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Abstract
Background: The classification of effects caused by mixtures of agents as synergistic,
antagonistic or additive depends critically on the reference model of ‘null interaction’.
Two main approaches are currently in use, the Additive Dose (ADM) or concentration
addition (CA) and the Multiplicative Survival (MSM) or independent action (IA) models.
We compare several response surface models to a newly developed Hill response
surface, obtained by solving a logistic partial differential equation (PDE). Assuming that
a mixture of chemicals with individual Hill-type dose-response curves can be described
by an n-dimensional logistic function, Hill’s differential equation for pure agents is
replaced by a PDE for mixtures whose solution provides Hill surfaces as
’null-interaction’ models and relies neither on Bliss independence or Loewe additivity
nor uses Chou’s unified general theory.

Methods: An n-dimensional logistic PDE decribing the Hill-type response of
n-component mixtures is solved. Appropriate boundary conditions ensure the correct
asymptotic behaviour. Mathematica 11 (Wolfram, Mathematica Version 11.0, 2016) is
used for the mathematics and graphics presented in this article.

Results: The Hill response surface ansatz can be applied to mixtures of compounds
with arbitrary Hill parameters. Restrictions which are required when deriving analytical
expressions for response surfaces from other principles, are unnecessary. Many
approaches based on Loewe additivity turn out be special cases of the Hill approach
whose increased flexibility permits a better description of ‘null-effect’ responses.
Missing sham-compliance of Bliss IA, known as Colby’s model in agrochemistry, leads
to incompatibility with the Hill surface ansatz. Examples of binary and ternary mixtures
illustrate the differences between the approaches. For Hill-slopes close to one and
doses below the half-maximum effect doses MSM (Colby, Bliss, Finney, Abbott) predicts
synergistic effects where the Hill model indicates ‘null-interaction’. These differences
increase considerably with increasing steepness of the individual dose-response curves.

Conclusion: The Hill response surface ansatz contains the Loewe additivity concept as
a special case and is incompatible with Bliss independent action. Hence, when
synergistic effects are claimed, those dose combinations deserve special attention
where the differences between independent action approaches and Hill estimations
are large.
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Background
Quantifying the effect of an active substance upon application to its target organism is a
central topic in life sciences. The description and prediction of dose-response curves of
pure compounds and estimating the combined effect of simultaneous administration of
several active ingredients (a.i.s) is a field of active research in pharmacology, anesthesiol-
ogy, toxicology, environmental science, and agrochemistry. The detection of virtually any
kind of interaction between drugs is, e.g., of utmost importance for risk assessment in the
registration process of chemicals in general. While synergistic adverse effects present a
challenge to say the least, synergistic effects in drug administration are desirable as they
might be used to reach the same goal with less effort. Disregarding the steadily growing
area of possible interactions of chemicals with their environment, this article concentrates
on interactions between a.i.s in the life-sciences. The terms ‘agent’, ‘drug’, ‘chemical’, and
‘a.i.’ are used interchangeably.
In 1989, Berenbaum [1] summarized the state of the art describing synergistic effects

in pharmacology. Since then, numerous attempts to quantify non-additive effects have
been published, mainly in the fields of chemotherapy [2], anesthesiology [3], toxicology
[4], physiology [5], environmental science [6, 7], and pharmacology [8], to quote only a
few reviews.
Generally, biological effects of an a.i. follow a dose-response relation, starting from a

no-effect level (NOEL) and ending at the maximum effect corresponding to a saturation
dose. In order to quantitatively describe interactions between substances, it is necessary
to define a reference behaviour, namely the response of a system of compounds acting
independently. Deviations from this ideal reference can then be classified as synergistic
or antagonistic, being aware of the fact that these deviations can be caused by a multitude
of physico-chemical and biochemical effects, especially in whole organisms (for a recent
study see e.g. [9]).
Whenever the effect observed after applying a mixture exceeds the expectation, the

action of the agents is called synergistic, and if it is smaller than expected it is antago-
nistic. This seemingly simple definition is not simple at all, as there is an ongoing debate
since the beginning of the last century on how to correctly define this reference of ‘no
interaction’. In the literature, synergy is defined either phenomenologically or based on
assumptions on the modes of action of the a.i.s involved. The observed effects like zero-
interaction, synergism or antagonism, are often quantified by calculating interaction-
[10] or combination-indices [11], however, often based on differing definitions of
additivity [2, 4].
Mainly two types of reference models are currently in use [12, 13]. One class of models,

