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Abstract

Background: Following the formation of a primary carcinoma, neoplastic cells
metastasize by undergoing the epithelial mesenchymal transition (EMT), which is
triggered by cues from inflammatory and stromal cells in the microenvironment. EMT
allows epithelial cells to lose their highly adhesive nature and instead adopt the spindle-
like appearance, as well as the invasive and migratory behavior, of mesenchymal cells. We
hypothesize that a bistable switch between the epithelial and mesenchymal phenotypes
governs EMT, allowing the cell to maintain its mesenchymal phenotype even after it
leaves the primary tumor microenvironment and EMT-inducing extracellular signal.

Results: This work presents a simple mathematical model of EMT, specifically the roles
played by four key proteins in the Wnt signaling pathway: Dishevelled (Dvl), E-cadherin,
β-catenin, and Slug. The model predicts that following activation of the Wnt pathway,
an epithelial cell in the primary carcinoma must attain a threshold level of membrane-
bound Dvl to convert to the mesenchymal-like phenotype and maintain that phenotype
once it has migrated away from the primary tumor. Furthermore, sensitivity analysis of
the model suggests that in both the epithelial and the mesenchymal states, the steady
state behavior of E-cadherin and the transcription factor Slug are sensitive to changes in
the degradation rate of Slug, while E-cadherin is also sensitive to the IC50 (half-maximal)
concentration of Slug necessary to inhibit E-cadherin production. The steady state
behavior of Slug exhibits sensitivity to changes in the rate at which it is induced by
β-catenin upon activation of the Wnt pathway. In the presence of sufficient amount of
Wnt ligand, E-cadherin levels are sensitive to the ratio of the rate of Slug activation via
β-catenin to the IC50 concentration of Slug necessary to inhibit E-cadherin production.

Conclusions: The sensitivity of E-cadherin to the degradation rate of Slug, as well as the
IC50 concentration of Slug necessary to inhibit E-cadherin production, shows how the
adhesive nature of the cell depends on finely-tuned regulation of Slug. By highlighting
the role of β-catenin in the activation of EMT and the relationship between E-cadherin
and Slug, this model identifies critical parameters of therapeutic concern, such as the
threshold level of Dvl necessary to inactivate the GSK-3β complex mediating β-catenin
degradation, the rate at which β-catenin translocates to the nucleus, and the IC50
concentration of Slug needed to inhibit E-cadherin production.

Keywords: Epithelial Mesenchymal Transition (EMT), Wnt, Bistable

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Gasior et al. Theoretical Biology and Medical Modelling  (2017) 14:19 
DOI 10.1186/s12976-017-0064-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12976-017-0064-7&domain=pdf
mailto:sbhattac@msu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Epithelial tumors, or carcinomas, are the most common type of neoplasia found in

humans, accounting for roughly 80% of all cancer related deaths in the Western world

[1]. Characteristically, epithelial cells form polarized sheets. Within these sheets, cells

are tightly adhered to each other to inhibit individual cellular movement [2]. This

highly adhesive nature is attributable to molecules of E-cadherin, a transmembrane

protein, on the surface of one epithelial cell binding with the E-cadherin moelcules of

another epithelial cell across the extracellular space. Simultaneously, E-cadherin is

bound to intracellular catenin members on its cytoplasmic tail, which stabilize the E-

cadherin by linking it to the actin cytoskeleton [3, 4]. This E-cadherin-catenin complex

is what gives the epithelial cells in both normal tissue and carcinomas their strong ad-

hesive bonds and inhibits the movement of individual cells [2, 4].

In carcinomas, it is possible for neoplastic cells to undergo epithelial mesenchymal tran-

sition (EMT) [3]. Triggered by cues from the local stroma [1], EMT influences the expres-

sion of the cellular adhesion complex [5] and allows epithelial cells to acquire the spindle-

like appearance of mesenchymal cells, as well as their invasive and migratory properties

[5, 6]. While this process plays a key role in embryogenesis [7] and wound healing [5], the

occurrence of EMT in tumor cells is thought to help drive the onset of metastasis,

although the level to which EMT is involved in this process is currently debated due to

the heterogeneous nature of cellular responses that can occur in the same tumor [5].

However, for some cells within a tumor, with the loss of adhesion and the acquisition of

an invasive phenotype, they are able to invade the extracellular matrix around the tumor,

penetrate the basement membrane of the blood vessel, and travel via the blood stream to

other locations in the body where they ultimately form a metastasis [8].

There are a multitude of different pathways that can activate EMT, with significant cross-

talk between these signaling systems. In mature multicellular organisms, as well as during

development, the Wnt pathway helps regulate proliferation, differentiation, migration, and

polarity [9, 10]. However, mutations and dysregulation of the pathway can ultimately lead

to the occurrence of tumors and the activation of EMT leading to metastasis [9, 11].

The Wnt pathway has long been the focus of studies attempting to understand cellu-

lar behavior. Lee et al. [12] proposed a 15-equation mathematical model centered upon

the formation of the protein complexes involved in β-catenin phosphorylation and deg-

radation, a process that, when disrupted, leads to the accumulation of the β-catenin/

TCF complex in the nucleus. In particular, the authors attempted to explain the distinct

roles that different members of the degradation complex can carry out. In addition,

these authors carried out experiments in Xenopus egg extracts to support their hypoth-

esized interactions [12]. Ramis-Conde et al. [13] built on the work of Lee and others

with a multiscale mathematical model that examined the involvement of E-cadherin

and β-catenin in the adhesion of epithelial cells to one another. Like Lee et al., Ramis-

Conde et al. included the involvement of β-catenin in the degradation complex in the

cytosol. However, Ramis-Conde et al. also focused on the behavior of E-cadherin. The

authors considered the concentration of E-cadherin to be a constant that is then

divided by sub-cellular localization: free E-cadherin at the membrane, free E-cadherin

in the cytosol, and the E-cadherin-β-catenin membrane complex [13].

