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Abstract

Background: As HIV enters the human body, its main target is the CD4 cell which it turns into a factory that produces
millions of other HIV particles. These HIV particles target new CD4 cells resulting in the progression of HIV infection to
AIDS. A continuous depletion of CD4 cells results in opportunistic infections, for example tuberculosis (TB). The purpose
of this study is to model and describe the progression of HIV/AIDS disease in an individual on antiretroviral therapy
(ART) follow up using a continuous time homogeneous Markov process. A cohort of 319 HIV infected patients on ART
follow up at a Wellness Clinic in Bela Bela, South Africa is used in this study. Though Markov models based on CD4 cell
counts is a common approach in HIV/AIDS modelling, this paper is unique clinically in that tuberculosis (TB) co-infection
is included as a covariate.

Methods: The method partitions the HIV infection period into five CD4-cell count intervals followed by the end points;
death, and withdrawal from study. The effectiveness of treatment is analysed by comparing the forward transitions with
the backward transitions. The effects of reaction to treatment, TB co-infection, gender and age on the transition rates are
also examined. The developed models give very good fit to the data.

Results: The results show that the strongest predictor of transition from a state of CD4 cell count greater than 750 to a
state of CD4 between 500 and 750 is a negative reaction to drug therapy. Development of TB during the course of
treatment is the greatest predictor of transitions to states of lower CD4 cell count. Transitions from good states to bad
states are higher on male patients than their female counterparts. Patients in the cohort spend a greater proportion of
their total follow-up time in higher CD4 states.

Conclusion: From some of these findings we conclude that there is need to monitor adverse reaction to drugs more
frequently, screen HIV/AIDS patients for any signs and symptoms of TB and check for factors that may explain gender
differences further.

Keywords: HIV/AIDS progression, Homogeneous Markov models, Reaction to treatment
* Correspondence: claris.shoko@gmail.com
Department of Mathematical Statistics and Actuarial Sciences, University of
the Free State, Box 339, Bloemfontein 9300, South Africa

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12976-017-0075-4&domain=pdf
mailto:claris.shoko@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Shoko and Chikobvu Theoretical Biology and Medical Modelling  (2018) 15:3 Page 2 of 14
Background
The life cycle of HIV starts as it enters the human body,
its major target being a white blood cell called T-helper
cells or CD4 cells [1]. Once these cells are infected, HIV
takes over and turns them into factories that produce
thousands of copies of the virus. The HIV makes use of
the enzyme Reverse Transcriptase to change copies of
its Ribonucleic Acid (RNA) into Deoxyribose nucleic
Acid (DNA). The viral DNA then enters the nucleus of
the host cell and combines with cell DNA and starts
making copies of viral RNA. The enzyme protease helps
in assembling the viral particles into thousands of new
viruses, which will bud and destroy the host cell. These
new viruses will then be ready to attack other CD4 + T
cells. Hence, the importance of CD4+ T cell count in
understanding the progression of HIV. Depreciation of
the CD4+ T cells in the human body leads to the
deterioration of the human immune system, which is
why the virus is called the Human Immunodeficiency
Virus (HIV).
As the immune system is compromised, the individual

is now prone to opportunistic infections like tuberculosis
(TB). TB may occur at any stage of HIV disease and is
frequently the first recognised presentation of underlying
HIV [2]. HIV and TB coinfection is characterised by
challenges that include poor adherence and overlapping
toxicities resulting in an impaired CD4 T-cell recovery
with antiretroviral therapy (ART) due to the effect of
drug-drug interaction [3].
The need to address the challenges associated with

HIV/AIDS progression in the presence of TB coinfection
has prompted this study and also to analyse HIV disease
history based CD4 multi-states and death/loss to follow-
up in a single model. However, most studies use Kaplan-
Meier analysis and Cox proportional hazards regression
models [3–5]. Kaplan-Meier survival methods and Cox
proportional hazards regression are commonly employed
tools to model mortality and time to viral suppression
and/or subsequent rebound and occasionally used to
model time to CD4 recovery. However, survival models
are not appropriate for all studies, particularly in the
presence of competing risks and when multiple or recur-
rent outcomes are of interest. In particular, when model-
ling HIV/AIDS progression, Markov models are
relatively straight forward to analyse both CD4 stage and
death or loss to follow-up within a single model which
survival models fail to do. Markov models can accom-
modate censored data, competing risks (informative cen-
soring), multiple outcomes, recurrent outcomes, frailty
and non-constant survival probabilities [6]. Examination
of the conditions of the stochastic processes at various
points in time, categorisation of the conditions, and
examination of the external influences on the stochastic
processes can be done using Markov models [7]. Markov
models are favourable to the modelling of diseases in
particular cases where the disease is grouped into a set
of exhaustive and mutually exclusive health states,
thereby forming a multi-state model [8]. History is nat-
urally generated as the multi-states evolve over time; it
contains information on previous visits, time of entry
into various states, and the length of stay in states.
Continuous-time homogeneous Markov models have

