days and varies between 1 and 3 days, and that
the infectiousness profile is as described in [19]. Furthermore, we assume that, after the
development of ILI symptoms, a child is kept at home, according to the usual practice in
Italy. Combining this assumption with the estimate of the incubation period, we conclude
that if a child is infected at school on day ¢, he/she will be at school and infectious on day
t+ 1; on day ¢ + 2 he/she will be infectious and either kept at home, or still at school with
probability y (we estimate y = 0.1 from Figures 1b) and 1d) of [18]); after that, she/he
will certainly be kept home and will not contribute further to within-school transmission.
The assumptions are consistent with the estimate in [14] of 1.1 days for the within-school
generation time. Hence, we assume that the school population can be divided into: sus-
ceptible individuals S, infectious individuals I (infected children who can transmit the
disease, divided into two sub-compartments I; and I depending on them being in the
first or second day of infectiousness, respectively) and recovered individuals R (including
both recovered children and children kept at home after symptoms onset).

The model is a Markov chain where the transitions are given by

1_
s»1, nL5L nL39R LSRR

Each susceptible individual may become infected (transition S — I;) upon con-
tacts with infected individuals. For the sake of simplicity, we assume that individuals in
compartments [; and I, are equally infectious. Furthermore, following [14], we assume
different probabilities of infection by setting: within-class (g.), in the same grade but in a
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Fig. 1 Incidence curves in the two schools. a Daily number of new cases in school A. b Daily number of new
cases in school B
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different class (gy), in the same school but in a different grade (g5) and in households or
in the general community (¢). We define

o I " the number of infectious students (either in their first or second day of
mfectlousness) m grade j, class h at time t;

. /’ =3 nd ¥ the number of infectious students in the classes of grade j other than
h at time t
= I] (number of infectious students in all classes of grade ) I] ’

. 1;// =), oy I" the number of infectious students in grades other than j attime t

= I; (number of infectious individuals in all classes of the school) —

The probability for a susceptible student in grade j, class / to remain susceptible is

A= =gt a—g"" A —g)¥ Ao (1)

and 1 — p/;h is the probability of becoming infectious and moving into compartment I at
time £ + 1.

Then the probability of havmg +1 susceptibles at time ¢ + 1, by considering the school
at time ¢, can be obtained as

(S]t¥1|5r"h’1?h»1£’lt) = <S;h )( t ) s ( — 1 >( o) (2)

The full list of variables and parameters of the model is reported in Table 2. Model
parameters have been estimated using the MCMC Metropolis-Hastings method, as
described in [16, 20], and the code was written in C. The estimated parameters are the
infection probabilities within class g., within the same grade g4, among different grades
of the schools g; and from outside the schools €; we thus refer to this model as model
CGS (Class-Grade-School). The augmented data are all unobserved events such as the
infection dates and the infection state of the children whose questionnaires were not
filled.

Model variants

We considered the following two simplifications: model CS (Class-School) where we
differentiate between within-class transmission and within-school transmission only,
without considering a separate probability of transmission within the grade; and model
S (School only), where we assume that the probability of transmission is the same for all

Table 2 Model parameters and variables

Symbol Description

Jc Within-class infection probability

dg Same grade infection probability

gs Within-school infection probability

e Outside-school infection probability

y Probability to remain infective for two days

Iy Number of infective subjects at time t in the whole school

A Number of infective subjects at time t in grade j

/‘gh Number of infective subjects at time t in grade j and class h

S@h Number of susceptible individuals at time t of grade j and class h

ny Number of classes of grade j
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students in the school. We explore a further variant of model CGS (CGS-var), where the
probability of infection from outside the school, instead of being constant over time, is
assumed to be proportional (through a constant ¢) to the ILI incidence in the correspond-
ing week in the province of Trento, as reported by the surveillance system InfluNet of the
Italian Institute of Health [21].

We compare the model variants using an adapted version of the deviance information
criterion (DIC) described in [22, 23]. Specifically, distinguishing between actual model
parameters () and unobserved events (Y), we computed a marginalized DIC as

DIC = —4E,y, log (L(X, Y|6)) + 2Ey log (L(X, Y|6))

where X are the observed data, while L(:|0) is the likelihood of the complete data under
the Markov chain with parameters 6.