Basan et al. [14] also explored the adhesion complex relationship. However, where

Ramis-Conde et al. considered the key component of cellular adhesion to be the
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binding of β-catenin and E-cadherin, which they modeled using ordinary differential

equations (ODEs), Basan et al. examined the relationship between β-catenin and E-

cadherin and the involvement of α-catenin in the adhesion complex by using reaction-

diffusion equations [14]. The dynamics that exist between the adhesion complex and

the Wnt pathway were explored further by Chen et al. [11]. In particular, the authors

sought to understand the role spatial dynamics play in intracellular signaling. By

employing a network model, Chen et al. found that the membrane adhesion complex

not only competes with the degradation complex for free β-catenin, but also that the

clustering of adhesion complexes can slow down the degradation complex and thus

allow for an increase in nuclear signaling.

Other authors have continued to explore the influence noncanonical proteins can

have on the dynamics of Wnt signaling, as well as its crosstalk with other pathways.

One protein of interest has been Dickkopf1 (Dkk), which inhibits the Wnt pathway

and cell proliferation, as well as promotes maturation in cells. By creating a multi-

scale model to describe the relationship between the Wnt and Notch pathways, Agur

et al. suggested that high levels of Dkk can push stem cells towards differentiation

[15]. Kogan et al. also used mathematical modeling to examine the influence of Dkk

on the Wnt pathway, but these authors examined its influence in combination with a

secreted Frizzled-related protein (sFRP), another known Wnt inhibitor [9]. By propos-

ing an ODE model with 13 variables and employing mass action kinetics, Kogan et al.

suggested that the combination of sFRP1 and Dkk1 can work together to inhibit the

accumulation of β-catenin in the cell, a direct outcome of the canonical Wnt

signaling pathway.

Kim et al. highlighted the positive feedback loop that exists between the Wnt and

ERK signaling pathways [16]. By extending the original model proposed by Lee et al.

[12] and incorporating the influence of the ERK pathway, Kim et al. suggest that the

crosstalk and positive feedback loop that exists between Wnt and ERK can lead to a

bistable switch in cellular behavior. Shin et al. [17] found similar results to Kim et al.

during their exploration of Wnt and ERK pathway crosstalk. Based on a system of six

ODEs, the model proposed by the authors included the involvement of the adhesion

complex, the complex responsible for β-catenin degradation, as well as the shuttling of

β-catenin to the nucleus and its involvement with the transcription factor Slug. They

also examined the changes in E-cadherin in response to different oncogenic stimuli:

EGF and Wnt, and proposed a switch-like behavior in E-cadherin, allowing the cell to

transition from the epithelial to the mesenchymal state [17]. The existence of this

bistable switch was also discussed by Maclean et al. [18] who put forth a 19-equation

model of the bistable switch between the epithelial and mesenchymal steady states due

to cytoplasmic-nuclear shuttling of β-catenin.

It is worthwhile to note that the concept of a bistable switch is not unique to systems

involving the activation of or the overlap with the Wnt signaling pathway. Recent work

has examined the roles that the miR-200/ZEB, the LIN28/let-7, and the Ovol2-Zeb1

circuits may play in the activation of EMT, as well as possible overlap that may exist

[19–21]. However, rather than an all or nothing switch, each of these proposed models

accounts for at least one intermediate state between the epithelial and mesenchymal

transitions, a state that Jolly et al. suggest is responsible for stemness and has the high-

est potential for tumor initiation [19, 20].
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Due to the complex nature of the Wnt signaling pathway and intracellular signals as

a whole, models are often quite intricate, featuring large sets of equations, and most

only focus on a few of the molecular interactions β-catenin is involved in. Even models

that sought to use minimal equations and variables to describe the Wnt signaling path-

way, such as the work done by Benary et al., still resulted in the use of 5–6 differential

equations and two conservation equations [22]. In this work, we, like Kim et al., Shin et

al., and MacLean et al., hypothesize that the mechanism underlying EMT in a primary

solid tumor is a bistable switch between the epithelial and the mesenchymal pheno-

types: once transitioned, the cell will maintain its mesenchymal phenotype, even in the

absence of sustained extracellular signaling. With regards to the Wnt pathway, we

hypothesize that the bistable switch is centered around the behavior and interactions of

β-catenin. Unlike many of the previous works mentioned, the model put forth here in-

corporates all three primary interactions β-catenin is involved in: the adhesion complex

with E-cadherin, its degradation via the complex formed by GSK-3β, and its transloca-

tion to the nucleus to activate the transcription factor Slug. Additionally, even though

we are examining all three relationships involved in the switch-like behavior of the cell,

we propose a simplified theoretical model of three ODEs to describe the ultrasensitive

feedback loop in the Wnt-β-catenin signaling pathway. By creating a simple model of

the primary interactions of β-catenin in the Wnt pathway, we are able to show how ac-

tivation of the Wnt pathway alone can drive EMT in a carcinoma cell, as well as ex-

plain the intracellular β-catenin interactions that may be causing the bistable switch.

Our model could provide a scaffold upon which other, more complex models of EMT

and the multistable switch could be built, as well as guide experimental exploration

into which interactions could be targeted for prevention of EMT and metastasis.

Methods
In a Wnt-absent environment, E-cadherin binds with intracellular catenin members,

such as α, β, and γ- catenin [4]. Any free β-catenin that is not bound in this complex is

degraded in the cytosol by a protein complex [23]. Axin, a scaffold protein that is

present in epithelial cells [24], mediates the formation of this cytosolic degradation

complex along with the proteins adenomatous polyposis coli (APC), glycogen synthase

kinase 3β (GSK-3β), casein kinase 1 (CK1), and protein phosphatase 2A (PP2A) [25].

When β-catenin comes in contact with Axin and APC, the casein kinase 1α (CK1α)

component of Axin and GSK-3β work together to phosphorylate β-catenin and mark it

for degradation [23]. However, there currently exists some controversy around the deg-

radation of β-catenin, as the process by which it occurs is poorly understood. Experi-

mental work suggests that it may not be necessary for the complex to release β-catenin

for degradation to occur. Rather, it may be possible for the degradation complex to

undergo a structural change that exposes the β-catenin and allows it to be degraded

[11]. Regardless of the exact mechanisms of the process, it is through this constant

degradation that the cytosolic β-catenin is maintained at a low concentration in the

absence of Wnt [23].

