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Abstract

Background: The transmission dynamics of Tuberculosis (TB) involve complex
epidemiological and socio-economical interactions between individuals living in highly
distinct regional conditions. The level of exogenous reinfection and first time infection
rates within high-incidence settings may influence the impact of control programs on
TB prevalence. The impact that effective population size and the distribution of
individuals’ residence times in different patches have on TB transmission and control
are studied using selected scenarios where risk is defined by the estimated or perceive
first time infection and/or exogenous re-infection rates.

Methods: This study aims at enhancing the understanding of TB dynamics, within
simplified, two patch, risk-defined environments, in the presence of short term mobility
and variations in reinfection and infection rates via a mathematical model. The
modeling framework captures the role of individuals’ ‘daily’ dynamics within and
between places of residency, work or business via the average proportion of time spent
in residence and as visitors to TB-risk environments (patches). As a result, the effective
population size of Patch i (home of i-residents) at time t must account for visitors and
residents of Patch i, at time t.

Results: The study identifies critical social behaviors mechanisms that can facilitate or
eliminate TB infection in vulnerable populations. The results suggest that short-term
mobility between heterogeneous patches contributes to significant overall increases in
TB prevalence when risk is considered only in terms of direct new infection
transmission, compared to the effect of exogenous reinfection. Although, the role of
exogenous reinfection increases the risk that come from large movement of
individuals, due to catastrophes or conflict, to TB-free areas.

Conclusions: The study highlights that allowing infected individuals to move from
high to low TB prevalence areas (for example via the sharing of treatment and isolation
facilities) may lead to a reduction in the total TB prevalence in the overall population.
The higher the population size heterogeneity between distinct risk patches, the larger
the benefit (low overall prevalence) under the same “traveling” patterns. Policies need
to account for population specific factors (such as risks that are inherent with high
levels of migration, local and regional mobility patterns, and first time infection rates) in
order to be long lasting, effective and results in low number of drug resistant cases.
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Background
Tuberculosis (TB), a communicable disease caused by bacteria (Mycobacterium tubercu-
losis), remains among one of the leading causes of death worldwide. According to the
World Health Organization’s (WHO) report, 9.6 million people developed symptomatic
TB infections resulting in 1.5 million TB-associated deaths in 2014 [1]. Despite the exis-
tence of treatment and vaccine, it is estimated that one-third of the world population
serves as TB reservoirs. The majority of these latently infected individuals live in devel-
oping countries where they are exposed to multiple TB risk factors. Individuals living in
rural areas, mainly in developing countries, and in general below the poverty line, dis-
proportionately contribute to the documented TB burden [2, 3]. Data has shown strong
association between poverty and TB, primarily in economically underprivileged coun-
tries [4]. Vulnerable groups are at greater risk of TB infection compared with the general
population because of overcrowding of individuals and substandard living. Poor working
conditions, poor nutrition, inter-current diseases, and migration from (or to) higher-risk
communities (or nations) are other known risk factors for TB [3]. The Worldwide TB
incidence rates seemed to have peaked (2004) after the HIV epidemic (1997) and then
decreased at a rate of less than 1% per year. Nonetheless, the overall worldwide TB-burden
continues to rise as the world population continues to grow rapidly [5]. In addition, inap-
propriate treatment and the use of poor quality drugs have led to wild and antibiotic
resistant strains contributing to the already high levels of TB-active incidence in recent
years making TB a major global public health threat.
Gomes et al. [6] found that TB-reinfection rates, that is, reinfection after successful

treatment, are higher than TB infection rates among those with no prior TB-experience.
In their model, they propose two mechanisms (for ongoing high prevalence in some
regions): (i) past infections increase susceptibility to reinfection (ii) differences in sus-
ceptibility to infection contribute to increased re-infection rates among the treated. The
study of these possibilities suggests that the last mechanism may be better supported by
data. Consequently, Gomes et al. [6] noted that, the rates of reinfection are higher at the
population level than at the individual level.
Metapopulation type transmission models [7–10] offer a powerful set up for the study