the Additive DoseModel (ADM) pioneered by Loewe [14], assumes an additive behaviour
of doses, similar modes of action and consequently parallel dose-response curves with
identical slopes. Its basic concept is that of equipotent doses, which means that an arbi-
trary dose of a.i. A can be replaced by an isoeffective dose of a.i. B. The terms ‘effect
summation’, ‘dose addition’, and ‘concentration addition (CA)’ are used in this context. As
the joint action of the a.i.s is not independent in this model, the term ‘mutually exclusive’
[11] is more appropriate here. Implicitly the model assumes that the maximum possible
effect achievable by the mixture is that of its most potent partner. A generalized concen-
tration addition (GCA) model [6] extended the original ADM approach [10, 14–16] to
mixtures with partially overlapping agonists.
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The other class of models, called Multiplicative Survival Models (MSM), assumes that
the effects caused by the two a.i.s are mutually non-exclusive and originate from different
modes of action, and hence the asymptotically achievable effect is the sum of the indi-
vidually possible ones. In agrochemical research, it is associated with the names of Colby
[17] and Limpel [18], while in toxicology these models of independent action (IA) have
been described by Bliss [19] and Finney [20] and in entomology by Abbott [21].
Chou’s widely used combination indices [11] cover both classes, his formula for the

mutually exclusive combination is of ADM type while his description of mutually non-
exclusive mixtures is MSM like and reduces to Colby’s formula for reaction orders of one.
The approach presented here relies neither on Bliss independence or Loewe additivity
nor uses Chou’s unified general theory. It focuses on logistic (Hill) response surfaces as
‘null-effect’ models. For mixtures of n partners they result from solving an n-dimensional
partial differential equation (PDE). Appropriate boundary conditions guarantee that the
expressions describing the Hill-surfaces are asymptotically correct, i.e., lead to Hill’s well-
known dose-response curves in the one-dimensional case of pure a.i.s. In addition, the
solutions are sham-compliant, meaning that a mixture consisting of combinations of a
drug with itself shows no synergistic effect.
Sigmoid dose-response curves like Hill’s equation [22, 23] are solutions of a class of

ordinary differential equations (ODEs) which was originally used to describe population
dynamics [24]. Examples of the phenomena described by this type of functions are titra-
tion curves in chemistry, dose-response curves in enzyme kinetics, and predator-prey
models in biology.
Following a short recapitulation of the ODE leading to Hill-type dose-response curves

for pure compounds, Hill response surfaces for binary and n-component mixtures are
introduced as solutions of the corresponding PDEs. In the subsequent sections the prop-
erties of Hill surfaces are compared to other response surface models and applied to
some literature examples, namely binary and ternary mixtures from various fields of
life-science. A summary of our findings will be given in the last section.

Methods
While Hill’s equation can be obtained by solving a first-order ODE, the logistic differential
equation, its n-dimensional generalization results from solving a semilinear PDE with
the appropriate boundary conditions. These are the requirements that in the limit of one
dimension the original Hill equation results, and that the solution of the PDE is sham-
compliant, meaning that an artificial partitioning of the one-dimensional problem into an
n-dimensional one does not change the results.
Here an analytical expression of the n-dimensional extension of Hill’s equation is pro-

vided. Verification is done by substituting the solution into the PDE by usingMathematica
11 [25]. Checking the fulfillment of the boundary conditions is achieved by performing
the corresponding limiting processes.

Results
Logistic functions and the Hill response surface

Let A and B be active ingredients with dose-response curves a(x) and b(y) depending
on the variables x and y and let U be a combination of A and B with the dose-response
surface u(x, y). Let us further assume that we can describe the effect z (being a(x), b(y)
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or u(x, y)), by a logistic function. Then z is characterized by 4 parameters, the minimum
and maximum responses zmin and zmax, the position of the inflection point and a slope
parameter, i.e., the slope at the inflection point of the curve. All effects are limited by the
no-effect- and the full-effect levels, 0 ≤ zmin ≤ z ≤ zmax ≤ 1.
The differential equations for the one- and two-dimensional cases, describing the

variation of the effects a(x), b(y) and u(x, y) with the variation of x and y, are

da(x)
dx

= αa(x)
(
1 − a(x)

amax

)
db(y)
dy

= βb(y)
(
1 − b(y)

bmax

)
(1)

ux + uy = γ (x, y)u(x, y)
(
1 − u(x, y)

umax(x, y)

