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Abstract

Background: Increased computational resources have made individual based
models popular for modelling epidemics. They have the advantage of incorporating
heterogeneous features, including realistic population structures (like e.g. households).
Existing stochastic simulation studies of epidemics, however, have been developed
mainly for incorporating single pathogen scenarios although the effect of different
pathogens might directly or indirectly (e.g. via contact reductions) effect the spread of
each pathogen. The goal of this work was to simulate a stochastic agent based system
incorporating the effect of multiple pathogens, accounting for the household based
transmission process and the dependency among pathogens.

Methods: With the help of simulations from such a system, we observed the behaviour
of the epidemics in different scenarios. The scenarios included different household size
distributions, dependency versus independency of pathogens, and also the degree of
dependency expressed through household isolation during symptomatic phase of
individuals. Generalized additive models were used to model the association between the
epidemiological parameters of interest on the variation in the parameter values from the
simulation data. All the simulations and statistical analyses were performed using R 3.4.0.

Results: We demonstrated the importance of considering pathogen dependency using
two pathogens, and showing the difference when considered independent versus
dependent. Additionally for the general scenario with more pathogens, the assumption of
dependency among pathogens and the household size distribution in the population
cohort was found to be effective in containing the epidemic process. Additionally,
populations with larger household sizes reached the epidemic peak faster than societies
with smaller household sizes but dependencies among pathogens did not affect this
outcome significantly. Larger households had more infections in all population cohort
examples considered in our simulations. Increase in household isolation coefficient for
pathogen dependency also could control the epidemic process.

Conclusion: Presence of multiple pathogens and their interaction can impact the
behaviour of an epidemic across cohorts with different household size distributions.
Future household cohort studies identifying multiple pathogens will provide useful data
to verify the interaction processes in such an infectious disease system.

Keywords: Agent based model, Epidemic, Household size, Pathogen dependency,
Multi-pathogen
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Background
Respiratory infections are the most common type of infections that contribute to loss

of productive time due to acute conditions [1]. Households play an important role for

the transmission process of respiratory infective agents, since they serve as confined

structures due to the proximity of contacts among individuals that belong to such a

confinement [2]. Approximately a third of the influenza like infection transmissions

occur within households [3–5]. Studies on modelling epidemics spread in populations

distributed into household clusters of varying sizes have been conducted to investigate

possible control measures against epidemic outbreaks where larger households were

associated with more infection transmissions [6–10].

Individual level stochastic models, also known as agent based models are highly

flexible constructs to study complex phenomena by simulating the behaviour of mul-

tiple agents (individuals or grouped entities) simultaneously. FluTE [11] and FRED [12]

are examples of such agent based models that have been built incorporating the

community structure to study the progression of influenza like infections in the popu-

lation [13–15].

Epidemic studies, till date, have mostly focused on the effect of a single pathogen in

determining the population behaviour and spread of infections. Seasonal epidemics of

respiratory infections are a common phenomenon during the winter months annually

with several emergent and dominant pathogens circulating in the society. Additionally,

there is always the possibility for antigenic drifts which are due to mutations of viruses

impacting the protective effect of immunity from further infections [16]. Thus there is

a need to study the epidemic reality of several pathogens co-existing in the community,

with differential seasonality patterns, as well as differential severity and transmissibility

characteristics. The idea of dynamic interaction between pathogens or ecological

interference has been studied for diseases with differential seasonality in case of

measles and whopping cough [17] and for the impact of vaccination for pandemic

influenza [18].

The study of the infection process with multiple interacting pathogens has been

lacking in the agent based models that have been developed in the past. Infection

from one pathogen along with an intervention strategy, like household isolation,

can not only have an impact on the individual’s exposure to the specific pathogen

but also to other pathogens which can eventually impact parallel epidemic pro-

cesses from other co-existing pathogens. This involves cross immunity caused by

an infectious pathogen, and changes in the contact structure among individuals

within and between households. In addition to this, if there are two pathogens

with exactly the same characteristics, they create a competition within the scope

of the epidemic process. Additional factors like household structure and presence

of an immunized proportion of individuals can impact the course of the epidemic

since they can potentially accelerate or decelerate the transmission of infections

in the population [8–10]. Moreover they are also directly related to the house-

hold isolation strategy since they impact the within household transmission. The

aim of our study is to investigate how multi-pathogen interaction impacts the

epidemic process when compared to scenarios with only a single pathogen if

different household structures and the proportion of already immune individuals

are taken into account.
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Methods
Agent-based modelling of disease transmission

We use an agent-based approach with the basic structure of an SEIR (Susceptible,

Exposed, Infectious, and Recovered) model. During the exposed state we assume that

individuals are asymptomatic and do not impact the transmission process. After a

period of being asymptomatic the individuals enter the infectious phase where they are

symptomatic and can transmit infections. The assumption that during the infectious

phase, there is household isolation making an individual nullify the risk of external

infection from other pathogens, causes the interaction between pathogens in the multi-

pathogen setting. The degree of this reduction of the external transmissibility depends

on pathogen characteristics.