Tests on simulated data
We tested the model and the estimation algorithm on simulated data obtained using
model CGS under different parameterizations (see the Additional file 1 for details).

Reproduction number
A typical summary indicator of an epidemic is its basic reproduction number Ry, which
represents the expected number of secondary cases generated by a single typical infection
in a completely naive population. As we do not have data on actual infections but only
on the occurrence of symptoms, we can estimate what we may consider a school-specific
effective reproduction number. Ry can be estimated through the rate of initial epidemic
growth r using the formula Ry = 1 + r77 [24], where T represents the mean generation
time; r has been estimated through the fit of a linear model either to the incidence data
(grouped by 3 days) or to the cumulative number of cases (see [25] for a statistical analysis
of the consequences of either choice) in the log-scale (Fig. 2 shows the fit to the curve of
cumulative cases over a specific time window).

The classical definition of Ry in a finite population stochastic model is generally based
on the limit as the population grows to infinity (see, for instance, [26]). Instead of doing

School A School B

log(cumulative(new cases))
log(cumulative(new cases))

16/10 5/11 25111 11112 16/10 5/11 25111 11712
date date

(a) (b)
Fig. 2 Estimation of exponential growth rates. Cumulative infection data (in log-scale) for school A (panel a)

and school B (panel b). Black points were used in the linear regression procedure for estimating the epidemic
growth rate
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this, we rely on a simple operational definition, namely we define Ry as the average num-
ber of students infected by the first infected student in the school. By assuming to have #;
grades (5 in Italian primary schools), each with #, classes with # students, then we obtain

Ro = (qc(n — 1) + ggn(ng — 1) + gsnng(ns — 1))(1 + y). 3)

Results

The overall response rate to the questionnaire was 82 % (428/521) and the reported ILI
cases were 224 (52 %) (see Table 1). In school A, the first two cases were reported on 16
October 2009 and the last case was reported 56 days later; in school B, the first case was
reported on 10 October 2009 and the last case occurred 64 days later (Fig. 1).

We estimated the initial growth rate r both from the (grouped) incidence curve and
from the cumulative curve (Fig. 2), selecting those time windows in the growing part of
the epidemic for which R? was sufficiently high (> 0.95 for the cumulative curve, > 0.7
for the incidence curve); assuming that the infectious period at school 77 is 1.1 day, we
obtained a median Ry of 1.16 for school A and 1.40 for school B; the overall range of
confidence intervals (obtained from the different time windows) is 0.93-1.43 for school
A; 1.08-1.76 for school B using the fit from incidence curves. The intervals obtained from
cumulative curve are much narrower, but may be deceivingly so [25].

Table 3 summarizes the estimated infection probabilities within class ¢, in the same
grade except the class g,, within the school except the grade g5 and from outside the
school for schools A and B; Fig. 3a presents a comparison of the estimates obtained for
the two schools. The most evident feature of these results is that, for both schools, the
estimated class infection transmission probability is the highest of all settings. Grade
transmission probability is estimated in both schools to be higher than school trans-
mission; however the respective 95 %-credible intervals overlap (just barely in school A,
largely in school B).

As for comparisons between the two schools, estimates of class and grade transmission
probability are similar, as is the probability of transmission from outside the school. On
the other hand, estimates of transmission probability within school are rather different
(95 %-credible intervals barely overlap).

Using these estimates for transmission probabilities, we obtain from Eq. (3) the values
of Rp shown in Fig. 3b, with an average of 0.85 in school A and 1.09 in school B. Note that
Eq. (3) is based only on within-school transmission and does not include transmissions
to household members or acquaintances; on the other hand, the estimates based on Fig. 2
depend on all infected students, whatever their source of infection.