)
(2)

where ux = ∂u(x, y)/∂x and uy = ∂u(x, y)/∂y denote the partial derivatives of u, and α, β
and amax, bmax are constants. In Eq. 2, γ and umax are functions of x and y.
Denoting by x50 and y50 the positions of the half-maximum effects a(x50) = amax/2

and b(y50) = bmax/2 the final forms of a(x) and b(y) are the logistic functions

a(x) = amaxeα�x

1 + eα�x = amax
1 + e−α�x b(y) = bmaxeβ�y

1 + eβ�y = bmax
1 + e−β�y (3)

with �x = x− x50, �y = y− y50 and α and β being the slopes at the inflection points x50
and y50. They show an exponentially increasing effect at low doses, becoming linear close
to x = x50 and y = y50 and finally an exponentially decreasing growth until the limiting
effect zmax is reached. a(x) and b(y) are intimately connected to Hill’s equation, providing
a relation between the effect E and the dose C.

E = E0 + EmaxCα

Cα + ECα
50

= E0 + Emax

1 +
(
EC50
C

)α (4)

Actually, x and y are the natural logarithms of doses with −∞ ≤ x, y ≤ ∞, whereas the
doses themselves (i.e., ex and ey) are ≥ 0. Hence, we can identify the effects E0, Emax and
the shape parameter α with zmin, zmax and α or β , and the doses C and EC50 with ex and
ex50 or ey and ey50 of Eq. 3, meaning that Hill’s equation is the solution of a logistic ODE,
subject to the appropriate boundary conditions.
Our approach to handle mixtures is completely analogous to that used for the pure

compounds. The solution of the PDE describing the effect u(x, y) of a binary mixture
(Eq. 2) is the logistic Hill-surface as the response surface of ‘null-interaction’.

uHill(x, y) = umax(x, y)
1 + [

e�x + e�y]−γ (x,y) (5)

The boundary condition

u(x,−∞) = a(x) ∧ u(−∞, y) = b(y)

that in the limit of one vanishing agent the response due to the second one has to result,
and the so-called sham-compliance requirement have to be fulfilled: If a dose d of one a.i.
is artificially split into two contributions nd and (1 − n)d with 0 ≤ n ≤ 1, the response
due to this ’mixture’ has to be identical to the response of the pure compound, i.e., a(d) =
u(n × d, (1 − n) × d), irrespective of any possible interaction between different a.i.s. In
our formalism a dose d is equal to ex. Hence, sham partitioning means setting ex = nex +
(1 − n)ex, leading to the requirement u(x + ln n, x + ln(1 − n)) = a(x).
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These conditions are satisfied by the ansatz

γ (x, y) = αe�x + βe�y

e�x + e�y

umax(x, y) = amaxe�x + bmaxe�y

e�x + e�y

(6)

which provides smooth transitions between α and β and between amax and bmax.
To facilitate a comparison with literature expressions for response surfaces, uHill can be

re-written by substituting the doses da and db for ex and ey and using the doses scaled
by their median effects ma = da/da50 = e�x and mb = db/db50 = e�y. Then the ‘null-
interaction’ reference response surface is

uHill = umax(ma,mb) × (ma + mb)
γ (ma,mb)

1 + (ma + mb)
γ (ma,mb)

(7)

with

umax = amaxma + bmaxmb
ma + mb

γ = αma + βmb
ma + mb

(8)

As the ansatz presented here uses the known dose-response curves of the pure mixture
partners to unambiguously define the ‘null-interaction’ surface for the binary mixture,
there is no obvious way to introduce interaction parameters (and functions) which
account for deviations from this reference [26–28]. At present the only way to detect
synergism or antagonism is the direct comparison of experimental data with the Hill
response surface, either visually or by statistical means like the root-mean squared error
of prediction (RMSE).
A way out of this dilemma might be to obtain the necessary parameters directly from

fitting the experimental mixture data to a logistic surface which could then be compared
to the ‘null-interaction’ model. However, the functional form of uHill is not flexible enough
for this purpose and some sort of perturbation theory might be more appropriate to
handle deviations from the Hill surface.