The single pathogen case is shown in Table 1. TP1(t) has two components: transmission

of the pathogen resulting from contacts in the society (Pexternal(p, t)) and from contacts

within households ( Pfamily(p, t)) for a given pathogen p. Transmission in the society

depends on baseline infectivity of the pathogen (v), proportion of infectious in the society

reduced by pathogen specific factor z, and a seasonality parameter (s(t)).

Pexternal p; tð Þ ¼ v s tð Þ z I t−1ð Þ
N þ P0

� �
; with N ¼ S tð Þ þ E tð Þ þ I tð Þ þ R tð Þ and I t−1ð Þ

N

þP0≤1 .

s(t) = A (sin (ω (t − t0)) + 1)/2, ω = 2π/365, (if simulation starts on October 1st then

t = 0, t0 = 0). P0 indicates external influx of infection, A indicates the amplitude of

the seasonality function (for example the effects of outside temperature, Table 2).

The parameters are calibrated to restrict Pexternal(t) with the upper limit as one.

Transmission in the family depends on pathogen characteristics - baseline infectiv-

ity v, factor for within family closeness of contacts c and number of infectious persons

in the same household Ih(t).

Pfamily p; tð Þ ¼ 1− 1−v cð ÞIh t−1ð Þ (Description provided in Table 2.)

Z(t) ∈ {Susceptible, Exposed, Infectious, Recovered} ∀ t ≥ 1, where Z is an individual in

the study.

TP1 = Probability(Z(t + 1) = Exposed | Z(t) = Susceptible) (Table 1).

=1 − (1 − Pexternal(p, t)) ∗ (1 − Pfamily(p, t)) (Table 2).

The probability TP1 describes the transition probability from being Susceptible to

becoming Exposed. The above formulation includes the specific scenario, when there is

no possibility of a family based transmission, which is always the case for a single

member household.

Let LP (>0) and IP (>0) (description in Table 2) be the average latency period and

infectious period, respectively for a given pathogen p. TP2 describes the transition

Table 1 The transition probability matrix for a single pathogen with the SEIR states

Time = t + 1

Susceptible Exposed Infectious Recovered

Susceptible 1 − TP1(t) TP1(t) 0 0

Time = t Exposed 0 1 − TP2 TP2 0

Infectious 0 0 1 − TP3 TP3

Recovered 0 0 0 1

Bakuli et al. Theoretical Biology and Medical Modelling  (2017) 14:26 Page 3 of 17



probability of an Exposed individual becoming Infectious for the pathogen it is already

exposed to. TP3 describes the transition probability for an Infectious individual to

obtain immunity or become Recovered for that pathogen for the remaining time in the

study period. In this paper, we assume that LP and IP are independent constructs.

TP2 = Probability(Z(t + 1) = Infectious | Z(t) = Exposed) (Table 1)

min
1
LP

; 1

� �
¼ q ¼ TP2

X(i, p)~Geometric(q)− After time X(i, p), that is, at time X(i, p) + 1, the ith individual

becomes Infectious, since the time it became Exposed for pathogen p. (Description

in Table 2).

TP3 = Probability(Z(t + 1) = Recovered | Z(t) = Infectious) (Table 1)

Table 2 Description of the symbols used in the mathematical formulation of the transition
probabilities for describing the agent based model

Symbols Description

N Total number of individuals in the cohort (10,000 individuals considered as a population cohort)

S(t); E(t);
I(t); R(t)

Number of individuals in the Susceptible, Exposed, Infectious, and Recovered states at time
point t

Pexternal(t) Probability of a susceptible individual acquiring infections from contacts in society

Pfamily(t) Probability of a susceptible individual acquiring infections from contacts within household

v Baseline infectivity of a given pathogen. Always present in determining the probability of
acquiring an infection by a susceptible individual (Fixed at 0.025 for each day)

(I(t))/N Proportion of infectious individuals in society at time t. Impacts the probability of susceptible
individuals acquiring infections from society at time t + 1

