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Abstract

Background: The genetic diversity of cancer and the dynamic interactions between
heterogeneous tumor cells, the stroma and immune cells present daunting
challenges to the development of effective cancer therapies. Although cancer
biology is more understood than ever, this has not translated into therapies that
overcome drug resistance, cancer recurrence and metastasis. The future
development of effective therapies will require more understanding of the dynamics
of homeostatic dysregulation that drives cancer growth and progression.

Results: Cancer dynamics are explored using a model involving genes mediating
the regulatory interactions between the signaling and metabolic pathways. The
exploration is informed by a proposed genetic dysregulation measure of cellular
processes. The analysis of the interaction dynamics between cancer cells, cancer
associated fibroblasts, and tumor associate macrophages suggests that the mutual
dependence of these cells promotes cancer growth and proliferation. In particular,
MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by
amino acids recycled from the stroma. This leads to a proliferative growth supported
by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine
sourced from the stroma. In other words, while genetic aberrations ignite
carcinogenesis and lead to the dysregulation of key cellular processes, it is
postulated that the dysregulation of metabolism locks cancer cells in a state of
mutual dependence with the tumor microenvironment and deepens the tumor’s
inflammation and immunosuppressive state which perpetuates as a result the
growth and proliferation dynamics of cancer.

Conclusions: Cancer therapies should aim for a progressive disruption of the
dynamics of interactions between cancer cells and the tumor microenvironment by
targeting metabolic dysregulation and inflammation to partially restore tissue
homeostasis and turn on the immune cancer kill switch. One potentially effective
cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor
microenvironment to a state of reduced inflammation so as to enable an effective
intervention of the immune system. The translation of this therapeutic approach into
treatment regimens would however require more understanding of the adaptive
complexity of cancer resulting from the interactions of cancer cells with the tumor
microenvironment and the immune system.
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Background
Cancer is a complex disease which continues to challenge old and newly approved

therapeutic drugs. The relapse of treated patients and the inevitable drift to metastasis

highlight the adaptive complexity of cancer. Although the mechanisms underlying the

genesis and progression of cancer are better understood than ever [1], the therapeutic

drugs being developed so far did not lead to an inflexion towards a cure for all patients

[2]. The collateral damage of chemotherapy and radiation and the inevitable onset of

resistance followed by metastasis is a serious limitation of the current cancer arma-

mentarium. The selective targeting of oncogenes through kinase inhibition is promising

in its rationale but equally exposed as a therapy to the problem of drug resistance.

Combining multiple drugs is an approach that has been explored to overcome resist-

ance, however more research is needed to achieve effective combinations of drugs that

are tolerable and non-interactive [3]. Immune checkpoint blockades provide another

cancer therapeutic avenue with a clinically proven potential [4–10]. Immunotherapy’s

impact on patient survival rate and lifespan will ultimately depend on the extent to

which an effective antitumor immunity is achieved with manageable immune toxicity

[11]. Adoptive cell transfer using engineered T cells that recognize specific cancer anti-

gens has shown promising clinical results against some cancers such as acute lympho-

blastic leukemia [12, 13]. However, given cancer heterogeneity, finding target antigens

that are unique to cancerous cells is a critical challenge for this type of therapy [14].

On the other hand, oncolytic virotherapy, which has recently received increased atten-

tion, faces the formidable challenge of virus delivery and intratumoral spread and

cross-priming the host immune system against the cancer while mitigating safety con-

cerns such as virus mutability and unexpected toxicity [15]. Other cancer therapeutic

strategies have also been explored, including epigenetic therapy consisting of DNA-

demethylation and inhibition of histone deacetylases to undo the effect of mutated

chromatin-remodeling enzymes implicated in cancerous cell proliferation [16–18].

These advances in cancer drug development are increasingly leveraged within

integrated treatment strategies, combining surgery, radiation, chemotherapy, endocrine

therapy, kinase inhibition and immune checkpoint blockades, to extend their thera-

peutic reach to larger groups of patients and achieve longer remission periods for those

patients that are responsive [19]. Although an improvement of the survival rates for

some types of cancer have been achieved, a cure is still beyond reach [2]. Indeed, even

the simultaneous combination of multiple targeted therapies is predicted to fail in the

presence of a single genetic mutation that is resistant to multiple targeted drugs [20].