The logistic PDE for mixtures of n components

The extension of the Hill formalism to mixtures of n agents Ai is straightforward. The
corresponding semilinear logistic PDE [29] is

n∑
i=1

uxi = γ (�x)u(�x)
(
1 − u(�x)

umax(�x)
)

(9)

where �x = (x1, . . . , xi, . . . , xn) and uxi = ∂u(�x)/∂xi. Its solution

u(�x) = umax(�x)

[ n∑
i=1

e�xi
]γ (�x)

1 +
[ n∑
i=1

e�xi
]γ (�x) (10)

with

γ (�x) =
∑
i=1,n

αie�xi

∑
i=1,n

e�xi
umax(�x) =

∑
i=1,n

amaxie�xi

∑
i=1,n

e�xi
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describes an n-dimensional logistic surface. It satisfies the boundary conditions,

u(−∞, . . . , xi, . . . ,−∞) = ai(xi)

and the sham compliance condition, that any partition of the dose of a pure drug into
various artificial new drugs must cause the same effect as the pure drug alone.
As an example, uHill for a ternary mixture of A, B and C satisfying the sham condition

a(d) = u ((n − m) × d, (1 − n) × d,m × d) with 0 ≤ n + m ≤ 1, is

uHill = umax × [ma + mb + mc]γ

1 + [ma + mb + mb]γ

where in a self-explaining notation

umax = amaxma + bmaxmb + cmaxmc
ma + mb + mc

γ = αma + βmb + δmc
ma + mb + mc

Discussion
From a theoretical point of view it is an advantage of the Hill surface approach that it
does not rest on assumptions on maximum effects or restrictions on specific parameter
combinations of the mixture components. This distinguishes our approach from other
response surface models as will be outlined in the next section. In practical applications,
however, these differences become significant only if steep dose-response curves and/or
strongly differing maximum-effect parameters of the individual agents are involved.

A Comparison of empirical response surface models

Many of the response surface models are based on two synergy approaches, the Bliss
independence [19, 20] and Loewe additivity [14] models. The characteristics of some of
them are listed in Table 1. There their functional forms describing the mixture effects are
classified by their assumptions on maximum effects and slopes and by analyzing whether
they are asymptotically correct and sham compliant. Apparently only a few authors
[26, 28, 30] use the freedom to define the shape function γ (�x) and the maximum effect
function umax(�x) (Eq. 6).

Table 1 Characteristics of theoretical models describing mixtures

Assumptions Properties

Approach Eq. umax Slopes γ Pure a.i. limit Sham compliance

Bliss / Colby 13 Unequal γa �= γb Ok No

Loewe / CA 14 Equal γa = γb Ok Yes

GCA 18 Unequal γ = 1 Ok Yes

Chouexc 19 Equal γa = γb Ok Yes

Chounonex 20 Equal γa = γb Ok No

Greco 17 Equal γa �= γb
a (Ok)b (Yes)b

Minto / Fidler 22 Variable Variable (Ok)c (Yes)c

Hill 5, 7 Variable Variable Ok Yes
aanalytical expression for the effect only for identical slopes
bfor α = 0
cif the polynomial expansions are truncated after the linear terms



Schindler Theoretical Biology andMedical Modelling  (2017) 14:15 Page 7 of 16

Bliss independent joint action (IA) [3] can be formulated in terms of fractions of possi-
ble response unaffected fu or fractions affected fa, with fa + fu = 1. For a binary mixture
Fuab = fua × fub and Faab = 1 − Fuab. Hence

Faab = 1 − (1 − faa) × (1 − fab) = faa + fab − faa × fab (11)

It is related to the expression for the probability P(A ∪ B) of an event A or B if the basic
events with probabilities P(A) and P(B) are independent. In crop science it is known as
MSM [13] or Colby [17] model and is widely used to classify mixture effects [31]. Recently
Colby’s formula has been extended to multi-compound mixtures [32]. As the IA ansatz is
not sham-compliant it is not compatible with the Hill approach.

uColby(x, y) = uBliss(x, y) = a(x) + b(y) − a(x) × b(y) (12)

= amax

1 + m−α
a

+ bmax

1 + m−β

b
− amaxbmax(

1 + m−α
a

) (
1 + m−β

b

) (13)

The ADM [13] or CA model of mutually exclusive action [1, 14] for two noninteracting
isoactive drugs A and B is