of the dynamics of TB infected individuals, on which the effectiveness of population-level
TB interventions like treatment, movement restrictions, and local control measures can
be studied. Models in [11, 12] offer a set up aimed at exploring the impact of a mobile
populations in a n-patch system with risk heterogeneity in which individuals immigrated
between different risk environments. However, these models made use of an Eulerian
approach for mobility where the concepts of residence times and effective population size
were not incorporated; an approach that, for example does not allow for the identifica-
tion of the place of residency of treated or quarantined individuals as well as the impact
of effective population size on transmission. Prior TB-related studies have estimated TB
incidence growth rates, explored the impact of interventions aimed at reducing TB preva-
lence and the impact of exogenous reinfection on TB dynamics, however, movement of
individuals that keep track of place of resident have been in general ignored (see [10]).
Limited TB studies have considered models incorporating movement via mass trans-

portation within a Lagrangian approach based on budgeting contacts as a function of
residency times (see [10]), or taking into account the impact of sudden blips of immigra-
tion, whichmay be central to TB re-emergence [13–17], or that account for co- infections,



Moreno et al. Theoretical Biology andMedical Modelling  (2017) 14:3 Page 3 of 17

specially with HIV [18–23], or that account for relapse [6, 24–27], or that account for
antibiotic, drug, and ultra-drug resistance [28–33], or models that account for TB re-
activation and progression [34–36]. In addition, models assuming negligible immigration
might not capture the real dynamics of tuberculosis in open populations when high levels
of diversity is caused by immigrants [29].
Research aimed at increasing the understanding of the transmission dynamics of TB

that explicitly incorporate the role of heterogeneous TB-risk environments is limited. The
goal of this study is to understand the impact of residence times and population sizes,
across distinct risk environments, on the TB transmission dynamics when risk being
defined in terms of new infection and/or exogenous infection rates. We define residence
time in a place, as the average proportion of daily time an individual spends in a given
region or patch. In particular, we address three questions (i) How does mobility changes
TB prevalence via the trade-off between exogenous and direct first time infection rates?,
(ii) How differences in TB prevalence and population sizes in the patches can influence the
impact of mobility on the total number of infections? and (iii)Which among the two, direct
first time infection rates and exogenous re-infection rates, is capable of sustaining higher
TB prevalence?

Methods
We consider a model for the transmission dynamics of TB in populations interacting in
two distinct regions/patches. First, we introduce a model with one patch and then extend
it to capture two patches by explicitly incorporating short term movement of individuals
between and within patches. The two-patch mobility model is used to address the role of
movement and patch-risk on TB dynamics. Relevant definition of concepts (or nomen-
clature) and case studies (or numerical scenarios) that are used here to achieve goals are
collected in Table 1.

A simple TBmodel for one patch with homogenously mixing population

The transmission dynamics of TB in homogeneously mixing populations is represented
by systems of differential equations describing the TB contagion. The population in the
model is divided into three sub-populations each corresponding to an epidemiological
TB state: susceptible individuals (S), noninfectious infected, that is, latent individuals (L),
and actively infectious individuals (I).
The model considers two contagion pathways: direct progression (fast dynamics) and

endogenous reactivation (slow progression, often years after infection). Susceptible indi-
viduals (S) may get infected through contacts with individuals with active-infections (I),
moving to either the noninfectious latent class (L) or the actively infectious (I) state. The
fraction (1 − q) denotes the proportion of infected individuals that move directly into
the infectious stage (I). Reactivation from longstanding latent infections is modeled by
the transition of individuals from the noninfectious to the infectious state (progression to
active TB) via endogenous reactivation (at the per capita rate γ ), or via exogenous rein-
fection. Infectious individuals may be treated at the per capita rate ρ moving into the
non-infectious infected category L as total mycobacterium elimination is assumed to be
non possible.
The model assumes that (1) the population is constant; (2) TB-induced deaths are neg-

ligible and hence ignored; (3) a fraction of individuals are infectious; (4) individuals may
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Table 1 Definitions and scenarios in the study

Nomenclature

Risk Interpreted based on levels of infection rate, prevalence,

or average contacts (via population size)

High-risk patch Defined either by high direct first time infection rate (i.e., high
β

which leads to high corresponding R0) or by high exoge-
nous re-infection rate

(i.e., high δ)

Enhanced socio-economic
conditions (reducing health
disparity)

Defined by better healthcare infrastructure which is incorpo-
rated by high prevalence of a disease (i.e., high I(0)/N) in a
large population (i.e., large N)

Mobility Captured by average residence times of an individual in
different patches (i.e., by using Pmatrix)