Carcinomas are associated with an oncogenic promoting stroma that is considered

‘reactive’, and is characterized, in part, by an increase in the number of fibroblasts that

now associate with the ECM [26, 27]. These fibroblasts secrete the Wnt protein, a mor-

phogen that relies on short-range signaling in order to activate the Wnt pathway in
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carcinoma cells [1, 28]. Once the Wnt ligand binds to its receptor, Frizzled (Frz) [12],

on epithelial cells, LRP5-LRP6 receptors are phosphorylated by CK1γ and GSK-3β [23].

The messenger protein Disheveled (Dvl) is brought to the plasma membrane where it

associates with Frz. Dvl then binds with Axin at the membrane to deactivate and dis-

mantle the Axin/APC/GSK-3β complex, allowing β-catenin to accumulate in the cyto-

sol and subsequently translocate to the nucleus [25]. In the absence of Wnt signaling,

the T-cell factor and lymphoid enhancer factor (TCF/LEF) works in the nucleus with

Groucho to repress Wnt target genes [29]. However, once Wnt signaling is activated,

β-catenin replaces the Groucho factors and is able to form a complex with TCF and

LEF1 [23], upregulating the expression of transcription factors such as Slug [17]. Slug,

a zinc-finger transcription factor, then binds to E-boxes in the promoter regions of the

E-cadherin gene and prevents transcription of E-cadherin [30]. This suppression of E-

cadherin production limits the concentration of E-cadherin available to bind with β-

catenin, further encouraging the translocation of β-catenin to the nucleus as it accumu-

lates in the cytosol [31], thus creating a Wnt-driven feedback loop. The continued sup-

pression of E-cadherin production by Slug and other transcription factors ultimately

causes the epithelial cell to lose its adhesion with the other surrounding epithelial cells

and undergo EMT.

Within these complex dynamics, we identify 3 key relationships centered around β-

catenin, which are shown in Fig. 1. In a primary carcinoma cell, β-catenin is sequestered

into a complex with E-cadherin at the membrane. Any β-catenin that is not in this com-

plex is marked for degradation. With the activation of the Wnt pathway, the degradation

complex is inactivated due to the movement of Dvl to the cellular membrane, allowing β-

catenin to accumulate, translocate to the nucleus, and upregulate Slug. In order to model

these β-catenin relationships at the core of the canonical Wnt pathway and the manner in

which they affect the key proteins involved, we employed a system of three ODEs. The

changes over time in the concentration of membrane-bound E-cadherin (E), free cytosolic

β-catenin (B), and Slug (S) are described in eqs. (1)–(3) below. A complete list of the pa-

rameters and their definitions is provided in Table 1.

dE
dt

¼ α1

1þ S
ICS

� �n1 −β1∙E ð1Þ

dB
dt

¼ α2−
k1∙ E

ICE

� �n2

1þ E
ICE

� �n2 − β2∙B−
k0∙ D

ICD

� �n4

1þ D
ICD

� �n4

0
B@

1
CA ð2Þ

dS
dt

¼ α3 þ
k2∙ B

ICB

� �n3

1þ B
ICB

� �n3 −β3∙S ð3Þ

In the epithelial steady state, the concentration of cytosolic β-catenin is very low:

most β-catenin exists in complex form with other members of the catenin family and

E-cadherin at the membrane. This relationship is represented in (2) with the term

k1 ∙ E
ICE

� �n2

1þ E
ICE

� �n2 , where k1 is the rate at which membrane-bound E-cadherin sequesters β-

catenin. In the model presented by Ramis-Conde et al. [13], the authors discuss two
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rates to describe this interaction: the rates at which β-catenin and E-cadherin bind and

unbind to form this complex. However, the authors also estimate that the rate at which

the two proteins bind to form the complex is 50× faster than the rate at which they

unbind; hence we have used a single term to model the reduction in free cytosolic β-

catenin due to the presence of E-cadherin.

Any β-catenin that is not bound to E-cadherin is subjected to phosphorylation by the

GSK-3β complex and thus marked for degradation. In the model put forth by Kogan et

al. [9], the authors condense the complex process of phosphorylation degradation by

assuming that once β-catenin is phosphorylated, it is quickly degraded, a process they

represent with a single term. Coupled with this term is another term to represent the

disassociation of β-catenin from the degradation complex prior to phosphorylation.

However, in the model created by Kogan et al., the rate at which β-catenin binds with

the degradation complex is 108x faster than the rate at which it escapes. Therefore, for

simplicity, in this work, we assume that once β-catenin is bound to the GSK-3β com-

plex in the epithelial steady state, it will be quickly phosphorylated and marked for deg-

radation before it has the chance to unbind and exist freely in the cytosol. Thus, the

basal degradation of β-catenin is represented by the term β2 ∙ B in (2), where β2 is the

a

b

Fig. 1 a β-catenin – E-cadherin relationship in a primary carcinoma tumor cell, pre-EMT. E-cadherin sequesters
cytosolic β-catenin at the cell membrane where it forms a complex with other members of the catenin family
to help E-cadherin attach to the cell’s cytoskeleton. b The upregulation of Dvl via Wnt signaling inhibits the
degradation of β-catenin by deactivating the GSK-3β/Axin complex, allowing β-catenin to translocate to the
nucleus and upregulate the transcription factor Slug. Slug suppresses the transcription of E-cadherin, which
means there is less E-cadherin to sequester β-catenin at the membrane. β-catenin can continue to accumulate
and translocate to the nucleus, thus completing the feedback the loop
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rate at which β-catenin binds to the GSK-3β complex. Once Wnt signaling is activated,

Dvl works to break apart the GSK-3β complex by binding with Axin at the membrane,

sparing β-catenin from phosphorylation and degradation. With Dvl (D) > 0, the term

k0 ∙ D
ICD

� �n4

1þ D
ICD

� �n4 > 0 in (2) where k0 is the rate at which Dvl binds to Axin and deactivates the

degradation complex.