1 = ma

fa−1 + mb

fb−1 (14)

where fx−1 is the dose or concentration of compound x that causes the specified effect. If
the agents are acting according to Hill dose-response functions with slopes γa and γb, it
is given by

1 = ma(
u

amax−u

)1/γa + mb(
u

bmax−u

)1/γb (15)

Adapting Berenbaum’s approach, Greco derived amodel for two-agent combined action
by adding an interaction term, parameterized by a factor α. Assuming that the Hill-type
dose-response curves of A and B differ only in the slope parameters, he gets [33]

1 = ma(
u

umax−u

)1/γa + mb(
u

umax−u

)1/γb + α
mamb(

u
umax−u

)(1/2γa+1/2γb)
(16)

Although analytical expressions for u can be obtained from Eqs. 15 and 16 only under
the restrictions of either a fixed maximum effect amax = bmax and identical slope param-
eters γa = γb or of different maximum effects and identical slopes of unity γa = γb = 1,
they are the starting points for several response surface models, e.g., Greco’s model from
Eq. 16

uGreco = umax
(ma + mb + α × mamb)

γ

1 + (ma + mb + α × mamb)
γ (17)

or the GCA expression [6] from Eq. 15. It permits differentmaximum effects but is limited
to γ = 1.

uGCA = amaxma + bmaxmb
1 + amaxma + bmaxmb

(18)

Hence, uGreco (for α = 0) and uGCA are special cases of uHill. The same holds true for
Chou and Talalay’s mutually exclusive model [11]. It was derived from the the median
effect principle, assuming both a constant umax and γ

uChouex = umax
(ma + mb)

γ

1 + (ma + mb)
γ (19)
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Their mutually non-exclusive model [11] is an ad hoc extension of Eq. 19

uChounex = umax
(ma + mb + mamb)

γ

1 + (ma + mb + mamb)
γ (20)

Although it has been criticized by several authors [1, 5, 33] because of its questionable
validity, it is one of the most often usedmodels in the literature [34]. For γ = 1 it becomes
the Bliss IA expression (Eq. 13, with α = β = 1 and umax = amax = bmax). Chou’s models
are related to Greco’s expression for identical slopes γ = γa = γb and identical umax, i.e.,
uGreco = uChouex for α = 0 and uGreco = uChounex for α = 1.
Minto [30] proposed a model that solved the problem of the different denominators in

Eq. 15 by expanding umax and γ in polynomials in a parameter �. Fidler [28] extended
Minto’s approach by adding an interaction term. Their model is

u(�p) = umax(�p)
[
ma + mb + α × f × √mamb

]γ (θp)

1 + [
ma + mb + α × f × √mamb

]γ (θp)
(21)

θp = ma
ma + mb

where α indicates the type of interaction. Minto’s model corresponds to α = 0, α >

0 means synergism and α < 0 antagonism. f (s,w,�p) resembles a generalized 
-
distribution, and umax(�p) and γ (�p) are functions of the potency fraction �p and
f (s,w,�p). �p ranges from 0 (drug A only) to 1 (drug B only).
Minto’s model differs from the logistic Hill surface only in the functional forms of umax

and γ . By truncating their polynomial ansatz for umax and γ after the linear terms in �p,
we have

γ (�p) = α�p + β(1 − �p) = γHill

umax(�p) = amax�p + bmax(1 − �p) = umax(Hill)

Thus by making γ (�p) and umax(�p) symmetric with respect to ma and mb, uMinto
becomes identical to uHill. However, inclusion of higher powers of �p leads to violations
of the boundary conditions and the sham compliance requirement.

Examples

As identical theoretical concepts handling mixture effects have been developed by scien-
tists from different disciplines, there is some confusion in the nomenclature used in the
literature. We shall use the term ’Bliss independent action’ in the subsequent discussions
when referring to the probabilistic independent action ansatz, the exception being exam-
ples from agrochemistry, where we use the term ‘Colby’s formula’. This is justified because
of its extensive use in the agrochemical literature.
In general, however, one has to keep in mind that a numerical evaluation of a model

by comparison with experimental data is difficult because often the error bars of the
experiments are large or unknown.