P0 Influx of infection from outside of the studied population to avoid permanent extinction of the
epidemics (fixed at 0.0001 for a single day)

z Pathogen specific reduction factor; Expression of severity of symptoms thus extent of isolation
from the society; Multiplicative factor on the sum of the proportion of infectious individuals and the
influx of infections from outside the population (Range: 0.3–0.9)

s(t) Seasonality parameter at time point t; expression for the seasonal variability in the transmission
probability of the infection from contacts at the society level for a specific pathogen

A Amplitude for the seasonality characteristics of the pathogen; indicates the extent of seasonal
variation of transmissibility of a given pathogen (Range: 0.5–5, lower values indicate lack of
seasonality whereas higher values are indicative of seasonality)

c Factor for increased closeness of contacts within household as differentiated from the society
contacts; Multiplicative factor on the baseline infectivity for determining the within household
transmission probability for a specific pathogen (Fixed at 9 for all pathogens)

Λ Coefficient for the degree of household isolation. In case of complete pathogen dependency with
full household isolation of 100%, risk of acquiring infections from outside household when already
infectious is zero. For the independent pathogens scenario, the household isolation is 0% which
means that there is a complete risk of acquiring a co-infection from outside household.

t0 Coefficient for the phase shift. It helps in varying the temporal trend of the pathogen. It is set to zero
for most cases. Except for pathogen 10, we examine the case when the value is +/− 45 days and
remains zero for the other pathogens

Ih(t) Number of infectious persons in the same household at time t; impacts the probability of acquiring
an infection from household contacts at time t + 1; exponential factor on the product of baseline
infectivity and closeness of contacts

LP Length of asymptomatic infection(latency period);Average time spent from being exposed to
becoming infectious for a specific pathogen (Range: 1–6)

IP Length of symptomatic infections(infectious period); Average time spent in-between becoming
infectious and acquiring immunity (Range: 2–9)
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min
1
IP

; 1

� �
¼ r ¼ TP3

Y(i, p)~Geometric(r)− After time Y(i, p), that is, at time Y(i, p) + 1 the ith individual

acquires immunity, since the time it became Infectious from the pathogen p, for the

remaining study period (Description in Table 2).We also assume that X(i, p) and Y(i, p)

are independently distributed as a geometric distribution.

When there are multiple pathogens present in the society (p and p' in our case are

two different exemplary pathogens), we introduce an additional state of Susceptible+ in

the agent based model. On acquiring symptoms of infection (i.e. state as Infectious)

with pathogen p, there is a check to verify if an individual is susceptible for another

pathogen’, i.e. Susceptible(p') is True or False. If True, then the individual at Susceptible

(p') moves to Susceptible + ( p') instantaneously. Once an individual at Infectious(p)

moves to Recovered(p), we check once again if the individual is still susceptible to p', i.e.

Susceptible+ ( p') is True or False. If True then Susceptible+ ( p') moves to Susceptible(p')

instantaneously (Fig. 1). A person at the state of Susceptible+ is potentially at risk only

to the household mode of infection transmission and can become Exposed. Following

this, the steps for the exposed individual are the same as described for one pathogen.

In case the individual reaches the state Recovered for p, while it is still at Susceptible+

for some p', then it becomes Susceptible once again for p'. The described process is

pictorially represented through a Markov chain (Fig. 2). We vary the degree of house-

hold isolation using a parameter λ which takes values between zero and one to indicate

differences in the risk of acquiring an infection from outside the household.

Probability
�
Zðt þ 1Þ ¼ Susceptibleþ jZðtÞ ¼ Susceptible

�
¼ 1forpathogenp

0
(Fig. 1).

Fig. 1 Graphical illustration of Susceptible, Exposed, Infectious, and Recovered states of the agent based
model with some assumptions described. The time lines for the latency period and infectious period are
also indicated through the dashed lines for an ith individual in the population for pathogens p and p',
where p' ≠ p. The dependency assumption induces the Susceptible+ state. The black arrows represent the
influence direction, whereas the coloured arrows represent the transitions. The part above the dotted line
indicates the states when only one pathogen is present in society, or when the pathogens are
independently functioning in the system. The part below the dotted line is introduced when more than
one pathogen is present in society and the pathogens interfere in the joint behaviour. *When an individual
is Infectious for pathogen p and is still susceptible for another pathogen p' it instantaneously moves to the
state Susceptible+ for pathogen p' .** Once the individual is at the recovered state for pathogen p and is still
at state Susceptible+ for pathogen p' it switches back to Susceptible state instantaneously
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When Z(t) = Infectious for pathogen p and p ≠ p'.

The description of Pfamily remains unchanged. TPS+ describes the probability that, an

individual at the state Susceptible+ remains as Susceptible+. This indicates the situation

where the individual does not get exposed to a pathogen p' but remains symptomatic

for p. This depends on the pathogen characteristics for both p and p' .