DIC values for the four different models considered in this study (see “Model variants”
section) are presented in Table 4. For school A, model CGS is clearly to be preferred to
the others because its DIC value is much lower. For school B, model CGS with constant &

Table 3 Transmission probabilities estimates

Parameters School A School B

Ge, mean [95 % Cl] 139 % 1072 [8.10 x 1073 — 2.03 x 107 196 x 1072 [1.11 x 1072 — 2.89 x 107
g, mean [95 % Cl] 436 x 1073 [9.61 x 1074 — 834 x 1077] 461 x 1073 [298 x 1074 — 1.15 x 1072]
gs, mean [95 % Cl] 952 x 1074 [2.87 x 107 — 1.82 x 1073] 296 x 1073 [1.64 x 1073 — 445 x 1073]
&, mean [95 % Cl] 370 x 1073 [195 x 1073 = 569 x 1073] 265 % 1073 [137 x 1073 =420 x 1073]

Mean and 95 %-credible intervals of the estimates for the infection probabilities in schools A and B, when considering model CGS
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Fig. 3 Estimated values of the transmission parameters and of Ry. a Estimated values of the transmission
parameters for school A and B. White and black dots represent the mean of the posterior distribution for
school A and school B respectively, bars represent 95 %-credible intervals. b Estimated values of the
reproduction number Ry inside schools A and B. Thick line and bars represent means and 95 %-credible
intervals

is, according to DIC value, only slightly better than model CS, and both are definitely to
be preferred to model S; on the other hand, model CGSvar outperforms all the others.

In order to assess whether the CGS model is compatible with the data, we performed
400 simulations (for each school) having randomly drawn the parameter values from the
corresponding posterior distributions. The model was then compared with the data (see
Fig. 4) through two different indicators: the total number of infected children and the
total length of the epidemic.

Finally, we tested the model and the estimation algorithm on simulated data obtained
using model CGS under different parameterizations and found that the infection prob-
abilities g, qg, gs and & were successfully identified (see Table and Figure S2 in the
Additional file 1).

Discussion
We estimated influenza transmission probabilities in a school setting, using the data
collected through a retrospective survey conducted in December 2009 in two primary
schools and we found that, in both schools, influenza was mainly transmitted within
classes (Fig. 3). Same- and different-grade transmission, as well as outside-school trans-
mission, were all significantly lower than within-class transmission, with no significant
difference between them (Fig. 3).

We found that for both primary schools model CGS (that distinguishes within-class,
same-grade and different-grade transmission) has the lowest DIC, i.e. is the favorite

Table 4 Model comparison

Model School A School B
CGS (Gc, Gg. 95, €) 702.83 75791
S (9c = qg = Gs, &) 799.91 779.38
CS (Gc, g = Gs.€) 77491 761.16
CGSvar (qc,dg, Gs, €var) 751.20 426.21

DIC values of the different models considered. Model CGS has three different transmission rates inside the school (gc, gg and gs).
Model S has a homogeneous infection rate inside the school (gc). Model CS has a transmission rate for the class (g¢) and a
different transmission rate in the remaining part of the school (q4). Model CGSvar is the same as CGS but with a non-constant &
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Fig. 4 Comparison between observed data and simulations. Plot of the total number of infectious individuals
(panel a) and the duration of the epidemic (panel b) in 400 simulations. The black dot indicates the observed
number of infectious individuals and the observed length of the epidemic in the two schools. Thick line and
bars represent means and 95 %-credible intervals

model overall. According to the DIC, models CGS and CS (that distinguishes within-
class transmission from the general within-school transmission only) are equivalently
good for school B, which reflects the similarity observed in the estimated same-grade and
different-grade transmissions (Fig. 3).

Similar results were obtained in [14], where the transmission probability between stu-
dents of the same class was estimated to be five times larger than the transmission
probability between students of the same grade and, in turn, this was five times larger
than the transmission probability between students of different grades. The estimates we
obtained are similar, with factors of 3-4 instead of 5, except for the grade/school ratio in
school B, which is just above 1. These results are also consistent with the studies presented
in [27, 28], where wearable sensors were used to determine the structure of contacts in
schools: these studies found that children spent on average three times more time with
children of the same class than with children of other classes. The fact that within-class
transmission is estimated to be higher than within-school transmission can have implica-
tions on the design of school closure policies aimed at mitigating the spread of influenza,
especially on evaluating the effectiveness of gradual closures (where single classes close
first, then grades and finally the entire school) [27, 29-31].