Scenarios (assume high-risk and enhanced socio-economic conditions in Patch 1 as compared to Patch 2)

Scenario 1 β1 > β2, δ1 = δ2
︸ ︷︷ ︸

high risk

;
I1(0)

N1
>

I2(0)

N2
, N1 > N2;

︸ ︷︷ ︸

enhanced socio-economic conditions
vary p12 when p21 ≈ 0
︸ ︷︷ ︸

mobility

Scenario 2 β1 = β2, δ1 > δ2
︸ ︷︷ ︸

high risk

;
I1(0)

N1
>

I2(0)

N2
, N1 > N2;

︸ ︷︷ ︸

enhanced socio-economic conditions
vary p12 when p21 ≈ 0
︸ ︷︷ ︸

mobility

control an active infection without treatment moving back to the latent class; (5) indi-
viduals in the latent class may relapse and develop active TB or remain in this class until
death due to natural causes (that is, not TB). Figure 1 shows the flow diagram associated
with the transmission dynamics of the TB model used.
This model follows the structure used in [34, 37, 38] where exogenous reinfection, fast

and slow progression are considered. The basic reproduction number and the existence
of a parameters’ range for which there are two stable equilibria, disease free and endemic
steady states are highlighted in [34, 37, 38]. The basic reproduction number of the model
is given by

R0 = β(γ + (1 − q)μ)

μ(μ + ρ + γ )
(1)

Interpretation of theR0 in terms of the parameters needs to go here.

The basic reproduction number (R0) gives the average number of secondary infections
generated by a typically infected individual in a population of susceptible individuals. In
the presence of exogenous reinfection, excluding fast progression (q = 1 and δ > 0), it
is known that the model can support two stable equilibria [34]. The role of TB, in this
case would be closely linked not only toR0 but also to the initial conditions. We proceed
to build a two-patch model, under a residency-time matrix, using the model outlined
above.
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A two-patch TBmodel with heterogeneity in population through residence times

Let N1 and N2 be the host population of Patch 1 and 2, respectively. The population of
Patch 1 spends, on the average, the proportion p11 of its time in residency in Patch 1 and
the proportion p12 of its time in Patch 2 (p11 + p12 = 1). Similarly, residents of Patch 2
spend the proportion p22 of their time in Patch 2 and p21 = 1 − p22 in Patch 1. Hence, at
time t, the effective population in Patch 1 is p11N1 + p21N2 while the effective population
of Patch 2, at time t, is p12N1 + p22N2. The susceptible population of Patch 1 (S1) may
become infected in Patch 1 (if currently in Patch 1, i.e. p11S1) or in Patch 2 (if currently
in Patch 2, i.e. p12S2). In short, from this Lagrangian approach to capture movement of
individuals, we conclude that the effective proportion of infectious individuals in Patch 1
at time t is

p11I1 + p21I2
p11N1 + p21N2

.

Thus, the dynamics of infection among susceptible, resident individuals of Patch 1 is
given by

Ṡ1 = μ1N1 − β1p11S1
p11I1 + p21I2
p11N1 + p21N2

− β2p12S1
p12I1 + p22I2
p12N1 + p22N2

− μ1S1. (2)

The dynamics of Patch 1 residents acquiring latent, asymptomatic infections, is,

L̇1 = qβ1p11S1
p11I1 + p21I2
p11N1 + p21N2

+ qβ2p12S1
p12I1 + p22I2
p12N1 + p22N2

− δ1p11L1
p11I1 + p21I2
p11N1 + p21N2

− δ2p12L1
p12I1 + p22I2
p12N1 + p22N2

− (γ1 + μ1)L1 + ρ1I1,

(3)

and the dynamics of the Patch 1 residents becoming infectious is

İ1 = (1 − q)β1p11S1
p11I1 + p21I2
p11N1 + p21N2

+ (1 − q)β2p12S1
p12I1 + p22I2
p12N1 + p22N2

+ δ1p11L1
p11I1 + p21I2
p11N1 + p21N2

+ δ2p12L1
p12I1 + p22I2
p12N1 + p22N2

+ γ1L1 − (μ1 + ρ1)I1.
(4)

Fig. 1 Flow diagram for the single patch three compartment model: susceptible (S), infected latent (L) and
infectious (I)
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The use of (2), (3),(4) determines the complete dynamics of TB, in two patches, and it
is given by the following System ( i = 1, 2):