TPSþ ¼ Probability Z t þ 1ð Þ ¼ Susceptibleþ j Z tð Þ ¼ Susceptibleþ
� �

=(1 − (1 − Pfamily(p
', t)) ∗ (1 − (1 − λ)Pexternal(p

', t))) ∗ (1 − TP3( p)) (Fig. 2).

Simulation
Population structure

We have considered three population structures with different properties (Germany,

India, one-person structure). The data on the household size distribution in Germany

was used from DESTATIS (Statistisches Bundesamt, Wiesbaden 2015 report) while that

of India from the census reports of 2011 [19, 20]. We have also considered a hypothet-

ical population of one person households as the most extreme scenario. This has been

described with the frequencies for each household size in Table 3. We distributed

10,000 individuals into each population scenario.

Pathogen characteristics

We studied a general multi-pathogen setting with n (n = 10) pathogens with character-

istics chosen to reflect potential real life situations as described in Table 4. Baseline

infectivity v was calibrated to achieve a maximum incidence rate of approximate 10%

in person weeks for respiratory infections during the peak winter season (https://grip-

peweb.rki.de). Two broad types of pathogens were considered, the influenza type and

the common cold type. Influenza type pathogens have typically reported shorter latent

periods (period with asymptomatic infection; 1–4 days for influenza and common cold

between 1 and 6 days) but a longer infectious period (period with symptomatic

Table 3 The household size distributions for the different populations considered to describe the
epidemic outcomes from simulations using the agent based model

Household size 1 2 3 4 5 6 7 8 9

Germany [19] 41.0% 34.0% 12% 7.5% 4.5% 1.0% 0% 0% 0%

India [20] 3.9% 8.2% 14.0% 16.9% 17.0% 15.2% 14.2% 8.2% 2.4%

Hypothetical 100% 0% 0% 0% 0% 0% 0% 0% 0%

Fig. 2 Markov chain describing the dependency process among pathogens. ** Once the individual is in the
Recovered state for pathogen p and is still at Susceptible+ state for pathogen p' it switches back to Susceptible
state instantaneously
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infection; 5–9 days for Influenza and 2–3 days for Common cold) while it has been

reported as the opposite for common cold type of pathogens [21–23].

Computation

The simulation proceeded in discrete time steps. Each step denoted a day in the follow

up period. Based on the initial number of Infectious individuals, the epidemic process

began its course of action. It followed the seasonal trend of the pathogen, the relation

to other household members, and the prevalence of the infection for the specific patho-

gen in society at a given time point. We started initially with two pathogens from Table

4 (Pathogen 6 and Pathogen 10). Pathogen 6 would be in accordance with the charac-

teristics of a pandemic influenza strain whereas pathogen 10 would correspond to the

characteristics of human respiratory syncytial virus (HRSV). Then we observed the sce-

nario where both the pathogens jointly interact. Finally we looked at the general sce-

nario with 10 pathogens jointly which would be a more appropriate representation of

the reality during the winter season [18] (https://grippeweb.rki.de).

The comparisons were done for the scenarios of pathogen dependencies, 1) assuming

all pathogens existed independently (λ = 0%), and 2) assuming the pathogens worked

together and influenced each other (λ = 100%) (indicated by Pathogen Dependency- Yes

or No); household size distribution based on different household size distributions in

different countries (Country – Germany, India or Hypothetical). At the start of the

simulation few people were infectious for every pathogen, which was denoted as I(1) to

kick start the infection process, while the number of people already immune at the start

were represented as R(1).

In addition to the above, we assumed that, for every pathogen there would be a small

chance that an individual could acquire an infection from outside the system. This has

been described as the external influx of infection. We had set this value to one in a ten

thousand, at each observational time point (day) in the epidemic process. Besides this,

Table 4 Pathogen characteristics. This table with the input parameters for the simulation of the
agent based model with ten pathogens. I indicates influenza type while C indicates common cold
type of pathogen

Pathogen Characteristics Pathogen Number

Interpretation Symbol 1 2 3 4 5 6 7 8 9 10

Seasonality A 0.5 0.5 3.0 1.5 2.0 4.0 1.0 3.0 2.5 5.0

Baseline infectivity v 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

Closeness family to society c 9 9 9 9 9 9 9 9 9 9

Reduction of contacts with
society

z 0.6 0.9 0.3 0.4 0.4 0.8 0.7 0.3 0.6 0.9

Duration of latent period(days) X 1.5 3.0 6.0 5.0 4.0 4.0 2.0 4.0 1.5 1.5

Duration of infectious
period(days)

Y 4 4 7 3 5 9 3 6 3 4

Proportion immune at start R(1) 0.50 0.20 0.20 0.25 0.50 0.15 0.30 0.20 0.20 0.15

Number infectious at start(per
10,000)

I(1) 17 18 71 62 66 52 45 58 06 52

Number of infections from
outside (per 10,000)

P0 1 1 1 1 1 1 1 1 1 1

Pathogen type I C C C C I I C I C
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the maximum number of days spent as infectious had been censored to 55 days. Each

of the scenario combinations were replicated 100 times for a study period of 150 days

in the peak season for respiratory illness.