Crop protection agents

To demonstrate the applicability of the Hill model old mixture data from the crop
protection area were chosen. All pesticides involved achieve an umax of 100%. For
the pairs of atrazine/alachlor [12] (herbicides), aldrin/dieldrin [35] (insecticides), and
oxadixyl/mancozeb [36] (fungicides) the root mean square errors of prediction are shown
in Table 2. The mixtures are equally well described by using variable slopes or slopes of 1.
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Table 2 Dependence of agrochemical mixture effect predictions on Hill parameters

Slope γ = 1 Slope γ variable

Ligand X50a RMSEb X50a Slope RMSEb

Atrazine 0.057 0.059 0.96

Alachlor 0.082 0.076 1.45

Atrazine + Alachlor 9 9

Aldrin 0.008 0.010 2.20

Dieldrin 0.004 0.005 1.95

Aldrin + Dieldrin 10 8

Oxadixyl 18 19 1.37

Mancozeb 294 293 0.99

Oxadixyl + Mancozeb 25 26

All pesticides are assumed to achieve individual maximum effects of 100%. The magnitude of the deviations of mixture
predictions from the experimental data is an indication of synergistic effects
aLC50 (in kg/ha) for herbicides, LD50 (in g a.i./100 ml kerosene solution) for insecticides, EC50 (in mg/l) for fungicides;
broot-mean-square error of efficacy prediction for mixture

For all pairs of pesticides the original conclusions are confirmed: neither the herbicide-
nor the insecticide-mixtures show deviations from the ’expected’ response, whereas in the
case of the fungicide mixtures the differences between expection and experiment indicate
the presence of synergism.

Pyrethroids

Mixtures of pyrethroids can act both as synergists and antagonists. While
permethrin/etofenprox and permethrin/cypermethrin show antagonism, cyperme-
thrin/etofenprox act synergistically. These effects are only insufficiently described by
percentages of 41, 58 and 332% [37] measuring the deviation from additivity. The full
picture is given in Fig. 1, where Hill-, Bliss- and experimental dose-responses curves are
overlaid with the Hill response surfaces. In this example the differences between the

Fig. 1 Hill (green), Colby (red) and experimental (blue) mortality curves for pyrethroid mixtures, together with
the Hill response surfaces (cyan). Mortality in %, doses in μg/cm2. a permethrin + etofenprox (antagonistic)
b permethrin + cypermethrin (antagonistic) c cypermethrin + etofenprox (synergistic); d-f Contour plots of
differences between Hill- and Colby-surfaces (in %) for a, b and c. Dashed lines indicate the respective EC50
values
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theoretical models are extraordinarily large. The contour plots of uHill − uColby reveal
that especially for x ≤ x50 and y ≤ y50 Colby’s independent action formula predicts
much lower effects than the Hill model. As compared with the latter, the IA approach
underestimates antagonism and overestimates synergism. These large differences are
caused by the extremely steep dose response curves of permethrin (λ = 25), etofenprox
(λ = 11) and cypermethrin (λ = 106), meaning that the effects vary strongly within very
narrow dose-ranges.

Dioxin-like chemicals

Aryl hydrogen receptor (AhR) ligands were used to compare the toxic equivalence fac-
tor (TEF) approach and the more general GCA ansatz by [38] in predicting the expected
effect of mixtures containing partial agonists or competitive antagonists. From their sup-
plementary material the Hill curves with variable γ were derived and used to predict
uHill. GCA surfaces are Hill-surfaces with slopes of γ = 1. Hence, one might expect that
Hill-surfaces with variable γ exhibit slightly improved Mann-Whitney (MW) statistics.
However, as the slope parameters from the fits are only marginally different from 1 (c.f.
Table 3), the differences between the GCA and Hill in the Emax-, EC50-values and con-
sequently in their response surfaces (not shown) are much smaller than the error bars of
the experimental data, while the surface predictions are of comparable quality.