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

Ṡi = μiNi − ∑2
j=1 βjpijSi

∑2
k=1 pkjIk

∑2
k=1 pkjNk

− μiSi,

L̇i = q
∑2

j=1 βjpijSi
∑2

k=1 pkjIk
∑2

k=1 pkjNk
− ∑2

j=1 δjpijLi
∑2

k=1 pkjIk
∑2

k=1 pkjNk
− (γi + μi)Li + ρiIi,

İi = (1 − q)
∑2

j=1 βjpijSi
∑2

k=1 pkjIk
∑2

k=1 pkjNk
+ ∑2

j=1 δjpijLi
∑2

k=1 pkjIk
∑2

k=1 pkjNk
+ γiLi − (μi + ρi)Ii.

(5)

LetNi = Si+Li+Ii the total population of Patch i, i = 1, 2. System (5) has the same qual-
itative dynamics than the following reduced system since the total population is constant:

⎧

⎪
⎨

⎪
⎩

L̇i = q
∑2

j=1 βjpij(Ni − Li − Ii)
∑2

k=1 pkjIk
∑2

k=1 pkjNk
− ∑2

j=1 δjpijLi
∑2

k=1 pkjIk
∑2

k=1 pkjNk
− (γi + μi)Li + ρiIi,

İi = ∑2
j=1 pij

(

(1 − q)βj(Ni − Li − Ii) + δjLi
)

∑2
k=1 pkjIk

∑2
k=1 pkjNk

+ γiLi − (μi + ρi)Ii.

(6)

A schematic description of the two-patch dynamical model is provided in Fig. 2 and
a description of the parameters as well as their estimates from previous studies can be
found in Table 2.

Results
Model analysis

The disease-free equilibrium of (6) is located at the origin of the positive orthan R
4+, that

is E0 = 0
R
4+ . The basic reproduction number (R0) of Model (6) is computed following

Fig. 2 Schematic description of the Lagrangian approach between two patches
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Table 2 Description of the parameters used in System (6)

Parameters Description Ranges(units) References

βi Susceptibility to TB invasion in Patch i 0.01 - 0.0192 (y−1) [35]

δi Susceptibility to exogenous TB progression in Patch i 0.0026 - 0.0053 (y−1) [50]

μi Natural birth and death (per capita) 0.0104 - 0.0143 (y−1) [51]

ρ Relapse (per capita) 0.0010 - 0.0083 (y−1) [52, 52, 53]

γi Activation from latency in Patch i (per capita) 0.0017 - 0.0036 (y−1) [28]

q Proportion of individuals that develop latent TB 0.9 (dimensionless) [51]

pij Proportion of time that residents of Patch i spend in Patch j Varies (dimensionless) –

the next generation method [39, 40]. We decompose System (6) into a sum of the “new
infection” vector, denoted by F , and the “transition” vector, denoted by V . Hence,

⎡

⎢

⎢

⎢

⎣

L̇1
L̇2
Ė1
Ė2

⎤

⎥

⎥

⎥

⎦

= F + V

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q
∑2

j=1 βjp1j(N1 − L1 − I1)
∑2

k=1 pkjIk
∑2

k=1 pkjNk

q
∑2

j=1 βjp2j(N2 − L2 − I2)
∑2

k=1 pkjIk
∑2

k=1 pkjNk

(1 − q)
∑2

j=1 βjp1j(N1 − L1 − I1)
∑2

k=1 pkjIk
∑2

k=1 pkjNk

(1 − q)
∑2

j=1 βjp2j(N2 − L2 − I2)
∑2

k=1 pkjIk
∑2

k=1 pkjNk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− ∑2
j=1 δjp1jL1

∑2
k=1 pkjIk

∑2
k=1 pkjNk

− (γ1 + μ1)L1 + ρ1I1

− ∑2
j=1 δjp2jL2

∑2
k=1 pkjIk

∑2
k=1 pkjNk

− (γ2 + μ2)L2 + ρ2I2
∑2

j=1 p1jδjL1
∑2

k=1 pkjIk
∑2

k=1 pkjNk
+ γL1 − (μ1 + ρ1)I1

∑2
j=1 p2jδjL2

∑2
k=1 pkjIk

∑2
k=1 pkjNk

+ γL2 − (μ2 + ρ2)I2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The rationale behind the presence of nonlinear terms, which represent the infectious-
ness of latent by infectious individuals, in the V vector is that these terms do not,
technically, represent “new infection”. By denoting F and V, the Jacobian matrices of F
and V respectively, evaluated at the disease free equilibrium E0, the basic reproduction
number is the spectral radius of the next generation matrix −FV−1 [39, 40]. Hence,
R0 = ρ(−FV−1) where