In our base case scenario with the German population and pathogen dependency

(λ = 100%), we look at the same temporal tend (seasonality) for all the pathogens

considered. However to present the effect of differential seasonality, we introduce a

different temporal trend for pathogen 10, by modifying the value of t0 as +45 days

and −45 days. This results in shifting the peak of the epidemic for these pathogens

and impacts the overall epidemic process when multiple pathogens are present.

Also for this scenario we evaluated the effect of change in λ from 0% to 100% in

steps of 10% which would allow us to infer on the importance of the pathogen

dependency assumption through the introduction of household isolation.

Statistical methods

We measure the epidemiological parameters of interest which are 1) height of the

epidemic peak (peak prevalence), 2) time taken to reach the peak of the epidemic,

3) incidence proportion (attack rate) of infections in the study period, and 4)

incidence proportion stratified by household size for the different populations in

consideration, through our simulations as described above. Summary statistics are

presented for all the outcomes described above.

We observe the peak prevalence and the incidence proportion for the pathogens

6 and 10, both individually and jointly. We are interested in the hypothesis that

jointly modelling pathogens creates a competition, and hence we would observe

lower values of the peak prevalence and incidence proportion, compared to observ-

ing them individually. The observations are compared using the non-parametric

Mann–Whitney–Wilcoxon test for evaluating the difference when observing joint

epidemics. The parametric version with the paired t-test also gives us similar

results, however due to no necessity of normal distribution assumptions the

Mann–Whitney–Wilcoxon test values are reported [24].

We also use a simple linear regression model [25] on the outcomes described

above and show the confidence intervals for the slope across different outcomes to

indicate the impact of pathogen dependency on the country variable (used to

describe the different household size distribution) in the scenario with 10 patho-

gens. The covariate used is the coefficient for the degree of household isolation (0

to describe the independent scenario and 1 to describe complete household isola-

tion in case of the dependency). The confidence intervals show the variability in

the slopes across different country variables indicating different household size

distributions. For studying the degree of household isolation, we use the General-

ized Additive Model (GAM). GAM’s are an extension of the generalized linear

model (GLM) allowing for some kind of smoothing of the predictor variables. The

advantage of GAMs is that it allows us to deal with highly non-linear and non-

monotonic relationships between the response and the predictor variables often

driven by the observed data at hand [26, 27]. GAMs are also used in this work to

model the dependency of incidence proportion of infections stratified by household

size where a non-linear relationship is observed.
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Results
In our simulations, pathogen 6 demonstrated behaviour similar to a pandemic influenza

epidemic. Hence this was the most severe pathogen in our list. Pathogen 10 was the

second most severe among the pathogens present. The differences in the household

size distribution described through the country variable have been demonstrated in

Table 5. Smaller household sizes were associated with less severe epidemics demon-

strated through the smaller values of the peak prevalence as well as the lower incidence

proportion. And the epidemic process was also slower which would be indicated

through the delayed median time in reaching the peak prevalence of infections in the

study period. The epidemic almost never occurred (low values of incidence and preva-

lence and high variability in time to reach the peak prevalence) in the hypothetical

population cohort where within household infection transmissions were completely

absent (Fig. 3). Simulation of pathogen 6 and pathogen 10 jointly was associated with

household isolation during the symptomatic phase of an episode, and this brought in

competition within the two pathogens during the epidemic process. We tested the

hypothesis that incidence proportion and peak prevalence was higher in individual sim-

ulations of the pathogen as opposed to the joint interaction of the two pathogens in a

system. The difference could be observed only where the epidemic occurred (i.e. not in

the hypothetical population cohort). Furthermore we also evaluated the hypothesis that

the sum of the independent peak prevalence and the incidence proportion from the

two pathogens was greater than the joint overall peak prevalence and incidence propor-

tion in the two pathogen system. Here too the difference was observed except in the