In this model, it is assumed that the cell has the ability to shuttle free β-catenin to

the nucleus, as is represented by the term
k2 ∙ B

ICB

� �n3

1þ B
ICB

� �n3 in (3), where k2 is the rate at which

β-catenin translocates to the nucleus and activates Slug. If free β-catenin in the cytosol

is kept at a low value by the degradation complex, there is very little β-catenin available

for transport. Once Wnt signaling is turned on and Dvl is upregulated, β-catenin can

accumulate and translocate to the nucleus, enhancing the expression of Slug in (3).

Slug then binds to E-box elements in the promoter of the E-cadherin gene, which

inhibits E-cadherin production, as modeled in (1) with the term α1

1þ S
ICS

� �n1 . These inter-

actions constitute the core of the double-negative feedback loop driven by changes in

the behavior of β-catenin. This double-negative feedback loop, combined with ultra-

sensitivity in the interactions (represented by Hill coefficients n1 − n4 in (1)–(3)), creates

the potential for a bistable switch.

Table 1 Parameter Definitions for ODE Model

Parameter Definition Units Assumed Value Source

α1 Basal production of E-cadherin nM
min 0.01 estimated

α2 Basal production of β-catenin nM
min 0.01 [13]

α3 Basal production of Slug nM
min 0.001 estimated

β1 Basal degradation of E-cadherin 1
min 0.03 estimated

β2 Rate at which β-catenin binds to the GSK-3β / Axin/APC
complex

1
min 0.03 estimated

β3 Basal degradation of Slug 1
min 0.03 estimated

k0 Rate at which Dvl inactivates the GSK-3β/Axin/ APC complex nM
min 3.7 ∙ 10−3 estimated

k1 Rate at which E-cadherin sequesters β-catenin at the cell
membrane

nM
min 0.01 estimated

k2 Rate at which β-catenin upregulates Slug in the cell nucleus nM
min 1 estimated

ICS Half maximal concentration of Slug required to inhibit
E-cadherin transcription

nM 3.3 estimated

ICB Half maximal concentration of β-catenin needed up
upregulate Slug

nM 0.33 estimated

ICE Half maximal concentration of E-cadherin needed for
sequestration of β-catenin at membrane

nM 0.033 estimated

ICD Half maximal concentration of Dvl needed to inhibit the
degradation of β-catenin by GSK-3β

nM 0.67 estimated

n1 Hill Coefficient – 3 estimated

n2 Hill Coefficient – 2 estimated

n3 Hill Coefficient – 2 estimated

n4 Hill Coefficient – 5 estimated
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Due to the number of parameters we were required to estimate for this model, as well

as to continue our theoretical exploration into how these rates contribute to the under-

lying bistable switch, we nondimensionalized the system in (1)–(3) using the relationships

E ¼ ε⋅e; B ¼ λ⋅b; S ¼ σ⋅s; D ¼ δ⋅d;

t ¼ T ⋅τ

where e, b, s, d, and τ are dimensionless variables. Substituting these relationships

into (1)–(3) the constants ε, λ, σ, and δ were defined as ε = ICE, λ = ICB, σ = ICS, and δ

= ICD. For the dimensional constant T, there were many parameter combinations that

would result in the appropriate units of minutes. Ultimately, T was chosen to be the

ratio of half the maximal concentration of β-catenin necessary to activate Slug to the

rate at which E-cadherin sequesters β-catenin at the membrane, or T ¼ ICB
k1
. This ratio

was chosen to reflect the time the cell would need to build up half the amount of β-

catenin necessary to activate Slug, and begin the transition from the epithelial to the

mesenchymal phenotype, while the pool of free β-catenin is depleted due to sequestra-

tion by E-cadherin. By using these substitutions, nondimensionalization allows for sim-

plification and parameter grouping for further analysis. Our new nondimensional

system is:

de
dτ

¼ A1

1þ sn1
−C1∙e ð4Þ

db
dτ

¼ A2−
en2

1þ en2
− C2∙b−

F1∙dn4

1þ dn4

� �
ð5Þ

ds
dτ

¼ A3 þ F2∙bn3

1þ bn3
−C3∙s ð6Þ

While a range of values for each dimensionless parameter was explored (see Fig. 5),

the values that were ultimately used in this model are defined in Table 2. Analysis was

carried out using MATLAB software and XPPAUT [32] using the initial conditions of

e = 10, b = 0, and s = 0 when the cell begins in the epithelial steady state.

Table 2 Parameter Definitions for Nondimensional ODE Model

Parameter Definition Value

A1
α1�ICB
k1�ICE

10

A2
α2
k1

1

A3
α3�ICB
k1�ICS

0.01

C1
β1�ICB

k1
1

C2
β2�ICB

k1
1

C3
β3�ICB

k1
1

F1
k0
k1

0.37

F2
k2�ICB
k1�ICS

10

n1 – 3

n2 – 2

n3 – 2

n4 – 5
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Results and Discussion
A Bistable Switch between the Epithelial and Mesenchymal Phenotypes

The qualitative response of the epithelial cell to different levels of Wnt signaling is de-

scribed in Fig. 2, which shows the changes in protein concentrations with respect to

time. The values for each variable were included for reproducibility and the results are

shown with the equivalent dimensional concentration, followed by the nondimensional

parameter value. In both Fig. 2a and b, the cell exists in the epithelial steady state over

the time range τ = [0, 20): E-cadherin level is high (0.33 nM, e = 10) whereas both β-

catenin (b) and Slug (s) are low (< 0.05 nM, b, s < 0.015). At time τ = 20, Dvl is turned

on, which implicitly models the release of Wnt protein from the surrounding environ-

ment and consequent movement of Dvl from the cytosol to the membrane. If Wnt

a

b

Fig. 2 For τ = [0,20), the cell exists in the epithelial steady state where E-cadherin (e) level is high and both
β-catenin (b) and Slug (s) are low. a If a small amount of Wnt signal is released by the microenvironment at
τ = 20, a small amount of Dvl (d = 1.2) will accumulate at the membrane. E-cadherin will decrease slightly
and both β-catenin and Slug will rise, but not enough to induce EMT. If, at τ = 50, the environment stops
releasing Wnt signal, Dvl will detach from the membrane, meaning that the concentration of Dvl at the
membrane will be 0 once again. Because EMT was not induced, the proteins all return to their initial epithelial
values. b If enough Wnt signal is released by the microenvironment at τ = 20, enough Dvl will accumulate at
the membrane (d = 5.4). The steady state values of β-catenin (b) and Slug (s) will rise and, thus, E-cadherin (e)
will reach a very low steady state value. The lack of E-cadherin means that the cell will no longer be adhesive
with the surrounding cells or its microenvironment, allowing it to move away from the primary tumor. If the
concentration of membrane Dvl returns to 0 due to the cellular distance from the external Wnt signal at τ = 50,
E-cadherin, β-catenin, and Slug will stabilize at values that allow the cell to maintain its mesenchymal state