Response surfaces and isoboles

As the classification of mixture effects in terms of interaction indexes is not an adequate
means to describe this complex phenomenon, an analysis of responses by looking at the
form of iso-effect levels, isoboles, is certainly more appropriate [10, 14, 16]. Deviations
from straight lines were used to classify the effects as (Loewe and Bliss) agonistic or antag-
onistic. From a response surface view [3, 33, 39] isoboles are cuts of the response surface
at defined effect levels and the corresponding contour plots are the easiest way to get a
full picture for the whole range of dose-combinations. This facilitates the understanding

Table 3 AhR agonist parameters from GCA- and Hill-fits for mixture predictions

GCA, γ = 1 [38] Hill, γ variable

Ligand Emax(%) EC50(M) MWa Emax(%) EC50(M) γ MWa

TCDFb 100 2.9 × 10−11 100 3.2 × 10−11 0.88

PCB126c 99 4.1 × 10−10 100 4.5 × 10−10 0.82

TCDF + PCB126 0.86 0.86

TCDDd 100 7.6 × 10−12 100 6.3 × 10−12 1.29

PCB105 61 1.4 × 10−6 56 9.2 × 10−7 1.45

TCDD + PCB105 0.63 0.78

TCDD 100 9.9 × 10−12 100 8.5 × 10−12 1.09

Galangin 30 4.1 × 10−6 35 4.7 × 10−6 0.79

TCDD + Galangin 0.79 0.93

TCDD 100 9.1 × 10−12 100 6.5 × 10−12 1.22

DIMe 8 6.6 × 10−6 10 8.5 × 10−6 1.62

TCDD + DIM 0.65 0.44

Parameters are slopes γ , maximum effects Emax and EC50 values of the agents
aMW = Mann-Whitney test for mixture prediction;
b2,3,7,8-tetrachlorodibenzofuran;
c2,3,3’,4,4’-petachlorobiphenyl;
d2,3,7,8-tetrachlorodibenz-p-dioxin;
e3,3’-diindolylmethane
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of the fact that linear isoboles are the exception and not the rule and are not a general
means of detecting synergism. For critical discussions on the interpretation of the shape
of isoboles see, e.g., [5, 40–42].
Here simulated dose-response surfaces are compared, based on two different drugs A

and B, both acting according to Hill’s formula. The following parameters were used: Max-
imum effects amax = 0.7, bmax = 1, median effects da50 = 100, db50 = 1, (i.e., x50 = 2,
y50 = 0), and slopes α = 1, β = 2.
The comparison will be mainly between uHill and uBliss = uColby, as the GCA model

uGCA and Chou’s mutually exclusive model uChouex are special cases of the logistic sur-
face uHill, and under special assumptions Chou’s mutually non-exclusive model uChounex
reduces to Bliss IA.
In Fig. 2 differences between the two surfaces show up at high doses of both mixture

partners. There IA would find large synergistic effects of up to 30% where the Hill model
would indicate ‘null-interaction’.
Some trends can be observed: For identical maximum effects and slopes, uHill − uBliss

is positive at doses below d50 and increases with increasing umax and λ, and it is nega-
tive else, almost independent of the dose range. This means that Bliss independent action
tends to overestimate synergism at doses smaller than their median effect doses and to
underestimate synergism at doses above. At low doses the size of the difference increases
with umax and λ. If the maximum effects differ, the effect differences at higher doses
increase with increasing amax − bmax. Some of these findings are illustrated in Fig. 3 for
binary mixtures of agents with identical parameters: maximum effects (umax = 1 and
umax = 0.4) were combined with three different slope parameters (λ = 0.5, 1.0, 5.0).
Using scaled doses m = d/d50 for the axes simplifies the picture without obscuring the
essentials.

Fig. 2 Response surfaces (a–c) and isoboles (d–f) for binary mixtures. Effects are given in %. a, d Hill surface;
b, e Bliss surface; c, f Difference plots uHill − uBliss show that uBliss ≥ uHill . (Parameters: umin = 0, amax = 0.7,
da50 = 100, α = 1, bmax = 1.0, db50 = 1, β = 2). Dashed lines denote the respective d50 values
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Fig. 3 Contour plots of differences uHill − uBliss between Hill- and Bliss-response surfaces (in %). Shown for
three slope parameters λ = 1, 0.5 and 5 for agents A and B. a – c umax = 1, d – f umax = 0.4. Dashed lines
indicate effects at normalized dosesmx = 1