−FV−1 =

⎡

⎢

⎢

⎢

⎣

qγ1k11 qγ2k12 q(μ1 + γ1)k11 q(μ2 + γ2)k21
qγ1k21 qγ2k22 q(μ1 + γ1)k21 q(μ2 + γ2)k22

(1 − q)γ1k11 (1 − q)γ2k12 (1 − q)(μ1 + γ1)k11 (1 − q)(μ2 + γ2)k12
(1 − q)γ1k21 (1 − q)γ2k22 (1 − q)(μ1 + γ1)k21 (1 − q)(μ2 + γ2)k22

⎤

⎥

⎥

⎥

⎦

where

k11 =
(

β1p211N1
p11N1 + p21N2

+ β2p212N1
p12N1 + p22N2

)

1
μ1(γ1 + μ1 + ρ1)

=
(

β1p211N1
p11N1 + p21N2

+ β2p212N1
p12N1 + p22N2

)

R1
0

β1(γ1 + (1 − q)μ1)
,
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k12 =
(

β1p11p21N1
p11N1 + p21N2

+ β2p12p22N1
p12N1 + p22N2

)

1
μ2(γ2 + μ2 + ρ2)

=
(

β1p11p21N1
p11N1 + p21N2

+ β2p12p22N1
p12N1 + p22N2

) R2
0

β2(γ2 + (1 − q)μ2)
,

k21 =
(

β1p11p21N2
p11N1 + p21N2

+ β2p12p22N2
p12N1 + p22N2

)

1
μ1(γ1 + μ1 + ρ1)

=
(

β1p11p21N2
p11N1 + p21N2

+ β2p12p22N2
p12N1 + p22N2

) R1
0

β1(γ1 + (1 − q)μ1)
,

and

k22 =
(

β1p221N2
p11N1 + p21N2

+ β2p222N2
p12N1 + p22N2

)

1
μ2(γ2 + μ2 + ρ2)

=
(

β1p221N2
p11N1 + p21N2

+ β2p222N2
p12N1 + p22N2

)

R2
0

β2(γ2 + (1 − q)μ2)
.

Note that R0 = f (P,R1
0,R2

0) where R1
0 and R2

0 are the basic reproductive numbers of
patch 1 and 2, respectively, when p11 = 1 = p22, that is, when there is no movement.
P = (pij)1≤i,j≤2 is referred as the residence times matrix of the model. The corresponding
expressions ofR1

0 andR2
0 are given by (1).

The analysis of Model (6) suggests that the disease dies out from both patches ifR0 ≤ 1
or persists in both patches otherwise for the case when q = 1 and δ = 0 (i.e., in the
absence of fast progression and exogenous infections because the residence times matrix
becomes irreducible) (See [41–43] for the mathematical proofs). By assuming q = 1
through out this study and δ > 0, numerical simulations suggest complex dynamics (i.e.,
multiple non-trivial equilibria) for the system.
Figure 3 highlights this robustness, that is for four different initial conditions, the tra-

jectories of the latently infected individuals (Fig. 3 left) as well as the actively-infected
(Fig. 3 right) converge towards the endemic state as time becomes large. The case when
R0 ≤ 1, leads to the elimination of the disease from both patches irrespective of the initial
conditions as shown in Fig. 4.
If Patch 1 is high risk (that is,R0 > 1) and, if the connectivity between the two patches

is not strong (p21 ≈ 0 and p12 ≈ 0), then the disease will persist in both patches, even
though that the number of latently-infected and actively-infectious individuals in Patch 2
is small (See Fig. 5 left and right).