Gasior et al. Theoretical Biology and Medical Modelling  (2017) 14:19 Page 9 of 20



signaling is very low, membrane Dvl will not be sufficiently high to induce EMT. This

is illustrated in Fig. 2a (d = 1.2). The intracellular protein levels of β-catenin and Slug

both increase (~0.1 nM, b ≈ 0.3; ~2.64 nM, s ≈ 0.8), but this results in only a dip in the

membrane bound E-cadherin (~0.22 nM, e = 6.7), which allows the cell to maintain its

adhesive nature and epithelial phenotype. Additionally, if the microenvironment were

to then stop releasing the Wnt signal at time τ = 50, Dvl would detach from the mem-

brane and return to the cytosol, meaning that the (nondimensional) concentration of

membrane Dvl would return to its initial value of 0 (this is modeled by setting d = 0 at

time τ = 50). Because the epithelial steady state was maintained (even with ~0.8 nM,

d = 1.2), the proteins all go back to their original, pre-signaling epithelial levels.

If, however, the tumor microenvironment releases sufficient Wnt ligand, the amount

of Dvl that accumulates at the membrane may be enough to induce significant changes

in the proteins, as shown in Fig. 2b (3.62 nM, d = 5.4 at time τ = 20). With the activa-

tion of the Wnt pathway, free β-catenin accumulates, meaning that there is now a lar-

ger pool of β-catenin in the cytosol capable of translocating to the nucleus and

upregulating Slug. Due to the rate limiting processes of translocation and the availabil-

ity TCF/LEF, we witness the activation of Slug, as well the stabilization of β-catenin in

the cytosol. Ultimately, both β-catenin and Slug reach much higher steady state values

(~0.45 nM, b = 1.37; ~21.45 nM, s ≈ 6.5). The activation of the Wnt pathway and the

subsequent changes in Slug and β-catenin are now enough such that there is a signifi-

cant decrease in the steady state value of E-cadherin (~1.32 × 10−3 nM, e ≈ 0.04), mean-

ing that β-catenin is not being as quickly sequestered into the adhesion complex, nor is

it being as quickly degraded by the GSK-3β complex. Thus, β-catenin is able to con-

tinue to translocate to the nucleus. Even if membrane Dvl returns to 0 (as shown in

Fig. 2b at τ = 50), the cell does not revert to the protein concentrations pertaining to

the initial epithelial steady state, but has instead stabilized and maintains the protein

levels of the converted mesenchymal state. In Fig. 2b, with d = 0 at τ = 50, E-cadherin

is still maintained at a low value while Slug and β-catenin dip only slightly with the

removal of the extracellular signal.

The bifurcation diagrams in Fig. 3a-c give further insight into the behavior of E-

cadherin, β-catenin, and Slug with respect to alterations in membrane-bound Dvl (d).

These figures can be thought of as concentration-response curves of protein levels with

respect to membrane Dvl. If the cell starts in the epithelial steady state, such as our sys-

tem does in Fig. 3, and the level of membrane Dvl is steadily increased, the cell remains

in the epithelial state, with high E-cadherin and low β-catenin and Slug levels, until Dvl

reaches a threshold level of about 1.33 (blue vertical dashed line, Fig. 3a-c). At this

point the cell undergoes EMT and transitions into a mesenchymal-like state with low

E-cadherin and high β-catenin and Slug levels. For further increases of Dvl beyond

1.33, the cell remains in the switched mesenchymal state. However, when we start from

the newly attained mesenchymal steady state and move leftward in Fig. 3 A-C, reducing

the level of membrane Dvl, the cell remains in the mesenchymal steady state and does

not switch back to the epithelial state. In fact, in this instance, with d = 0, the values

that the proteins maintain are the steady state mesenchymal concentrations of the pro-

teins at τ = 80 in Fig. 2b. There is thus a range of levels of Dvl (d = 0 to 1.33) for which

the cell can exist in one of the two distinct steady states – epithelial or mesenchymal –

depending on its history. This “cellular memory” mechanism generated by the bitable
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Fig. 3 These bifurcation diagrams show a concentration-response curve of E-cadherin (Fig. 3a), β-catenin (Fig. 3b),
and Slug (Fig. 3c) with respect to membrane Dvl (d). If the cell starts in the epithelial steady state (d = 0), and the
level of Dvl is steadily increased, the cell remains in the epithelial steady state until d = 1.33 (vertical blue dashed
line). At this point, the cell undergoes EMT and transitions abruptly into a mesenchymal-like state. Once in the
mesenchymal-like state, the cell (and its protein levels) will stay there, even after the level of membrane Dvl is
decreased back to its initial value (d=0). Thebifurcationdiagrams illustrate thebistable switchunderlying the transition
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switch could explain how the EMT-derived mesenchymal cell is able to retain its

invasive phenotype and not revert to an epithelial state even in the absence of sus-

tained pro-EMT signaling from the microenvironment, for example in blood or

lymphatic vessels. The switch mechanism also suggests that it is not the lack of an

extracellular signal per se that forces the cells to revert to the epithelial phenotype

in the metastatic environment (the mesenchymal to epithelial transition, MET), but

rather a different extracellular signal in the new microenvironment is required to

render the switch reversible.