Drug-conjugated antibodies may not improve cancer free survival either. For example

the combination of Bevacizumab and paclitaxel did not deliver any significant benefit

for HER2+ breast cancer [3], highlighting the need for more understanding of how to

combine antibodies with traditional chemotherapy and targeted tyrosine kinase inhibi-

tors to minimize toxicity and maximize effectiveness. In any case, the evolving genetic

heterogeneity of tumors will remain a serious challenge to the development of an

effective cancer therapy through the combination of multiple drugs [19, 21]. This

complex adaptive nature of cancer, for which even targeted combination therapies

would not address unmet therapeutic needs, constitutes a compelling reason to explore

a paradigm shift in the search for a cure. It may be argued that cancer adaptive

complexity can only be successfully countered by a likewise adaptive therapeutic
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strategy. The development of such therapeutic system requires a comprehensive under-

standing of the integrated working of the drivers underlying the dynamics of homeo-

static dysregulation that drives cancer progression. Significant advances have been

made on this front, yielding a chronological map of the processes underlying carcino-

genesis and the cellular and tissue dynamics driving cancer progression leading to me-

tastasis [1]. Indeed, the explicit framing of cancer dynamics in terms of hallmarks

identifies specific windows of therapeutic interventions that can be used to disrupt the

obstinate march of cancer. The challenge however, is how to counter the adaptive com-

plexity of cancer dynamics in response to therapy. The genetic diversity within a tumor

and across tumors of the same cancer type is a formidable challenge making of the

disease a moving target which limits the staying effectiveness of most cancer drugs.

The active role of the tumor microenvironment (TME) in the promotion and mainten-

ance of tumor growth adds another dimension to the complexity of cancer dynamics.

This makes it an imperative that the search for effective therapies should take in

consideration not only the genetic drivers of the disease but also the confluence of their

effects in collusion with the TME to promote cancer progression. In this respect, the

article explores an understanding of cancer dynamics from the perspective that infor-

mation and energy are the primary organizing drivers of the adaptive complexity of

living organisms [22]. More specifically, cancer dynamics are postulated to be driven by

the reciprocal dependence between the dysregulated flow of information channeled by

the genetically altered cell signaling networks and the energy production and biomass

transformations enacted by a reprogrammed metabolism. Furthermore, it is assumed

that the TME represents a necessary catalytic milieu enabling the provision and ex-

change of growth factors and nutrients required for tumor growth. A key element of

this view of cancer dynamics is the role of feedback as a double edge lever of biological

regulation. Indeed, on one hand feedback enables robustness of biological processes

and the maintenance of cellular and tissue homeostasis [23–26]. However, beyond a

certain degree of signaling and metabolic dysregulation, feedback between the signaling

pathways, metabolism and the TME may become the mechanistic conduit for exacer-

bating the drift away from homeostasis and for driving tumor growth. In this respect,

do the feedback signals and biomass exchanges between cancer cells (CCs) and the

TME carry cancer vulnerabilities that can be therapeutically targeted? If such vulner-

abilities do exist, then how can they be leveraged to turn on the cancer kill switch and

enlist a decisive intervention of the immune system? These and other questions related

to cancer dynamics will be explored in the following sections using simplified models

of cellular processes and the tumor microenvironment.

Genesis of cancer dynamics
The causal effects linking genetic alterations and the phenotypic state trajectories of

cancer cells are enacted within the TME context and channeled through operational

deviations from homeostasis of growth, proliferation, autophagy, angiogenesis, apop-

tosis, survival, focal adhesion, cell cycle, DNA repair, and energy production. The

dysregulation of these cellular processes are known to implicate various sets of genetic

drivers as supported by genome wide studies of different cancers [27–32]. However, the

high number of assumed cancer driver genes poses a challenge to the development of a

much needed insight about the dynamics of cell signaling and metabolic interactions
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underlying tissue homeostasis. Furthermore, it is not clear whether all the genes identified

by the various genome wide studies have an equally determinant impact on carcinogenesis

and cancer progression. Assumptions about the existence of principles driving the overall

dynamics of cancer as a system of heterogeneous multiplicity of biological parts and

modules, may points to a select high confidence set of cancer implicated genes as the key

determinants of carcinogenesis. In this respect, it has been suggested that biological com-

plexity is driven by a reciprocal causality between energy/biomass production and informa-

tion flow [22]. This notion has been recently supported by a comprehensive analysis of the

reciprocal regulation shown to exist between the cell signaling network and the metabolic

circuitry [33–35]. Therefore, it may be plausible to hypothesize that the genes mediating

the interactions between cell signaling and metabolism are critical determinants of the

dynamics underlying tissue homeostasis. These levers of the signaling-metabolic interface

include the energy sensor AMPK, the proliferation regulator MTOR, the growth regulators

MYC and AKT, the oxygen sensor HIF, and the apoptotic trigger P53 (see Fig. 1). These

genes are interconnection hubs of the signaling circuitry that maintains tissue homeostasis