Fig. 3 Dynamics of infectious and latent when the two patches are strongly connected andR0 > 1. For
four different initial conditions, the latent (top) and infected (bottom) populations of Patch 1 and Patch 2
attain an endemic level ifR0 > 1
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Fig. 4 The infectious and latent populations in the two patches converge to zero for four different initial
conditions ifR0 ≤ 1

The effects of the residence times matrix P = (pij)1≤i,j≤2 on the basic reproduc-
tion number R0(P) and, consequently on the disease dynamics, are highlighted in
Figs. 6 and 7. It is observed that the basic reproduction number is a decreasing function of
p12, i.e. the residence time of high risk residents (Patch 1 residents) in the low risk Patch
2. Such a decrease would ultimately drive the basic reproduction number to a value less
than one with the latent and infected populations, under such mobility schedules, going
to zero in both patches (See Figs. 6 and 7, dash-dotted green and dashed blue).
Now, we address the role of mobility, risk and health disparities on TB prevalence levels

in a two patch setting. In the next section, we explore the role of the parameters defining
mobility, risk and health disparities, on the dynamics of TB.

The role of risk andmobility on TB prevalence

We now highlight the dynamics of tuberculosis within a two patch system, described
by Model (6), under various residence times schemes via numerical experiments. These
numerical experiments were carried out using the two-patch Lagrangian modeling
framework on pre-constructed scenarios. In particular, we assume that one of the two
regions (say, Patch 1) has high TB prevalence. Notice that while the scenarios simulated
might be representative of certain regions, we do not model specific cities or regions.
Nomenclature of some terms and scenarios are defined in the Table 1.

Fig. 5 Dynamics when the two patches are weakly connected andR0 > 1. The latent (top) and infected
(bottom) of both patches reach an endemic level but Patch 2 approaches a lower level of endemicity
(R1

0 = 1.4150 andR2
0 = 0.1417 if completely isolated
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Fig. 6 Effects of the residence time matrix on the basic reproduction number and the disease dynamics. In
both patches, the latent TB populations go to zero ifR0(P) < 1 and reach an endemic level ifR0(P) > 1

The interconnection of the two idealized patches demands that individuals from Patch
1 travel to the “safer” Patch 2 to work, to school or for other social activities. It is assumed
that the proportion of time that Patch 2-residents spend in Patch 1 is negligible.
In this study we define “high risk” based on the value of the probability of developing

active TB using two distinct definitions. In Results section, a high risk patch is defined by
having higher direct first time transmission rate (that is β1 > β2 and δ1 = δ2). In Results
section, a high risk patch is determined by a higher exogenous reinfection rate (or δ1 > δ2
and β1 = β2 ). In addition, in order to explore the role of mobility in different scenarios
with population size heterogeneity among the two patches, diverse scenarios are build
up by changing the N1/N2 ratio. Particularly, we assume that Patch 1 is the denser patch
while Patch 2 is assumed to be less dense, that is 1

2N1 and 1
4N1. In consequence, contact

rates are higher in Patch 1 as compared to corresponding rates in Patch 2.

The role of risk as defined by direct first time transmission rates

In this subsection, we explore the impact of heterogeneity in direct first time transmission
rates between patches. Assuming Patch 1 is high risk (R1

0 > 1; obtained by assuming
β1 > β2), while Patch 2, in the absence of visitors would be unable to sustain an epidemic
(R2

0 < 1). In addition, the effect of different population ratios (N1/N2) is explored.

Fig. 7 Effects of the residence time matrix on the basic reproduction number and the disease dynamics. In
both patches, the infected TB populations go to zero ifR0(P) < 1 and reach an endemic level ifR0(P) > 1
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Figure 8 shows similar but opposite effects on patch prevalence for Patch 1 and Patch
2 when different residency times (mobility values) are explored (0, 3, 6 and 9%). Nonethe-
less, Fig. 8 shows the existence of mobility values (p12), capable of reducing the overall
prevalence of the two patch system. Furthermore, it is observed that different population
densities have a noticeable effect on these mobility values.
These results suggest that increments in mobility, from Patch 1 to Patch 2, reduce TB

prevalence in Patch 1 while increasing it in Patch 2. However, the number of total infected
individuals from both patches slightly decreases for certain mobility patterns, a global
beneficial effect.
In Fig. 9, we can observe how mobility values p12 impact prevalence at both the patch

and at the system level. At the individual patch level, we have the same trends as in Fig. 8,
but nowwe can observe the existence of a threshold value p12 (see Red and yellow curve in
Fig 9a), for which mobility is always beneficial. That is, completely cordoning off infected
regions may not be a good idea to control TB. On the other hand, as long as the mobility
value p12 between high risk and low-risk regions is maintained above the critical value,
mobility might become an important factor to control TB outbreaks.
Furthermore, it is possible that when Patch 1 (riskier patch) has a bigger population size,

mobility may turn out to be beneficial; the higher the ratio in population sizes, the higher
the range of beneficial “traveling” times (p12).