been used since early in the epidemic to model disease
progression of HIV/AIDS patients, and there has been
some recent renewed interest in the use of these models.
In 1989 Longini et al. used a 5-state Markov model
based on the clinical indicators of the HIV disease pro-
gression [9]. In 1998 Alioum et al. estimated the effects
of gender, age, mode of transmission and ART on HIV
progression using a 3-state Markov model [10]. In 2011
Reddy [11] carried out a research almost similar to
Alioum et al. in South Africa. However, Reddy used a 5-
state Markov model with 4 CD4 based transient states
followed by the absorbing state, ARV initiation. Reddy’s
model is characterised by high rates of immune deterior-
ation since the study was carried out on ARV naïve
patients. In 2009, Binquet et al. used a multi-state Mar-
kov model to analyse the impact of gender, intravenous
drug use, weight loss, low haemoglobin, CD8 cell count
and HIV viral load on HIV evolution in the era of highly
active antiretroviral therapy (HAART) [12]. Recently, in
2013 Grover et al. assessed the impact of ART using a 5-
staged multistate Markov model and went further to
examine the effects of explanatory variables; age, sex and
mode of transmission on the transition rates [13].
In this study, we use 7-staged continuous-time Markov

model to assess the disease progression of HIV/AIDS
patients receiving ART from a clinic in Bela-Bela, South
Africa. The first 5 stages are based on CD4 cell counts
and the end points are either death or withdrawal from
study. In addition to the gender and age differences in
HIV/AIDS progression, we further assess the effects of
having TB as the initial marker of HIV/AIDS, developing
TB during the course of treatment, developing some ad-
verse effects to treatment (Reaction), CD4 baseline and
viral load baseline. Though Markov models based on
CD4 cell counts is a common approach in HIV/AIDS
modelling, this paper is unique clinically in that tubercu-
losis (TB) co-infection is included as a covariate.
In medical research, the state of the patient at observa-

tion time is the only thing known with certainty. The
researcher may know the time interval in which a
transition has occurred, but not the exact time. Thus,
homogeneous Markov models which are interval
censored can handle such data [14]. The transition
intensities, probabilities and the distribution functions
associated with the times are the basic building blocks of
the Markov processes [15]. For a continuous-time
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Markov model, transitions can occur at any (real-valued)
time instant. For a time-homogeneous Markov jump
process, the holding time in state i are modelled using
exponential distributions. The exponential distributions
may be adequate for many real-life situations, for ex-
ample, time until death, and waiting time before moving
to another state. However, the exponential distributions
are memoryless continuous distributions, hence a limita-
tion in the application of Markov processes. The ‘mem-
oryless’ property could be seen as a problematic
assumption in this setting. It is likely the case that
patients starting on ART who respond well to treatment
will continue to respond well to treatment - contradic-
ting the Markov assumption and memoryless property.
Transition probabilities for continuous-time homoge-

neous models only depend on the difference between
the two observation times. That is, for all t ≥ 0 the prob-
ability of moving from state i to state j is given by:

pij s; tð Þ ¼ P Xt ¼ jjFt½ � ¼ P Xt ¼ jjXs ¼ ið Þ
¼ P Xt−s ¼ jjX0 ¼ ið Þ; ∀t≥0; t > s:

This is the Markov property, where Ft is the natural
Filtration of the stochastic process. P[Xt = j| Ft], there-
fore, represents the probability that the stochastic
process Xt is in state j at time t given the history of the
process up to time t. The Markov property implies that
all the history of the process is contained in the state
currently occupied, Xs = i. The transition probabilities of
a continuous time homogeneous Markov process Xt, t ≥
0 is given by:

pij tð Þ ¼ P Xt ¼ jjX0 ¼ ið Þ

The equations obey the Chapman-Kolmogorov
equations:

pij t þ sð Þ ¼
X

k∈X
pik sð Þpkj tð Þ ∀s; t > 0 ð1Þ

In this paper we describe, using the theory of continu-
ous time Markov processes, and using real data on an
evolving disease such as AIDS. Also, the effects of covar-
iates, including TB, on baseline transition rates is con-
sidered. Models with and without covariates are fitted
and compared using the likelihood ratio test.
The next section explores the methods of Markov

modelling and an illustrative case study on HIV progres-
sion is given. In this section, data used in the analysis is
described and we explain formulation of the model
based on the data. This is followed by a section on the
results and discussions. The final section concludes on
the findings.
Methods
A continuous-time homogeneous Markov model
Formulation of the continuous-time homogeneous
model is done by considering transition probabilities
over narrow interval of time Δt. In this study Δt ¼ 1