Another interesting result emerges from the comparison between the two schools
involved in the study: while the estimates for within-class g, and within-grade g,
transmission probabilites are similar for the two schools, the estimate for school-wide
transmission ¢y is remarkably different, as 95 %-credible intervals barely overlap. This
result can bear on the issue of whether infection transmission should depend on the den-
sity or the frequency of infectious individuals [32, 33]. In the model, we have assumed
that the transmission probability per individual is constant. Alternatively, we could have
adhered to the more usual assumption that transmission probability is inversely propor-
tional to the number of individuals in that setting [34]; in the case of school transmission,
we should have used g5(A) = ¢/ns(A) and gs(B) = ¢/ns(B). As ng(A) = 1.5n4(B), this
results into g;(B) ~ 1.5¢5(A). The mean estimated g for school B is about 3 times the esti-
mated mean for school A, but 1.5 sits well inside the ratios of values in the 95 %-credible
intervals. Thus we can conclude that a frequency-dependent transmission probability is
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fully compatible with our findings, whereas data are borderline with respect to rejecting
density-dependent transmission.

The estimates of the within-school Ry (mean and 95 % CI: 0.85 (0.59-1.13) for school A,
1.09 (0.85-1.37) for school B) lie in the low end of the spectrum of values estimated from
influenza spread in schools [35]. Similarly, the estimates of within-class and within-grade
(but not those of within-school) transmission probabilities obtained in [14] are somewhat
higher than ours. It is possible that such differences reflect actual behavioural differences
between students in Pennsylvania and in Northern Italy. Alternatively, such differences
may be simply due to stochastic variations in the school epidemics, which could also be
the reason for the different estimates in schools A and B. In order to explore the plausi-
bility of the latter explanation, in Section D of the Additional file 1 we show the median
estimates of Ry obtained from different realizations of the stochastic model; although the
parameter values are the same for all realizations and yield through (3) Ry = 1.48, the esti-
mated Ry vary between 1.02 and 1.61 in 95 % of simulations. It has also to be remarked that
many investigations have focused on schools where an unusually high infection spread
had been observed [6] so that possibly the value of Ry estimated from them is higher than
average. On the other hand, the two schools in our investigation have been chosen purely
for convenience; thus, they may be more representative of usual behaviour of infection
spread.

In particular, our model estimate of Ry lower than 1 for school A highlights the relevance
of transmission from outside (with a likely crucial role of households) in maintaining the
school outbreak, similarly to the findings of [14]. As information on household cases col-
lected with the questionnaires was inadequate, we relied on two simple alternatives for
transmission probability from outside school ¢: either a constant, or proportional to the
actual influenza incidence in the population. Concerning the latter, we could use only
the weekly ILI incidence estimated through the surveillance system InfluNet [21] at the
Trento province level, that, on the one hand, is much larger than the territory where the
students of the two schools actually live, and, on the other hand, is smaller than the rec-
ommended aggregation level of sentinel data that makes them statistically significant;
furthermore, the sentinel data may include information from the students in our pop-
ulation study, although their influence should be negligible given the structure of GP
and surveillance systems. Despite these limitations, we deem that this choice yields the
best available alternative to a constant probability of infection transmission from out-
side school. The outcomes of the comparison between the two model variants are not
unequivocal: for school A model CGS with varying ¢ yields a larger DIC than model CGS
with a constant ¢, while for school B the model with varying ¢ performs much better
than the model with constant . This statistical result reflects the different pattern in the
distribution of cases (see Figure 1), but we cannot find any obvious explanation for it.