The impact of risk as defined by exogenous reinfection rates

Similarly, focusing on the impact exogenous reinfection has on the TB transmission
dynamics, we assume that direct first time transmission rates are the same in both patches
(β1 = β2). In addition, we assume the disease has reached an endemic state in both

Fig. 8 Effect of mobility when p12 = 0, 3, 6 and 9%, for different transmission rates 0.13 = β1 > β2 = 0.07
(which givesR1

0 = 1.5,R2
0 = 0.8) and δ1 = δ2 = 0.0026, on the prevalence of TB over time. The cumulative

prevalence and prevalence for each patch using the following population size proportions N2 = 1
2N1

(top figure) and N2 = 1
4N1 (bottom figure) are shown as well
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Fig. 9 Effect of mobility in the case of different transmission rates 0.13 = β1 > β2 = 0.07 (which gives
R1

0 = 1.5,R2
0 = 0.8) and δ1 = δ2 = 0.0026, on the endemic prevalence using two different population size

proportions N2 = 1
2N1 (left figure) and N2 = 1

4N1 (right figure). The green horizontal doted line represents the
decoupled case (i.e., the case when there is no movement between patches)

patches, that is, R1
0 > 1 and R2

0 > 1. However, Patch 1 remains the riskier, due to the
assumption that exogenous reinfection in Patch 1 is higher than in Patch 2 (δ1 > δ2).
As in the previous case, prevalence levels in Patch 1 are being reduced by mobility (p12),

while prevalence is being increased in Patch 2. Nevertheless, the reduction of prevalence
in Patch 1 is greater than the prevalence increment in Patch 2 for most mobility values
p12. Figure 10 suggests the existence of a threshold for which mobility is beneficial for the
entire system. Furthermore, the effect of population density can be observed once again
favoring higher density heterogeneity between the two patches.
Figure 11 shows the mobility threshold and how it is impacted by density. This would

suggest that mobility between two patches undergoing TB outbreaks with high density
heterogeneity (in which the riskier patch is denser) would result in lower TB prevalence
levels for the combined system.

Fig. 10 Effect of mobility for p12 = 0, 20, 40 and 60%, when risk is defined by the exogenous reinfection rates
0.0053 = δ1 > δ2 = 0.0026 and β1 = β2 = 0.1 (which givesR1

0 = R2
0 = 1.155), on the prevalence over

time. The cumulative prevalence and prevalence for each patch are simulated using the following
population size proportions N2 = 1

2N1 (top figure) and N2 = 1
4N1 (bottom figure)
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Fig. 11 Effect of mobility when risk is defined by the exogenous reinfection rates 0.0053 = δ1 > δ2 = 0.0026
and β1 = β2 = 0.1 (which givesR1

0 = R2
0 = 1.155), on the endemic prevalence using two different

population size proportions N2 = 1
2N1 (left figure) and N2 = 1

4N1 (right figure). The green doted line
represents the decoupled case (i.e., the case when there is no movement between patches)

Within this framework, parameters and scenarios, ourmodel suggest that direct first time
transmission plays a central role on TB dynamics when mobility is considered. Although
mobility also reduces the overall prevalence when exogenous reinfection differs between
patches, its impact is small as compared to direct first time transmission results.
Finally, Fig. 12 shows the relationship between population densities and mobility (p12)

with respect to the basic reproductive number R0. In this case we only explore the first
case: direct first time transmission heterogeneity and found out that in this case mobility
could indeed eliminate a TB outbreak.