Fig. 1 Integrated signaling and metabolic cellular processes. Cellular metabolism is regulated by key
signaling pathways of growth and proliferation which include RAS-ERK and PI3K-MTOR. These pathways are
also involved in the regulation of the cell cycle, autophagy, survival and apoptosis in concert with the TGFβ,
NF-χβ, and P53 signaling pathways among others
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and prevents runaway growth and proliferation. For instance, MYC and AKT, which are

the end effectors of mitogenic pathways, regulate the uptake of glucose through GLUT as

well as the catalytic capacity of the downstream glycolytic enzymes including LDHA and

MCT4. An upregulation of mitogenic pathways, whether caused by mutant genes or

overabundance of growth factors, would amplify the glycolytic flux feeding the glycosyl

pathway, the PPP (pentose phosphate pathway), the serine pathway, and the one carbon

metabolism, which drive biomass production, including nucleotides, glycosyl, glycogen,

and non-essential amino acids (AA). Under hypoxic conditions, an elevated glycolytic

activity can be further enhanced by HIF through its excitatory action on the lactate trans-

porter MCT4 as well as the inhibition of PDH which limits as a result the flux of pyruvate

from glycolysis to the tricarboxylic acid (TCA) cycle. Furthermore, the mutant form of IDH

found in many cancers leads to the production of the oncometabolite 2-HG which further

drives the action of HIF as a promoter of heightened glycolysis under hypoxic conditions.

Taken together, MYC and AKT as the glycolytic effectors of the RAS-ERK and PI3K-AKT

pathways, can intensify glycolysis either in response to higher levels of extracellular stimuli

such as growth factors and cytokines or as a result of oncogenic alterations involving genes

such as RAS, RAF and EGFR. Moreover, tumor growth leads to hypoxic conditions in the

region trailing the invasive front, causing HIF to deepen the elevated glycolytic regime as ex-

plained above. In addition to its regulatory control on glycolytic rate, MYC can upregulate

the uptake of glutamine through ASCT2 and its transformation by GLS1 to feed the TCA

cycle as well as modulate the synthesis of lipids, with the help of AKT. In summary, the sig-

naling pathways converging on MYC, AKTand HIF have the capacity to reprogram cell me-

tabolism to fulfill the biomass needs of tumor growth by directing the biosynthesis of

proteins, lipids and nucleotides while maintaining an adequate level of cellular ATP. How-

ever, in order to sustain tumor growth progression, MTOR needs to be coopted to promote

runaway cell proliferation by driving ribosomal protein synthesis and translation. While it is

widely accepted that MTOR is inhibited by AMPK under conditions of lower cellular en-

ergy sensed by a higher AMP/ATP ratio, it has been recently shown that both AMPK and

MTOR can be concurrently activated by amino acids [36]. The effects of concurrent AMPK

and MTOR activation would constitute a convergence of the cell regulatory dynamics in

support of proliferation by driving mitochondrial biogenesis, ATP generation, fatty acid oxi-

dation, ribosomal protein synthesis, translation, cell cycle progression through the restric-

tion point, and autophagy. The drive towards uncontrolled proliferation is further

accentuated in the presence of mutant P53 and PTEN since these are expected to be less ef-

fective in dampening the survival signals sourced from AKT. The signaling dynamics inte-

grated through the actions of the effectors MYC, AMPK, AKT, MTOR, HIF, PTEN, and

P53 can sustain tumor growth progression provided that extracellular stimuli, such as

growth factors and cytokines, are maintained along with sufficient availability of glucose,

glutamine, amino acids and fatty acids. In other words, while genetic alterations lead to

dysregulated signaling and a reprograming of metabolism in support of cell growth and pro-

liferation, synergetic intercellular interactions and a promoting tumor microenvironment

will still be required to sustain tumor growth. Of particular interest is the contributions of

CAFs (cancer associated fibroblasts) and TAMs (tumor associated macrophages) in helping

cancer cells acquire the necessary supply of glutamine, fatty acids, and amino acids on one

hand and at the same time maintaining an inflammatory and immunosuppressive environ-

ment that protects tumor growth from the intervention of the immune system.
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Role of the tumor microenvironment
The active role of the TME in promoting and sustaining tumor growth is increasingly

accepted as pivotal to cancer progression [37–43]. In particular, it is believed that

TAMs and CAFs affect tumor growth and modulate the intervention of the immune

system through synergetic interactions with cancer cells [37–39, 44, 45]. More specific-

ally, cancer cells’ secreted cytokines and chemokines, such as TGF-β, are known to

activate CAFs [37, 38]. In return, CAFs provide the TME and cancer cells with recycled

nutrients such as glutamine and amino acids, believed to be resulting from autophagy

caused by oxidative stress, itself induced by adjacent cancer cells [42, 43]. It has also

been reported that CAFs and cancer cells co-reprogram their metabolism whereby the

lactate output of CAFs feeds the so-called reverse Warburg effect in cancer cells to

drive their aerobic metabolism [46]. Furthermore, cytokines and chemokines, such as

CCL2, which are secreted by cancer cells and CAFs are known to be involved in the re-

cruitment of macrophages and the induction of their transformation into TAMs [47–49].