Table 5 Summary and comparison of two pathogen system (S2) vs. one pathogen system (S1).
The pathogen is indicated in the parenthesis. S1(P6 + P10) indicates the sum of the individual
values from the pathogen independently whereas S2(P6 + P10) indicates the system where the
household isolation introduces pathogen dependency and the pathogens function jointly. The
outcomes of peak prevalence and incidence proportion (during the 150 day period) along with
their 95% confidence intervals (based on Monte-Carlo simulations) are shown in the summary
section. The comparison section displays the non-parametric p values (based on the Mann-
Whitney-Wilcoxon test) obtained when comparing the pathogen systems over the simulation runs

Peak prevalence Incidence proportion

Hypothetical India Germany Hypothetical India Germany

S1 (P10) 0.0006
(0.0004,0.001)

0.078
(0.072,0.084)

0.019
(0.015,0.025)

0.005
(0.002,0.009)

0.617
(0.586,0.640)

0.318
(0.276,0.357)

S1 (P6) 0.006
(003,0.011)

0.179
(0.170,0.187)

0.096
(0.089,0.104)

0.061
(0.021,0.102)

0.763
(0.753,0.771)

0.654
(0.640,0.669)

S2 (P10) 0.0006
(0.0003,0.001)

0.070
(0.065,0.079)

0.014
(0.009,0.021)

0.004
(0.002,0.009)

0.589
(0.564,0.612)

0.279
(0.198,0.334)

S2 (P6) 0.006
(0.003,0.010)

0.169
(0.162,0.177)

0.094
(0.087,0.101)

0.055
(0.026,0.099)

0.761
(0.750,0.771)

0.652
(0.636,0.667)

S2 (P6 + P10) 0.006
(0.003,0.011)

0.211
(0.198,0.225)

0.105
(0.098,0.113)

0.061
(0.030,0.102)

1.351
(1.318,1.378)

0.931
(0.857,0.983)

S1 (P6 + P10) 0.007
(0.003,0.012)

0.258
(0.246,0.267)

0.116
(0.104,0.125)

0.068
(0.026,0.107)

1.383
(1.341,1.410)

0.970
(0.933,1.015)

Comparison

S1(P10) vs. S2(P10) 0.590 <0.001 <0.001 0.543 <0.001 <0.001

S1(P6) vs. S2(P6) 0.471 <0.001 0.029 0.350 0.029 0.134

S1(P6 + P10) vs.
S2(P6 + P10)

0.175 <0.001 <0.001 0.672 <0.001 <0.001
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hypothetical cohort (Table 5). In the two pathogen system the time taken to reach the

peak prevalence was dominated by the pandemic pathogen (pathogen 6). However

there was no difference observed in this duration in the two pathogen system and

separately simulated individual pathogen systems. When two exactly same pathogens

were considered then the results of the comparison were similar. However when two

pathogens were more aggressive (characteristics of pathogen 6) then the difference in

the peak prevalence of infections between jointly modelling them and considering them

individually, were significantly higher than the scenario when two pathogens had

moderate characteristics (characteristics of pathogen 10).

Since the multi pathogen scenario would be a more probable model, we consider 10

pathogens as described in Table 4. These include among them pathogen 6 and patho-

gen 10 which have been described before. We now vary the coefficient of household

reduction process between the extremes of 0 and 1, indicating pathogens functioning

independently in the population and pathogens interacting within the population

Fig. 3 Difference across the country locations indicating the different household size distribution and the
coefficient of household reduction during the symptomatic phase of the infection. The slope is obtained
from the linear model to indicate the change caused by the most extreme difference in the coefficient
due to the dependent scenario (all pathogens interacting with dependency) and the independent scenario
(all pathogens working independently). This is also visible in Table 6. The outcomes of interest that have
been presented are 3.1- peak prevalence during the observed epidemic, 3.2- incidence of infections during
the 150 day period of interest. (Numbers above 1 indicate that cumulative probability of infections during
the study period was above 100%)
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respectively. Looking across the different country variables for varying household size

distributions, we observed that here too societies with larger household sizes had an

accelerated and more severe epidemic (Fig. 3 (3.1, 3.2) and Additional file 1). Also we

looked at the difference introduced by the extreme values of household isolation during

the infectious phase using the slope of the linear regression model. The summary of

the slopes indicated the differences when the epidemic took place (Table 6). For the

German household size and hypothetical household size distributed cohort we could

not observe any significant decrease in the speed of the epidemic as opposed to the co-

hort with the Indian household size distribution where there was an accelerated epi-

demic observed with an increased coefficient of household isolation.