Sensitivity Analysis Shows E-cadherin is Influenced by Parameters Associated with Slug

To assess the sensitivity of the model to its various parameters, we carried out sensitiv-

ity analysis using a Latin Hypercube Sampling (LHS) [33] and Partial Ranked Correl-

ation Coefficient (PRCC). LHS is a methodology that allows us to divide the range for

each of our K parameters into N intervals and randomly sample a value from each

interval [34]. Under the constraint that N > 4
3 ∙K where K = 13 parameters in Eqs.

(1)–(3) and K = 8 in Eqs. (4)–(6), it would be necessary to create at least 18 intervals to

sample per parameter. However, in order to effectively sample the parameter space, 1 ×

105 intervals per parameter were created. Sampled values for each parameter are then

randomly assembled together into N parameter sets and the model is run for each dif-

ferent set of parameters [35]. Once the LHS has been carried out, PRCC analysis per-

mits us to transform our parameter input values and our outcomes into ranked values

and measure the correlation between the rank-transformed input parameters and the

rank-transformed outcomes [35]. As the Hill coefficients are all greater than 1 and are

thus ultrasensitive terms in the model, by using LHS and PRCC, we sought to under-

stand how the other parameters in the dimensional system influenced the steady state

behaviors of E-cadherin (E), β-catenin (B), and Slug (S), as well as any differences that

may occur when the system was nondimensionalized. Thus, the sensitivity analysis was

carried out on both systems presented. By examining the sensitivity of the steady state

behavior of our system to the nondimensional parameters, we were able to reduce the

parameter space and highlight any hidden relationships that may exist between the pa-

rameters and the steady state behavior of the variables.

For all of the parameters in both systems, uniform distributions were used and sensi-

tivity analysis was carried out at different values of Dvl. The ranges of the dimensional

parameter values are provided in Table 3, while the ranges for the nondimensional

parameters are listed in Table 4. After examining the partial correlation coefficients

between each of the individual ranked parameter values at different values of Dvl, the

parameters were found to be uncorrelated with each other. Scatterplots of the nondi-

mensional steady state values for E-cadherin (e), β-catenin (b), and Slug (s) at different

values of Dvl (d) in response to the nondimensional parameters are given in the Add-

itional file 1: Fig. S1. These plots show the monotonic behavior of the variable steady

states in response to changes in the different parameters, which is required to apply

PRCC. Additionally, this monotonic behavior was found to hold in the dimensional sys-

tem. The range of values considered for parameter A2 begins at 1 in Table 4. As shown in

the Additional file 1, E-cadherin (e) and Slug (s) lack monotonic behavior in response to

changes in A2. At d = 0, with A2 ϵ [0,1), b was found to be less than 0, which is not
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biologically realistic. While the addition of d to the system does reduce the range of A2 for

which we see b < 0, in order to be able to compare changes in sensitivity across different

levels of d, the entire range of A2 ϵ [0 1) was excluded from the analysis. Similar behavior

was found with α2, and thus the parameter range α2 ϵ [0 0.01) was excluded from the

analysis as well.

Figure 4 shows the PRCC analysis for the parameters with the steady state values for

E-cadherin, β-catenin, and Slug both prior to and during Wnt signaling. In Fig. 4a and

b, the relationship between the dimensional parameters in Eqs. (1) - (3) and the steady

state values of E, B, and S at Dvl (D) = 0 (4A) and Dvl (D) = 4 (4B) are examined. For

both values of Dvl (D), the β-catenin-GSK-3β complex binding rate (β2) influences the

steady state concentration of free cytosolic β-catenin (B) while the degradation rate of

Slug, β3, significantly influences the steady state concentrations of E-cadherin (E) and

Slug (S). These sensitivity relationships are preserved after the nondimensionalization is

carried out and we examine the relationship between the nondimensional parameters

of Eqs. (4) – (6) to the steady state behavior of e, b, and s. As shown in Figs. 4c and d, the

steady state behavior of β-catenin (b) is dependent upon the nondimensional rate at which

Table 3 Dimensional Parameter Ranges for Sensitivity Analysis

Parameter Minimum Value Maximum Value Units

D 0 4 nM

α1 0 1.2 × 10−1 nM
min

α2 1.0 × 10−2 2.0 × 10−2 nM
min

α3 0 2.0 × 10−1 nM
min

β1 0 1.515 × 10−1 1
min

β2 0 7.576 × 10−2 1
min

β3 0 7.576 × 10−2 1
min

k0 0 2.5 × 10−2 nM
min

k1 4.0 × 10−3 1.0 × 10−2 nM
min

k2 0 2.5 nM
min

ICS 1.65 × 10−2 10.0 nM

ICB 0 8.25 × 10−1 nM

ICE 2.75 × 10−3 2.0 × 10−1 nM

ICD 0 5.0 nM

Table 4 Nondimensional Parameter Ranges for Sensitivity Analysis

Parameter Minimum Value Maximum Value

d 0 6

A1 0 120

A2 1 2

A3 0 2

C1 0 5

C2 0 2.5

C3 0 2.5

F1 0 2.5

F2 0 25
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it binds to the GSK-3β complex (C2), while the steady state behaviors of E-cadherin (e)

and Slug (s) are both sensitive to the nondimensional degradation rate of Slug (C3).

One interesting difference between the parameter analysis of the dimensional model

and the nondimensional model is observed when examining sensitivity changes that

occur after Wnt signaling is activated. In Fig. 4a, in the absence of Wnt signaling, the

parameter k2 is not significantly correlated with any of the dimensional variables. But,

with an increase in the active membrane-bound Dvl in Fig. 4b, k2 significantly influ-

ences the steady state concentration of Slug. Similarly, in Fig. 4c, the concentrations of

the nondimensional steady state concentrations are not significantly correlated with