Once recruited to the tumor, both TAMs and CAFs have a direct impact on cancer prolif-

eration and metastasis [47, 50]. In particular, CAFs, which supply cancer cells with

recycled nutrients and growth factors as discussed earlier, also release TGF-β and promote

as a result the immunosuppressive milieu of the TME [51, 52]. The inflammatory and im-

munosuppressive state of the tumor microenvironment is further reinforced by TAMs,

hence shielding cancer cells from the actions of the adaptive immune system [40, 45]. The

reciprocal effects characterizing the interactions between TAMs, CAFs and cancer cells

will be explored further using the simplified model of TME illustrated in Fig. 2 [1, 37].

The disruption of the interaction signals and nutrient flows between cancer cells, CAFs

and TAMs may constitute an effective therapeutic approach to impede the malignant

Fig. 2 TME Cells’ interactions. The synergetic interactions between CAFs, TAMs and cancer cells promote
inflammation, immunosuppression and tumor growth. The dotted lines show indirect interactions, as is the
case with the release of TGF-β from the extracellular matrix (ECM) degraded by the actions of proteases
secreted by cancer cells
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dynamics of the TME and blunt the ability of cancer cells to enlist the support of TAMs

and CAFs. Indeed, in addition to the consideration of cancer genetic signatures, cancer

therapies should account for the active involvement of the TME in shaping the trajectories

of tumor growth dynamics. Therapeutic interventions based on an understanding of these

dynamics may lead to desirable clinical outcomes provided that they can shunt the rewir-

ing of the signaling and metabolic networks associated with the accumulation of genetic

mutational burden. One step towards the exploration of therapeutic strategies that factor

in cancer dynamics would entail understanding how the dysregulated dynamics of the cell

signaling and metabolic pathways both impact and reflect the interactions between cancer

cells, CAFs and TAMs. Seeking such understanding, a putative model of TME cell inter-

actions, illustrated in Fig. 2, will be used to explore questions about the potential fate of

cancer cells under various therapeutic approaches targeting the communication signals

and nutrient flows facilitated by the TME. One particular question of interest is: which

therapeutic disruption of cancer dynamics would most probably lead to a sustained rever-

sal of tumor growth and keeps at bay the reactionary robustness of the disease state? In

other words, is there a kill switch that can be flipped to disable the unholy union between

cancer cells, CAFs and TAMs and restore tissue homeostasis?

Modeling cancer dynamics
Although cancer cell signaling and metabolic dysregulation may be caused by somatic

gene mutations, gene copy number variations and DNA hypermethylation, the focus

will be primarily on somatic mutations as the main drivers of carcinogenesis. In

particular, let pk , k = 1 ,… ,N, N > 0, be the probability that the kth gene in a given

pathway w harbors deleterious mutations or is subject to copy number variations. The

probability Qw that such pathway is dysregulated is then defined as follows:

Qw ¼ 1−
YN

k¼1
1−pkð Þ ð1Þ

The value of pk is estimated to be the mutation rate of the gene in question. Using

this definition, the probabilities of pathway dysregulation is illustrated for different can-

cers in Fig. 3 (Additional file 1: Table S1), using the 127 gene set and the classification

of cellular processes identified in Kandoth et al. [27]. The likelihood of dysregulation of

cellular processes shows a significant dispersion or spread across cancer types as

asserted by the corresponding values of the mean and standard deviation of the path-

way dysregulation measure (Additional file 1: Table S1). This reiterates the fact that the

likelihood of dysregulation for the major cell signaling pathways is dependent on the

cancer type. Such variability of the probability of pathway dysregulation as a function

of the cancer type also applies to the cell cycle, genome integrity, survival, apoptosis,

growth, and proliferation (Additional file 1: Table S1). The “Other” category registers,

expectedly, a significant likelihood of dysregulation since it includes genes such as