We analysed the impact of changing the coefficient of household isolation during the

infectious period by varying it from 0 to 100% in steps of 10% for the cohort with the

German household size distribution. The time taken to reach the epidemic peak

remained unchanged with the variation of the household isolation coefficient. However

there was a decrease in the epidemic peak and the incidence proportion of infections

with an increase in household isolation coefficient. This would be a result of decreasing

contacts during the infectious phase with the society making individuals less vulnerable

to newer infections during this period. The results are represented in Fig. 4 (4.1 and

4.2) and the smoothed coefficients based on the coefficient of household isolation for

the GAM regression was highly significant for the outcomes of incidence proportion

and peak prevalence of infections (both below 0.0001). However it was not significant

for the outcome of the time taken to reach the peak prevalence. Fitting of a simple

linear regression model with the above scenario also gave us similar results and the

slope was always negative (except for the outcome of time to reach the incidence peak).

However the fit was better with the GAM model through the median points.

Additionally, we looked at the proportion of individuals who were at home at a given

time point. Together with this we also looked at the distribution of the proportion of

people who were infectious for one or more pathogens on a given time point. We

assessed these proportions in simulations for the German household size distribution,

with immune individuals in the population, and 10 pathogens interacting with each

other during the epidemic process (Fig. 5). Our calculations showed that majority of

the cases where the person was symptomatic and remained at home, was due to one

pathogen with a proportion of 0.9959 (0.99, 1.00) (median with 5th and 95th percentile

values in bracket). For two pathogens at a time, the proportion was 0.003 (0.00, 0.01)

(median and with 5th and 95th percentile values in bracket) whereas for three patho-

gens at a time the median proportion was already zero. This could also be seen in Fig.

5, where the proportion of infectious individuals for two or more pathogens at a time

point was very close to the zero line. For the similar scenario with the household size

Table 6 Comparison of slopes across the different country locations. This indicates the observed
difference in the outcomes from the epidemics due to the differences in the coefficient of household
isolation (the extreme scenarios of complete dependency versus pathogens functioning independently)
and the household size distribution in the country location used as shown in Fig. 3 (3.1, 3.2)

Hypothetical India Germany

Peak Prevalence (−0.0006,0.0008) (−0.015,-0.011) (−0.006,-0.003)

Time to reach peak prevalence (−22.542, 4.102) (1.252, 2.427) (−0.932,1.732)

Incidence proportion (−0.008,0.006) (−0.079, −0.060) (−0.081,-0.056)
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distribution of India in the cohort, we obtained similar results. The proportion of

household stays due to one pathogen infection was dominant, 0.9963(0.96, 1.00)

(median with 5th and 95th percentile values in bracket). There were also some rare

cases of being simultaneously infected by three or four pathogens.

We also analysed the incidence proportion stratified for the household size in the

different population distributions. We saw an increase in incidence proportion of infec-

tions with increase in household size (Fig. 6). Here also we used a GAM model to rep-

resent the nonlinear relationship between incidence proportion and household size. For

the hypothetical population cohort we could not have any relationship because it only

represented one membered household. The incidences of the one member household

were also different across the different population distributions with higher incidences

in population with larger household sizes.

Finally, we observed the impact of shifting the temporal trend for pathogen 10 (repre-

senting the characteristics of RSV virus) as opposed to pathogen 6 (representing the

characteristics of pandemic influenza virus) and the remaining 8 viruses in the 10

pathogen system. The trend for pathogen 10 was shifted by using the different values

for t0 as +45 and −45 days. We performed the simulations only for the German popula-

tion type with dependency among pathogens (complete household isolation during

Fig. 4 Epidemic outcomes with varying degree of household isolation. We observe a decrease in peak
prevalence (4.1), and incidence of infections (numbers above 1 indicate that cumulative probability of
infections during the study period was above 100%) (4.2), with the increase in the degree of household
isolation during the infectious phase
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infectious phase). In comparison to the base case scenario, there was a decrease in the

peak prevalence as well as the incidence proportion due to the temporal shift in the

trend for pathogen 10. The decrease was significantly higher for the shift where the

peak for pathogen 10 is delayed by 45 days as opposed to the peak coming forward by

45 days. The time taken to reach the epidemic peak remained unchanged (Fig. 7 (7.1

and 7.2)). Also the decrease in the incidence proportion was comparatively smaller than

for the peak prevalence between the scenario where the peak was forward by 45 days

for pathogen 10 and base case.