Iso-surfaces

For ternary mixtures the pendants of isoboles are iso-surfaces, i.e., projections of the
four-dimensional response surfaces to three-dimensional ones defined by triples of doses
leading to a specified response. A visualization of effects resulting from more than three
agents in one graphical object is hardly possible. As shown for some fictitious ternary
mixtures in Fig. 4, planarity is achieved only if all mixture components have identical slope
parameters. In this case different maximum effects of the mixture partners do not affect
planarity. Iso-surfaces of mixtures of agents having different slopes are non-planar.
This is shown for ternary anesthetic mixtures [43] as analyzed in great detail by [28]

and [30]. For the present purpose the data for midazolam, propofol, and alfentanil were
fitted to Hill dose-response curves assuming effect ranges from 0 (no hypnosis) to 1 (full
hypnosis). The characteristics of fits and of predictions for the mixtures are summarized
in Table 4. The corresponding iso-surfaces in Fig. 5 show slight deviations from planarity
which result from different slopes (4.8–11.1) of the pure agents. As the Hill model pro-
vides only null-interaction surfaces, the size of the deviations of experimental data from
the Hill prediction may give some hints on the presence of synergy. While the RMSEs of
fit for the pure compounds are of the order of 5%, those for mixture prediction are of the
order of 40%, indicating the presence synergistic effects of increasing magnitude for the
binary mixtures of propofol/alfentanil, midazolam/propofol and midazolam/alfentanil,
while the ternary mixture is comparable to the best binary one.

Conclusions
Starting from a logistic PDE, analytical expressions for the response surfaces of n-
component mixtures have been derived under the sole provision that each a.i. is described
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Fig. 4 Iso-surfaces for ternary mixtures at 10, 25, 50, 75 and 90% effect levels. Shown on logarithmic (a–c) and
linear (d–f) dose scales. a, d sham combination, α = 1, umax = 1; b, eMixture with variable slopes, α = 0.5,
β = 5, γ = 1 and umax = 1; c, fMixture with variable maximum effects, amax = 0.8, bmax = 0.4, cmax = 1
and slope λ = 1

by a sigmoid dose-response curve. No further assumptions are required. The resulting
‘null-interaction’ surfaces, i.e., Hill-surfaces in the absence of of synergistic or antagonis-
tic effects, provide the ‘expected’ response for each dose combination. Deviations from
this reference response in order to quantify synergism or antagonism should possibly be
handled by some sort of perturbation theory.
The Hill approach provides a framework to classify several models describing mix-

tures like ADM (Loewe CA, GCA), MSM (Colby, Bliss, Finney, Abbott) or Chou’s ‘unified
general theory’ and various response surface models. It can be applied to mixtures of
compounds having different maximum effects and differing slope-parameters. Many
Loewe-additivity based approaches are found to be special cases of the Hill surface while
Bliss IA is incompatible with the logistic ansatz.
The independent action model is frequently used, e.g., in patent applications to quan-

tify synergistic effects [44]. Its outcome should be checked by comparison with the Hill

Table 4 Fit parameters for anesthetics and their mixtures

Drug D50(mg/kg) Slope RMSEa

Midazolam 0.144 4.83 0.054

Propofol 1.078 11.14 0.035

Alfentanil 0.093 5.69 0.069

Midazolam/propofol 0.387

Midazolam/alfentanil 0.477

Propofol/alfentanil 0.228

Ternary mixture 0.461
aRMSE = root-mean-square error with respect to exptl. data. For pure compounds RMSE refers to fits, for mixtures it refers to
predictions
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Fig. 5 Iso-surfaces (10, 50, 75, and 99%) for ternary mixtures of midazolam, propofol, and alfentanil. Doses in
[mg/kg]. Deviation from planarity results from differing slopes of the individual anesthetics

response surface for any relevant mixture ratio. From the literature examples discussed
two scenarios can be distinguished: For slopes of γ ≈ 1 the response surfaces calcu-
lated from MSM formulae, deviate from the Hill surface by predicting synergism where
the Hill model indicates ‘null-interaction’, especially at doses below the d50-values of the
components. In fact, under these conditions synergism postulated by MSM is an upper
boundary for the synergism predicted by the Hill surface approach. However, if both mix-
ture partners alone can cause effects of 100% or if the differences between their slopes are
small either the deviations or the dose ranges affected are small.
For γ � 1 the differences between Hill- and MSM-surfaces become extremely large,

but they are restricted to those small dose-ranges where the effects change rapidly.
As a consequence for claiming synergistic effects at doses below the respective

d50-values, special caution is required whenever the predictions from MSM and Hill
approaches differ considerably.
An in-depth analysis of real mixtures would have to take into account not only errors in

the models but also other sources of errors like the error statistics of experimental data.
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