NOCH1, NAV3, MALAT1, and ARHGAP35 known to be associated with cell prolifera-

tion as well as other genes such as NPM1 and POLQ which are involved in maintaining

genome integrity. While being reductionist compared to the results yielded by the

many comprehensive genome wide studies of cancer [27, 28, 30, 31, 53], the proposed

measure of pathway dysregulation can be instrumental in the analysis of the interac-

tions between cancer cells and the tumor microenvironment (see Fig.4). Of particular
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interest is how the effects of these interactions collude with pathway dysregulations to

stimulate the dynamics of cancer growth. A number of hypotheses can be put forth

about the potential causal chains linking the dysregulation of signaling and metabolic

pathways and the initiation and maintenance of cancer growth. First, the probabilities

of dysregulation of the RTK, PI3K and MAPK signaling pathways are significantly high

Fig. 3 Dysregulation probabilities of cellular pathways. The dysregulation probabilities clearly distinguish the
different cancer types and points to a significant differential in the likelihood of altered regulation across
different cellular processes. The probabilities are computed using the set of 127 genes and relevant data
reported in [27] (Additional file 1: Table S1)

Fig. 4 Cardinal pathways mediating the TME-CCs interactions. The TME-CCs interaction dynamics are postulated
to be driven by cancer cells enlisting of CAFs and TAMs and the subsequent induction of an inflammation and
growth promoting tumor microenvironment

Derbal Theoretical Biology and Medical Modelling  (2017) 14:18 Page 8 of 18



for most types of cancer. Driven by growth factors from the stroma, these pathways

may, with high probability, be the first drivers of an upregulated glycolysis in cancer

cells. The consequent increase of lactate secretion into the TME will thereafter lead to

its acidification and the activation of TGF-β [54], leading to the recruitment and trans-

formation of CAFs. In addition to taking up lactate to feed their metabolism, CAFs are

thought to undergo autophagy due to oxidative stress induced by cancer cells [37], sup-

plying as a result recycled nutrients such as glutamine and amino acids to neighboring

cancer cells. Given the recently reported evidence that AMPK and MTOR can indeed

be concurrently activated by amino acids [36], we postulate that it is precisely this add-

itional feedback action of amino acids’ provision by CAFs that stabilizes the initiation

of cancer cell growth and proliferation. With the concurrent activation of AMPK and

MTOR in cancer cells, the ribosomal protein synthesis and translation processes are

activated along with an operational TCA cycle, putatively fed by beta oxidation of fatty

acids and recycled glutamine from CAFs. In addition, AKT being the end-effector of

the PI3K signaling pathway would facilitate lipid synthesis through its action on ACLY.

The CCs-CAFs interactions lead to a dependence between cancer cells and the stroma,

whereby cancer cells provide lactate and induce the activation of TGF-β while CAFs

provide glutamine, amino acids, fatty acids and growth factors to feed cancer growth.

The dynamics of this CCs-CAFs system are further stabilized and perpetuated by in-

flammation as well as a ratcheted up release and activation of TGF-β in the TME.

Furthermore, the oncogenic dysregulation of the RAS, MYC and the MAPK pathways

in cancer cells are known to induce the production of growth factors and cytokines

such as VEGF, IL-6, IL-10, and IL-1β, leading to the recruitment and the tumorigenic

transformation of macrophages [44, 55, 56]. The maintenance of an inflammatory TME

is further stabilized through the JAK/STAT and the IKK/NF- χβ pathways, whose

effects are robustly sustained by a feedback from cancer cells through the production

of inflammatory cytokines such as IL-1β, IL-6 and TNF-α [57–61]. Not only does

inflammation feed the accelerated growth and proliferation through the JAK/STAT

pathway, it also drives survival through the IKK/NF- χβ pathway (see Fig. 4).

The stability of the CCs-TME dynamics, as described above, deepens the state of in-

flammation in the TME, whereby cancer growth and proliferation increases the release

and activation of TGF-β as well as the secretion of inflammatory cytokines and growth

factors maintaining as a result the active roles of the CAFs and TAMs in supporting a

cancer promoting TME. The ensuing tumor growth progression is known to be corre-

lated with an increased release and activation of TGF-β in the TME as well as a switch

of its role from being a tumor suppressor to a tumor promoter [62–67]. This role

switching has been hypothesized to be the result of the balance between the dual, an-

tagonistic effects of TGF-β on cell proliferation induced through its SMAD-dependent

and non-SMAD-dependent signaling pathways [63, 64]. In line with this hypothesis,

the effects of TGF-β abundance in the TME, channeled through the MAPK and PI3K

signaling pathways (see Fig. 4), would further promote the cancer proliferation dynam-

ics driven by the CCs-CAFs-TAMs interactions. At the same time the TGF-β regula-

tion, via its canonical pathway, of the cell cycle passage through the restriction point

may be abrogated due to the dysfunction of the RB tumor suppressor (see Fig. 4).