The value of y = 0.1 for the probability that the effective (at school) infectious period
lasts 2 days has been extrapolated from limited data presented in [18], following the usual
practice of estimating the generation time from household studies or other instances
where dates of infections can be independently established [33, 36]. In Section D of the
Additional file 1 Text, we show that a joint estimation of transmission probability and
infectious period, as in the study by White et al. [37], is generally very difficult. Anyway,
the main conclusions obtained on the differences between transmission probabilities in
the different contexts and between two different schools do not depend on the exact value
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of y; changing its value simply results in changing the numerical estimates of g., g; and
gs but not their relative features.

The model we used is very simplified in several respects, from employing a very stylized
infectious period, to ignoring school closure during weekends or asymptomatic cases.

It has been estimated [38] that school closures during weekends contribute to decrease
the effective reproduction number of about 8 %. Since the generation time in the school
setting is short, weekends can break the transmission chain at school thus having an
impact on the transmission pattern [27, 28, 34, 38]. On the other hand, household and
outside transmission is likely to increase during weekends, as often assumed in modelling
studies [34, 39]. Again, for the sake of simplicity, we preferred to avoid the introduction of
parameters that may not be easily estimated, but in principle the model could be extended
to distinguish between weekdays and weekends.

Our model assumes that all infections are symptomatic and lead to the same level of
infectiousness. Indeed, using raw data, the estimate of children showing influenza symp-
toms is 52 %. This value is comparable to the estimate of 56.9 % infection rate for 2009
A/H1IN1pdm09 in primary-school children in Italy, that was derived from serological data
[40]; thus, it seems likely that only a small number of children in those schools got infected
with influenza without showing symptoms. On the other hand, it is certainly possible that
the fraction of children of the schools considered in our study that got infected was much
higher than the national average of 56.9 %. Alternatively, it is possible that some of the
children that reported symptoms were not actually infected with influenza virus, while
others were infected but did not show symptoms. The lack of serological data prevents
from a choice between different alternatives. Accordingly, we decided to use the most
parsimonious alternative, namely to neglect asymptomatic infections.

Data from a questionnaire have several other shortcomings: a retrospective survey is
prone to recall bias, and this may have affected the parameter estimates and the quality
of the results. Furthermore, non-respondents may differ in several respects from those
about which we collected information; for instance, it is possible that parents of students
not infected or asymptomatically infected could have chosen not to respond to the ques-
tionnaire more often than parents of students with symptomatic infection. We tested
the effect of some sources of errors in the analysis of simulated data (see Section D in
the Additional file 1), assuming that, beyond missing data, 30 % of reported symptom
dates were incorrect. Such errors seem not to bias the resulting estimates, but only to
somewhat increase the width of credible intervals; however, other sources of errors (for
instance, if no non-respondent had been infected, or vice versa) could lead to over- or
under-estimation.

Despite these limitations, our analysis provides evidence of different influenza trans-
mission in class and grade. We have shown that the MCMC algorithm used can yield
plausible results even starting from incomplete and possibly inaccurate data (such as
those derived from questionnaires); further and more detailed data (including serology as
well) would be useful to improve the model and the corresponding estimates.

Conclusions

The analysis of data on ILI during the 2009 HIN1 influenza pandemic collected through
a questionnaire in two primary schools shows that within-class transmission has been
higher (of a factor 3 to 4) than transmission to students in other classes, confirming the
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estimates obtained in [14] analyzing a school outbreak in Pennsylvania. The analysis thus
confirms the relevance of targeting within-class transmission for controlling the spread of
influenza in school settings, but also provides a quantitative estimate, useful for planning
and assessing possible interventions. Since empirical evidence on within-school infection
transmission is scarce, we believe the estimates obtained are quite relevant for the several
mathematical models that include specific transmission routes through school contacts.

Several other results have emerged from the analysis:

Estimated average number of infected students per school case was close to 1, suggest-
ing that household and community transmission played an important role in sustaining
the school epidemics.

Transmission to students in the school (but in different classes) was lower in the larger
school, confirming that number of contacts modulates the transmission strength.

Additional files

Additional file 1: Supplementary material. (PDF 292 kb)

Additional file 2: Files of data on school A. Each row corresponds to a student for which we received the filled
questionnaire. In the column ‘classe’ there is the name of the class (the 1st digit is the grade); in 'nstud’ the number of
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