Fig. 4 Sensitivity analysis was carried out using Latin Hypercube and Pearson’s Ranked Correlation Coefficient
to understand the relationship between the steady state behavior of E-cadherin, β-catenin, and Slug and the
system parameters at different levels of Dvl. The dimensional model was explored in (a and b) while the
nondimensional model was explored in (c and d). A system without Wnt activation is shown in (a and c). (Fig. 4a)
Only β2 is significantly correlated (correlation coefficient (ρ) < −0.45, p-value <0.05) with the steady state behavior
of β-catenin (B), while β3 is significantly correlated (correlation coefficient (ρ) < −0.45 or correlation coefficient
(ρ) > 0.45, p-value <0.05) with the steady state behavior of E-cadherin (E) and Slug (S). Additionally, ICS is
significantly correlated with the steady state behavior of E-cadherin (E). (Fig. 4b): With the activation of
the Wnt pathway, the rate at which β-catenin (B) translocates to the nucleus and activates Slug (S), k2,
becomes significantly correlated with the steady state value Slug (s). (Fig. 4c) Only C2 is significantly
correlated (correlation coefficient (ρ) < −0.45, p-value <0.05) with β-catenin (b)‘s steady state behavior,
while C3 is significantly correlated (correlation coefficient (ρ) < −0.45 or correlation coefficient (ρ) > 0.45,
p-value <0.05) with the steady state behavior of E-cadherin (e) and Slug (s). (Fig. 4d) With the activation
of the Wnt pathway, the nondimensional rate at which β-catenin (b) translocates to the nucleus and
activates Slug (s), F2, becomes significantly correlated with the steady state values of E-cadherin (e) Slug
(s). This sensitivity of E-cadherin (e) to F2 but not k2 in (Fig. 4b) indicates that the steady state behavior of
E-cadherin may be sensitive to the ratio of the rate at which β-catenin activates Slug to the IC50 value of
Slug needed to inhibit E-cadherin production
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changes in the F2 parameter, which is defined as F2 ¼ k2�ICB
k1�ICS

in Table 2 and thus includes

the k2 parameter. With the activation of the Wnt pathway in Fig. 4d (d = 6), changes in

F2 become significantly correlated with the steady state concentrations of Slug (s) and

E-cadherin (e). This additional sensitivity of E-cadherin (e) to changes in F2 could be

due to the underlying sensitivity to the parameter ICS, which exists in the denominator

of F2 and was shown to influence the concentration of E in the dimensional model.

However, due to the sensitivity of E-cadherin (E) to changes in ICS in Fig. 4a, it would

be expected that the nondimensional concentration of E-cadherin (e) would be sensi-

tive to changes in F2 prior to Wnt signaling (d = 0), which is not the case. This sensitiv-

ity discrepancy suggests that, with the activation of the Wnt pathway and the increase

in cytosolic β-catenin, the ratio of the rate at which β-catenin is able to activate Slug to

the IC50 value of Slug necessary to inhibit E-cadherin production is influential in the

steady state concentration of E-cadherin.

The sensitivity relationships in Fig. 4 suggest that the protein that is both responsible

for cell-to-cell adhesion and is a characteristic marker of the epithelial phenotype, E-

cadherin, is heavily influenced by changes in the concentration of Slug that is present.

Even before Wnt signaling is activated, the concentration of E-cadherin present at the

membrane for cell-to-cell contact is susceptible to changes in the rate at which Slug is

being destroyed and the IC50 value of Slug necessary to inhibit production of E-

cadherin. With the activation of the Wnt signaling pathway, the sensitivity of the level

of Slug to the translocation of β-catenin to the nucleus changes. Now, with an external

stimulus and activation of the Wnt pathway, the change in the compartmentalization

of β-catenin from the cytosol to the nucleus significantly influences changes in the

steady state behavior of Slug, which is then capable of overcoming the IC50 value ne-

cessary to inhibit E-cadherin production. This change in significance for Slug, as well

as the sensitivity of E-cadherin to ICS and the ratio of k2 to ICS, highlights the possibil-

ity of therapeutically targeting nuclear events for the prevention of the change from the

epithelial to the mesenchymal phenotype, as well as the possibility that increasing the

ICS value may inhibit the switch once the pathway has been activated.

Two-Parameter Bifurcations Highlight Cellular Rates important to EMT and the Bistable

Switch

To further understand how changes in the parameters influence the system, particularly

the bistable switch behavior, nondimensional two-parameter bifurcation diagrams were

generated using XPPAUT. Shown in Fig. 5, these plots depict the steady state pheno-

type of the simulated cell over the parameter space. Along the x-axis of each plot, Dvl

(d) is varied. Along the y-axis, the non-dimensional parameters A1, A2, A3, C1, C2, C3,

F1, F2, n1, n2, n3, and n4 are varied one at a time. In each of the figures, the cell can

only be in the epithelial steady state for parameter values in Region I and can only be

in the mesenchymal steady state in Region III. In Region II, either steady state is

possible depending on the history of the cell. If the system begins in the epithelial

steady state (Region I) and crosses the L1 boundary into Region II, the cell will remain

in the epithelial steady state. Similarly, if the cell begins in the mesenchymal steady

state (Region III) and crosses the L2 boundary into Region II, it will remain in the

mesenchymal steady state. If, based on the parameter values, the system begins in
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Region II, it will depend upon the initial conditions whether or not the cell assumes an

epithelial or mesenchymal phenotype. The nondimensional parameter value used in

this model is indicated by a dashed line in each subplot of Fig. 5. For these parameter

values, the cell begins as an epithelial cell in Region II. Once the concentration of Dvl

(d) is increased such that the L2 boundary is crossed into Region III, the cell will make

the transition from epithelial to mesenchymal. If, however, the concentration of d is

then reduced at this parameter value, the newly formed mesenchymal cell would move

back into Region II and conserve its mesenchymal phenotype due to the fact that the

cell was unable to cross L1. Hypothetically, if a cell begins as a mesenchymal cell in Re-

gion II and the concentration of Dvl (d) is decreased so that the L1 boundary is

crossed, the cell will transition from a mesenchymal cell into an epithelial cell as the

system transitions from Region II to Region I. The region of bistability (i.e. Region II) is

seen to be fairly robust to parameter variation.