These cancer proliferation dynamics are expected to persist given the genetically

altered apoptotic and DNA repair pathways, and the immunosuppressive state of the
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TME promoted by the actions of the TGF-β both as an inducer of Tregs and as an

antagonist of the immune functions of NK, DC and T cells [68–70]. Moreover, recently

published results have provided new evidence about the role of TGF-β, acting

cooperatively with VEGF, in maintaining an immunotolerant TME [71].

The stochastic dynamics of cancer
The core circuitry driving cancer cell state dynamics is suggested to be dynamically

wired to balance the production and use of energy and biomass, supporting the impera-

tive of survival and growth. Glycolysis and the TCA cycle represent the two critical

cellular processes responsible for carrying out this imperative. Both processes are regu-

lated by competing signals sourced from growth factor stimuli and channeled through

the MAPK and PI3K pathways. The balancing act maintaining energy sufficiency and

supporting the growth imperative is brokerage by the AMPK antagonistic action on

MTOR, while the availability of energy antagonizes AMPK. It is however plausible, as

discussed earlier, that the dysregulation of the RTK, MAPK and PI3K pathways can be

locked into a pattern of convergent effects that drive the emergence of a stable CCs-

CAFs interaction dynamics. This CCs-CAFs system is suggested to be the source of an

AA-dependent concurrent activation of AMPK and MTOR and the subsequent loss of

the regulated balance between the activity levels of glycolysis and the TCA cycle. The

causal chain implicating genetic mutations in the altered information flow sourced

from growth factor stimuli and leading to the loss of energy-biomass homeostasis, may

be characterized using the likelihood measure of pathway dysregulation, introduced

earlier. In particular, let QGly, QTCA, QAPO, QSRV, and QCCP be the probabilities of

dysregulation of glycolysis, the TCA cycle, apoptosis, survival and the cell cycle

progression through the restriction point respectively. Given the model of Fig. 4, the

dysregulation probabilities are estimated as follows:

QGly ¼ 1−QS� 1−pMTORð Þ� 1−pHIFð Þ� 1−QPI3Kð Þ ð2Þ

QTCA ¼ 1−QS� 1−pAMPKð Þ� 1−QMetabolismð Þ ð3Þ
QAPO ¼ QGI ð4Þ
QSRV ¼ 1− 1−pIKKð Þ� 1−pFOXð Þ� 1−QOtherð Þ� 1−QTFð Þ ð5Þ

QCCP ¼ 1−QS� 1−pMTORð Þ� 1−QTGFβ

� �
� 1−QCell Cycle

� �
� 1−QPI3Kð Þ ð6Þ

QS ¼ 1−QRTKð Þ� 1−QMAPKð Þ� 1−pMYCð Þ ð7Þ

pHIF is set to the mutation rate of VHL whose lifted inhibition of HIF leads to the

decoupling between glycolysis and the TCA cycle even in the presence of oxygen.

Likewise, pAMPK is set to the cumulative rate of mutation and deletions of LKB1, which

activates AMPK in response to ATP depletion relative to AMP and ADP. On the other

hand pMYC is estimated using the cumulative rate of mutation and amplification for the

members of the MYC family, in particular MYC, MYCL1 and MYCN (Additional file 1:

Table S2). QMetabolism, QGI, QTF, QOther are the dysregulation probabilities for the

cellular pathways classified in [27] as “Metabolism”, “Genome Integrity”, “Transcription

Factors/Regulators” and “Other” respectively. The latter two sets of genes are deemed

to be involved either directly or indirectly in the survival pathways along with IKK and
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the FOX family of genes. The dysregulation probabilities for the five cellular processes

(glycolysis, TCA cycle, survival, apoptosis, and cell cycle progression through the re-

striction point) may constitute a functional signature of the genetic alterations underlying

carcinogenesis and tumor growth progression (see Fig. 5, Additional file 1: Table S3). Ex-

ploring how the interactions between these key cellular processes lead to the emergence

of cancer dynamics may lead to insights about potential vulnerabilities that can be

therapeutically targetable. Starting from the assumption that the cell genetic alterations

are induced by randomly occurring events, cancer may be viewed as a dynamical system

driven by the stochastic states of the cellular processes. Each cellular process w can either

be in a state of dysregulation with a probability Qw, as computed above, or in a regulated

state with a probability 1 −Qw. Let the outputs of glycolysis and the TCA cycle be f(v(t), ϑ)

and g(v(t), φ) representing the residual energy and cell biomass that can be used for

growth, where ϑ and φ are random variables representing the states of glycolysis and the