Discussion
According to the World Health Organization (WHO) [1], in 2014, 80% of the reported
TB cases occurred in 22 countries, all developing countries. Efforts to control TB have
been successful in many regions of the globe and yet, we still see 1.5 million people die
each year. In consequence, TB, faithful to its history [44], still poses one of the greatest
challenges to global health. Recent reports suggest that established control measures for

Fig. 12 Effect of mobility and population size proportions on the global basic reproductive numberR0

when 0.13 = β1 > β2 = 0.07 and δ1 = δ2 = 0.0026



Moreno et al. Theoretical Biology andMedical Modelling  (2017) 14:3 Page 14 of 17

TB have not been adequately implemented, particularly in sub-Saharan countries [45, 46].
In Brazil rates have decreased but relapse is more important than reinfection [26, 47].
Finally, in Cape Town, South Africa, a study [48] showed that in high incidence areas,
individuals who have received TB treatment and are no longer infectious are at the highest
risk of developing TB instead of being the most protected.
Hence, policies that do not account for population specific factors are unlikely to be

effective. Without a complete description of the attributes of the community in question,
it is almost impossible to implement successful intervention programs that are capable
of generating low reinfection rates through multiple pathways and low number of drug
resistant cases. Intervention programs must educate populations and their government
officials on the benefits, factors, and cost associated with population-based TB prevention
and control programs. Intervention must account for the risks that are inherent with high
levels of migration as well as with local and regional mobility patterns between areas
defined by high differences in TB risk.
In this manuscript, we have focused on the role of ‘daily’ mobility within high and low-

risk areas and their potential impact on TB dynamics and control. A situation that is not so
uncommon in areas where extreme levels of social, economic and health disparities rule.
We carry out the discussion using a simplified framework, that is, a two-patch system,
that captures, in a rather ‘dramatic’ way the dynamics between two worlds; the world of
the haves and the have nots. The results are highlighted via the simulation of simplified
extreme scenarios, as the main objective of this manuscript is to stress the impact of
disparities.
As expected, the model analysis suggests that the dynamics of TB depend on the

basic reproduction number (R0), which in turn is the function of model parameters
that includes direct first transmission and exogenous (reinfection) transmission rates for
a single patch system and also includes residency times for a two patch system. The
simulations of specific extreme scenarios suggest that short term mobility between het-
erogeneous patches does not always contributes to overall increases in TB prevalence.
The results show that when risk is considered only in terms of exogenous reinfection,
the global TB prevalence remains almost unchanged, compared to the effect of direct
new infection transmission. In the case of a high risk direct first time transmission, it is
observed that mobile populations may pose detrimental effects on the prevalence lev-
els in both environments (patches). Simulations show that when individuals from the
risky population spend on average 25% of their time or less in the safer patch the over-
all prevalence reaches its maximum. However, if they spend more, the overall prevalence
decreases. Further, in the absence of exogenous reinfections, the model is robust, that
is, the disease dies out or persists based on whether or not the basic R0 is below or
above unity, respectively. Although, the role of exogenous reinfection seems not that rele-
vant on overall prevalence, the fact remains that such mode of transmission increases the
risk that come from large displacement of individuals, due to catastrophes or conflict, to
TB-free areas.
Our ability to interpret information regarding the local origin of mobile individuals

accurately would facilitate prompt responses in the face of initiation of an epidemic.
During the development and implementation of training and educational programs the
necessity to avoid stigmatizing and further marginalization of groups that may have
already experienced some kind of discrimination is essential to avoid isolation, since it
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prevents integration, and reduces compliance [49]. A situation that cannot be ignored
in today’s world where conflicts have dislocated the lives of millions and generated new
migration patterns that includes millions of refugees.
Failure to adequately incorporate and address these challenges may result in consider-

able delays. As noted in [34], ignoring exogenous reinfections, that is, establishing policies
that focus exclusively on the reproductive number R0, would amount to ignoring the
role of dramatic changes in initial conditions, now more common than before, due to the
displacement of large groups of individuals, the result of catastrophes and conflict.

Conclusions
This modeling study highlights critical social behaviors mechanisms that can facilitate or
eliminate Tuberculosis infection in vulnerable populations. The results suggest that an
increase in movement rates between the two distinct risks regions can reduce TB preva-
lence in a high risk patch (and slightly increase in low risk patch) while decreasing the
number of total infected individuals in both patches. That is, when population size het-
erogeneity between patch 1 and patch 2 is large (N1 >> N2), mobility from this patch to
other low risk patch may provide global benefits in terms of low overall prevalence. More-
over, the higher the ratio in population sizes between distinct risk patches, the larger the
benefit under the same “traveling” patterns.
In addition, the direct first time transmission rate plays a central role on TB dynamics

when mobility is considered. Mobility also reduces the overall prevalence when exoge-
nous reinfection rates differs between patches, however, its impact on the prevalence is
relatively small as compared to the impact of the direct first time transmission rates.
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