Note that, in Fig. 5g, once F1 overcomes a certain threshold value, the system must

cross over L2 and pass from Region II to Region III with the addition of enough Dvl

(d) to the system. This behavior indicates that an epithelial cell beginning in Region II

must switch to the mesenchymal phenotype so long as enough Wnt signaling is ap-

plied. As F1 represents the nondimensional rate in which Dvl inactivates the GSK-3β

degradation complex, this result suggests that, at if the rate at which Dvl inhibits the β-

catenin degradation is high enough, so long as enough Dvl is active at the membrane,

Fig. 5 In each subfigure, Dvl (d) is varied along the x-axis. Along the y-axis, the nondimensional
parameters A1 (a), A2 (b), A3 (c), C1 (d), C2 (e), C3 (f), F1 (g), F2 (h), n1 (i), n2 (j), n3 (k), n4 (l) are varied
one at a time. For those parameter values where the cell begins in Region I and remains in Region I,
or crosses L1 into Region II, as Dvl (d) is increased, the cell is committed to the epithelial steady
state. For those parameter values where the cell begins in Region III and remains in Region III, or
crosses L2 into Region II, as Dvl changes, the cell is committed to the mesenchymal steady state. For
parameter values that allow the cell to begin in region two, the starting steady state depends on the
system’s initial conditions. If the cell begins in the epithelial steady state and crosses L2 into Region
III with a change in Dvl (d), the cell will switch to the mesenchymal steady state. If the cell begins in
the mesenchymal steady state in Region II and crosses L1 into Region I with changes in Dvl (d), the
cell will switch to the epithelial steady state. The parameter values used in this system are marked
with a dashed line. In this model, the cell begins in Region II with epithelial initial conditions
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β-catenin will accumulate in the cytosol and the cell will be forced from the epithelial

to the mesenchymal phenotype.

Similar behavior occurs in Fig. 5h with F2. For a high value of F2, in the presence of

sufficient Wnt signaling, an epithelial cell must undergo the bistable switch and enter

the mesenchymal steady state. This behavior is particularly interesting in light of what

we now know about the sensitivity of the Slug and E-cadherin steady state concentra-

tions to changes in F2, as well as the relationship between F2 and k2 and ICS. With the

activation of the Wnt signal and the movement of Dvl to the membrane, if the rate at

which β-catenin moves to the nucleus and binds with TCF is fast enough or the IC50

concentration necessary to inhibit E-cadherin production is low enough, Slug will be

able to accumulate to a concentration sufficient to force the cell to switch from the epi-

thelial to the mesenchymal phenotype.

Conclusions
The ability of a carcinoma cell to adopt the mesenchymal phenotype due to external

signals from the microenvironment and conserve the newly acquired invasive proper-

ties in the absence of an extracellular cue suggests that the switch from the epithelial to

the mesenchymal state is bistable in situ. While multiple intracellular signaling path-

ways can stimulate EMT, we consider Wnt signaling as a case study. The Wnt signaling

pathway has been under intense scrutiny from both mathematicians and biologists in

order to understand how it contributes to changes in cellular behavior. Mathematical

models attempting to describe the intracellular pathway are often complex and limited

to one group of protein interactions. Instead of examining one subset of the Wnt path-

way, the model presented in this work examines the three key relationships centered

around β-catenin that comprise the Wnt signaling pathway and drive the change in cel-

lular phenotype. Studying the system as a whole provides us a better understanding of

which interactions are likely to be responsible for the bistable switch.

This model opens up many avenues for possible theoretical and practical exploration.

The bistable switch proposed in this model is an all or nothing change in behavior: the

cell can either occupy the epithelial or the mesenchymal steady state. However, recent

work has suggested that the transition may, instead, be a gradient, whereby the cell can

occupy at least one (if not more) intermediate states as it progresses towards the mesen-

chymal phenotype [6]. Using a scaffold model to expand upon the complicated mecha-

nisms involved in each step of Wnt pathway activation, as well as pathway crosstalk, may

indeed reveal intermediate steady states for the cell to occupy during the transition.

With the theory of a switch underlying EMT, it would also be prudent to examine

how the transition is affected by the presence of neighboring cells. The stabilization of

these bonds could ultimately work against the loss of adhesion in the epithelial cell and

the resulting transformation. Additionally, sensitivity analysis and exploration of the re-

sponse of the system to changes in parameter values as Wnt signaling is activated sug-

gests that excellent candidates for possible therapeutic intervention are the β-catenin

degradation complex, the shuttling of β-catenin to the nucleus, and the IC50 value of

Slug necessary to inhibit E-cadherin production. While the steady state behavior of free

β-catenin was shown to be sensitive to its own rate of degradation, the steady state be-

havior of E-cadherin is actually sensitive to changes in Slug. In particular, E-cadherin is

sensitive to the degradation of Slug and the half maximal concentration of Slug
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necessary to inhibit E-cadherin production, as well as the ratio of rate of Slug activation

via β-catenin to the half-maximal concentration of Slug necessary to inhibit E-cadherin

production once the pathway has been activated. These insights, coupled with the be-

havior of the system in response to changes in both the F2 parameter and Dvl (d) acti-

vation in Fig. 5h, suggests that continued exploration of how the switch is affected by

the presence of neighboring cells, as well as the formation of the E-cadherin- β-catenin

complex, is necessary. The stabilization of intercellular bonds could ultimately work

against the loss of adhesion in the epithelial cell and the resulting transformation. Pos-

sible avenues for practical exploration would be therapeutically raising the half-

maximal concentration of Dvl necessary to inhibit β-catenin degradation or lowering

the rate at which β-catenin translocates to the nucleus. Therapies targeted at the IC50

concentration of Slug necessary to inhibit E-cadherin production, as well as inhibiting

the movement of β-catenin to the nucleus could prevent the activation of Slug and ul-

timately work to maintain the E-cadherin- β-catenin complex at the membrane.

Pharmacological exploration of these components of the Wnt pathway could help pre-

vent EMT prior to intravasation and metastasis, the primary cause of cancer-related

mortality.

Additional file

Additional file 1: Figure S1. Figures S1A-S1EN show the monotonic behavior for each of the three nondimensional
variables (e, b, s) in response to changes in the 8 nondimensional parameters at select values of Dvl (d). Figures in the
left column show the parameter varied over its parameter space in a system with epithelial initial conditions while
figures in the right column show the individual parameter varied over its parameter space with mesenchymal initial
conditions (DOCX 25562 kb)
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