TCA cycle respectively. v(t) is a vector representing the availability of nutrients, growth

factors, and cytokines. The convolution of these stochastic processes defined as hðtÞ ¼ R t
0

f ðτ; ϑÞg ðt−τ;φÞdτ , where t and τ are time variables, is postulated to represent the cancer

initiating signal. In other words, tumorigenic growth is driven by the stochastic conver-

gence of dysregulated TCA and glycolysis processes which leads to the concurrent

availability of sufficient energy and biomass to feed a runaway cancer growth and prolifer-

ation. The growth signal h(t) is subject to the control of the TGFβ pathway which

regulates the cell cycle passage through the restriction checkpoint. The regulatory action

of the TGFβ pathway is also represented by a stochastic signal r(v(t), ζ), where ζ is the

pathway’s stochastic state. Similarly, the survival and apoptotic signals can also be mod-

eled by stochastic processes denoted as w(v(t),ϕ) and u(v(t), ξ), where ϕ and ξ represent

the stochastic states of dysregulation associated with the survival and apoptotic pathways

respectively (see Fig. 6). This perspective on cancer dynamics places genetic alterations as

the initiators of cancer growth through the reprogramming of metabolism and considers

this last to be the trigger of the feedback dynamics between cancer cells and the TME.

These dynamics will ultimately lead to the removal of the restriction on the cell cycle

progression, the amplification of the inflammation sourced survival signals and the

emergence of an immunosuppressive TME state. The ensuing tumor growth will further

increase genomic instability leading to an accumulation of oncogenic alterations and con-

sequently an increased dysregulation of cellular processes. The model structure assumed

to be underlying these stochastic dynamics of cancer may suggest the existence of

vulnerabilities that can be leveraged in the design of cancer therapies as well as points to

potentially ineffective targets of therapeutic interventions (see Fig. 6). In particular,

Fig. 5 Dysregulation probabilities for glycolysis, the TCA cycle, genome integrity, survival and the cell cycle
progression through the restriction point
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inhibitions of signaling pathways upstream of the metabolic processes may not be effective

because of the potential onset of resistance due to the changing landscape of oncogenic

mutations caused by genomic instability. In contrast, therapeutic effectiveness may be

achievable by modulating the concentrations of lactate, growth factors and cytokines in

the tumor microenvironment (see Fig. 6). Since these concentrations result from CCs-

TME dynamics driven by the integration of multiple regulatory signals from the cell and

the extracellular environment, they embody, as a result, a smoothed out effect of genetic

instability making them more tractable therapeutic targets as will be explored in the next

section. However, the metabolic similarity between cancerous tumors and non-cancerous

tissues of the muscles and of the nervous system, with respect to the upregulation of

glycolysis and the shuttling of lactate, present a toxicity challenge for the clinical success

of drugs targeting cancer metabolism, including those aimed at modulating the concen-

tration of lactate in the TME [72, 73]. The availability of comprehensive clinical data sets

from the ongoing and planned clinical trials of metabolic inhibitors [72, 74], such as those

targeting MCT1, LDHA, and GLUT1, will ultimately enable the clinical assessment of the

therapeutic potential of targeting cancer metabolism as proposed in this perspective.

Is there a cancer kill switch?
Genetic alterations of cellular processes drive the inception of the CCs-CAFs-TAMs

interaction system. This induces a progressive ratcheting up of the tumor proliferation

dynamics leading to an ever growing genetic heterogeneity and an accumulation of

genetic aberrations. The stable persistence of the CCs-TME dynamics enlisting the

active involvement of the stroma and inflammatory cells towards cancer growth and

proliferation will ultimately lead to invasion and metastasis. Many therapeutic ap-

proaches have been explored to target the causal elements believed to be maintaining

the CCs-TMEs dynamics. These include the reduction of inflammation, the reduction

of lactose excretion by cancer cells and the inhibition of TGF-β ligands [62, 75–82]. In

addition, most of the genes and pathways implicated in carcinogenesis have been

considered for targeted therapies, including HER/EGFR [83, 84], PI3K-AKT-MTOR

Fig. 6 Cancer as a stochastic system. Cancer is postulated to be initiated by the genetic-driven dysregulation of
metabolism which is permitted to drive growth and proliferation due to the abrogation of the cell cycle
restriction checkpoint and the inflammatory, survival and nutritional feedback of the TME. Therapeutic
disruptions of the effectors of cancer growth dynamics are noted and qualified as potentially effective or
ineffective based on the level and bandwidth of sensitivity to genomic instability
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[85–87], RAS-RAF-ERK [88, 89], TGF-β [76, 90], AMPK [91–94], the RB pathway

[95–97], LDHA [75, 81, 98, 99], MCT1 [100, 101], and NF-χβ/IKK [59, 77, 102].