Discussion
We have proposed an agent based model to study the behaviour of epidemics under

the influence of multiple pathogens working simultaneously in the population. With

the presence of two pathogens in such a system without the influence of any other

effect, we could demonstrate how the interference of the pathogens in the infection

process played a role in controlling the epidemic process (lower number of infected in-

dividuals as well as lower daily incidence proportion). The interference among patho-

gens was introduced through the assumption of household isolation during the period

of being symptomatically infectious, where the individual was immune to the risk of ac-

quiring infections from outside the household. To our knowledge this was the first time

Fig. 5 Simulation results showing the average population proportion from 100 simulated epidemics during
the epidemic period that are under household isolation for being symptomatic for infections. The black and
the red line indicate how the proportion of people acquires infections during the course of the epidemic
and then recover with time. The red line shows that a maximum of a tenth of the population remains at
home on an average during the epidemic period. The blue line almost covers the red line indicating that
majority of the infection episodes are caused by one pathogen. The pink and the grey lines are almost
close to zero at all the time points indicating how unlikely it is for an individual to be infected with more
than one pathogen at a time
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for studying the behaviour of an epidemic process incorporating the influence of mul-

tiple pathogens using an agent based model. We further went on to present a more

general scenario where there are 10 pathogens, and also the impact from recovered in-

dividuals being present in the population at the start of the epidemic process.

Our simulations were performed to study the impact of the dependency among path-

ogens as opposed to pathogens functioning independently (2 extreme levels for the

coefficient of household isolation during the infectious period), and the household size

distributions of different populations (three different populations with varying house-

hold size distributions) The population system reached a stable state at the end of

simulation period, confirming that the epidemic had almost died out in 150 days (ap-

proximately 5 months during winter season). The dependencies among pathogens were

important determinants in controlling the epidemic process. Additionally, the house-

hold size distributions did produce significant differences in the peak of the epidemic

(peak prevalence) and the incidence proportion in the study period of interest. For

common respiratory infections like influenza and common cold, household size can be

an important factor determining their spread as seen for influenza or influenza like ill-

nesses based hospitalizations: the population structure difference has accounted for a

third of the observed variation [28]. In our simulations we observed that household size

distribution influences the speed of the epidemic. Population with larger household

sizes reached the peak of the epidemic much faster than those with smaller household

sizes. Looking at the incidence of infections across household sizes, we could see that

larger households were associated with more infections due to the intra household in-

fection spread, consistently with assumed random mixing within the household.

Fig. 6 Incidence of infections stratified by household size (numbers above 1 indicate that cumulative
probability of infections during the study period was above 100%)
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Looking across the different pathogens, we observed that the infectious period also is

important in shaping the severity of the epidemic. Pathogen 6 and 10 as considered in

the simulation have almost similar characteristics except for the duration of the infec-

tious phase, but this resulted in different severity of the epidemic. Also in the multi-

pathogen scenario, the epidemic characteristics are dominated by pathogen 10. Shifting

of the temporality to introduce a peak 45 days before for pathogen 10 allows for more

infections in the multipathogen system as opposed to a delay in the peak.

Our simulation study does come with limitations. There are common challenges

associated with agent based models, especially in statistical methods for hypothesis

testing in combination with determining the number of appropriate simulation runs

[29]. In addition to the standard challenges, our assumptions are largely simplistic in

nature, assuming for random mixing within the household and the population is looked

upon as an assortment of homogenous agents. The increase in contacts with the

increasing household size may not necessarily take place. Secondly, we induce a sort of

isolation for the transmission process of infections, but we do not account for the

specific severity of the infections, except for the duration of being symptomatic and

Fig. 7 Epidemic outcomes for the base case scenario (all pathogens temporally aligned in their seasonality)
in comparison to the scenarios where pathogen 10 has a shifted temporal trend. The shifting reduces the
intensity of the epidemic. The reduction is more when there is a delayed peak in the epidemic for
pathogen 10 as opposed to an earlier peak. (Incidence numbers above 1 indicate that cumulative
probability of infections during the study period was above 100%)
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infectious. The severity of the pathogen can directly influence the duration of isolation.

Even for our sensitivity analysis, we assume this parameter to be same for all the patho-

gens. Additionally, we also assume same transmissibility characteristics for all the

pathogens. These are strong assumptions that have been made for the realization of the

system in a simplistic way. However, this model can be extended easily to observe more

complex realizations of a realistic system.

Conclusion
Through our agent based model formulation, we could demonstrate the importance of

considering the multi-pathogen interactions in controlling the spread of infections

during an epidemic process. Household size and dependency among pathogens are

important factors in determining the outcome of the epidemic. Future prospective

studies in household cohorts looking at pathogen identification and coinfections can

provide quantitative measures for specific characteristics of the multi-pathogen sys-

tem. This kind of data can also be used to test the validity of the assumptions

made in simulation models.

Additional file

Additional file 1: Time taken to reach the peak prevalence varies according to the household size distribution in
the cohort. Populations with larger households on an average experienced the epidemics at an accelerated rate
compared to populations with smaller households on an average. (PNG 24 kb)
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