While the prospect of targeted therapies may be promising [103–110], the specter

of acquired disease resistance looms large, representing a persistent challenge to

the development of a decisive cancer therapeutic strategy [111–116]. Nevertheless,

we speculate that therapies targeting cancer metabolism and TME inflammation

might prove effective if combined within a metronomic strategy with the aim to

induce a progressive dragging of the CCs-TME dynamics away from tumor promo-

tion and along a staged restoration of tissue homeostasis that avoids the incitement

of drug resistance or radical wound repair-like tissue reactions. In particular, given

the putative structure underlying the stochastic dynamics of cancer (Fig. 6), and

the expected stochastic convergence of dysregulated cellular processes highlighted

in Fig. 4, cancer cells must be first denied the glutamine and growth factors lifeline

believed to be extended by the stroma in exchange for their secretion of lactate.

This could be achieved through the inhibition of LDHA, suggested to be a promis-

ing cancer therapeutic target due its role as the catalyst of the pyruvate conversion

into lactate, which is subsequently released in the TME [117–120]. Furthermore,

reducing the concentration of lactate in the TME would limit cancer cells’ inward

uptake of lactate through MCT-1, which was suggested to indirectly increase gluta-

minolysis by upregulating the expression of the glutamine transporter ASCT2 in a

MYC and HIF-2α dependent manner [80]. In addition, a reduction of TME lactate,

accepted to be a promoter of inflammation and angiogenesis [75], would not only

weakens the TME sourced survival signals driving cancer growth, but it will also

disrupt the CCs-CAFs interaction dynamics that are believed to enable a steady

supply of recycled nutrients and growth factors from the stroma to the tumor [37].

In fact, we speculate that the lactate-promoted CCs-CAFs interactions and the

suggested resulting supply of amino acids to cancer cells by CAFs undergoing

autophagy [37], may be among the key inducers of carcinogenic transformations.

Indeed, these CCs-CAFs interactions may be the drivers of the concurrent activa-

tion of AMPK and MTOR, which was recently reported to be inducible in an

amino acid dependent manner [36]. In this respect, targeting the enzymes and

metabolic transporters, such as LDHA, MCT1 and GLUT, to limit the production

of lactate and its bi-directional shuttling between cancer cells and the TME would

not only hinder the reprogramming of metabolism toward unchecked growth but it

would also dampen inflammation and angiogenesis. However, targeting cancer me-

tabolism is fraught with challenges associated with the genetic diversity of tumors,

their metabolic flexibility and the dose limiting toxicity of metabolic inhibitors due

to the fact that metabolic pathways in normal tissue are often equally upregulated

just as in tumors [72]. Nevertheless, despite the genetic diversity of tumors and

their tissue-specific metabolic reprogramming, the metabolic changes exhibited by

different types of cancers are convergent towards an upregulated glycolysis and nu-

cleotide synthesis, a downregulated fatty acid oxidation and a heterogeneous

oxidation-phosphorylation [121, 122]. This may justify the exploration of therapies

aimed at the metabolic vulnerabilities common across tumor types, in addition to

the development of cancer-specific drugs targeting cancer metabolism. Towards

this end, the tissue-specific metabolic transformations of tumor cells and their
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metabolic flexibility, which are due to the heterogeneous signaling and the dynamic

distributions of nutrients, oxygen, and catabolites in the tumor microenvironment,

need to be better understood and characterized to enable patient stratification

based on the metabolic profiles of tumors and to target cancer metabolism accord-

ingly. Overall, limiting the impact of metabolic dysregulation combined with a

reduction of inflammation by targeting NF-χβ [77], TNF-α [123], the Jak/Stat path-

way [124] and the TGF-β pathway [76] has the potential of reestablishing tissue

homeostasis and turning on as a result the immune cancer kill switch.

Conclusions
Cancer therapies should aim for a progressive disruption of the CCs-TME dynamics

and target metabolic dysregulation and inflammation to partially restore tissue homeo-

stasis and turn on the immune cancer kill switch. One potentially effective cancer

therapeutic strategy is to induce the reduction of lactate and steer the TME to a state

of reduced inflammation so as to enable an effective intervention of the immune

system. The translation of this therapeutic approach into treatment regimens would

however require more understanding of the adaptive complexity of cancer resulting

from the interactions of cancer cells with the tumor microenvironment and the

immune system.
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