2 year
making it appropriate to assume that transition rates
over these intervals are constant. These transition rates,
also known as transition intensities or forces of transi-
tion, are the fundamental concept in continuous time
Markov jump processes. They can take values greater
than 1, unlike probabilities. In order to differentiate the
transition probabilities and avoid technical problems
with mathematics, the assumption is that the functions
pij(t) are continuously differentiable and are subject to
the initial condition:

pij 0ð Þ ¼ δij ¼ 0 if i≠j
1 if i ¼ j

�
ð2Þ

δij is a Kronecker delta, pii(0) = 1 means that at t = 0
the system maintains its original state and pij(0) = 0
means that there is no change of state when no time
elapses. The force of transition from state i to j is de-
fined as:

αij ¼ d
dt

pij tð Þ
����
t¼0

¼ lim
Δt→0

pij Δtð Þ−δij
Δt

αij, for i = 1, …, 5 and j = 1, …, 7, does not vary over
time and satisfies the following conditions;

P
j∈X αij ¼ 0

and αii ¼ −
P

i≠j αij.

Once the transition intensities are known, the transi-
tion probabilities can be obtained by solving a system of
differential equations known as the Kolmogorov’s for-
ward equation subject to the initial conditions stated in
eq. (2). The Kolmogorov’s forward equation is as
follows:

d
dt

pij tð Þ ¼
X

∀k
pik tð Þαkj ∀i; j ð3Þ

where k is a state that the system can pass through as it
makes a transition from state i to state j. The time
homogeneous models are fitted for this data to assess ef-
fectiveness of the treatment by comparing the forward
transition and the reverse transitions. This then lead to
building of models that allow transitions in both
directions.

Data description
The model is initially applied on 319 HIV patients on
anti-retroviral therapy (ART) from a Wellness clinic in
Bela Bela, South Africa, from year 2005 to year 2009.
Two hundred and twenty-seven of these patients were
females and 92 were males at treatment commencement
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(t = 0). After 3 years of treatment uptake, 173 females
and 71 males were remaining in the study. Thirty-eight
females had died and 16 withdrew and their status was
not known after 3 years of treatment up take. Nineteen
of the males died during the first three years and two
had withdrawn and it was not known whether they were
alive or dead. A 2-year old (subject 81) together with
subject 82 were detected by the residuals plot as an out-
lier and it was removed from the analysis meaning that
the remaining 317 patients were used for analysis. About
50 and 65% of the female and male deaths respectively
occurred during the first 6 months of treatment uptake.
The interquartile range of patient ages is (33; 47.5) years
with a mean and median age of 39.53 and 40 years
respectively. The ages were negatively skewed (skew =
−0.24) which means that there were more younger
patients than older patients in this cohort.
At time t = 0 there were 242 individuals with CD4

baseline (CD4BL) cell count below 200, 59 individuals
with CD4 cell count between 200 and 350, 11 individuals
with CD4 cell count between 350 and 500, 6 individuals
with CD4 cell count between 500 and 750 and 1 individ-
ual with CD4 cell count above 750. At t = 0 the CD4 cell
count had mean of 156 cells/mm3, a median of 116 cell/
mm3 and the maximum CD4 cell count was 1202 cells/
mm3. The mean viral load baseline (VLBL) for these pa-
tients was 105,573.35 copies/mm3 and it ranged from 56
to 818,600 copies/mm3. The median viral load was
58,523.00 copies/mm3. From these individuals 155 had a
WHO stage baseline (WSBL) of 4 which is related to se-
vere HIV symptoms. WSBL is the categorisation of HIV/
AIDS at baseline basing on the clinical markers as de-
fined by World Health Organisation (WHO).
Although some individuals developed TB (DTB)

during the course of treatment, 109 patients had TB
as an initial marker of HIV. From the individuals who
had TB before (TBB4) commencement of antiretro-
viral therapy (ART), 66 had a CD4 baseline below
200cells/mm3, 20 had a CD4 baseline between 200
and 350cells/mm3, 2 had CD4 baseline between 350
and 500cells/mm3, 2 between 500 and 750cells/mm3

and 19 had unknown CD4 baseline. These patients
completed their TB treatment before commencement
of ART. Fifty-two patients developed TB during the
treatment period and 12 of these patients had TB be-
fore commencement of treatment. During the first
6 months of treatment uptake, 35 patients died and
from these deaths, only five were attributed to having
TB before commencement of ART.
A combination therapy was administered to all

HIV-infected individual in the cohort. The therapeutic
intervention inhibits the actions of reverse transcript-
ase enzyme and/or protease of new infectious free
HIV by the HIV-infected cell. The drug regimens at t
= 0 were mainly a combination of d4T-3TC-EFV
(administered to 207 patients) and d4T-3TC-NVP
(administered to 83 patients). The second line regi-
mens were mainly a combination of AZT-3TC-EFV/
NVP and were given to patients who developed some
adverse reaction. These second line regimens were
frequently used from 2 to 4 years post-treatment
commencement. The therapeutic intervention lowers
the number of infectious free virus particles in the
circulation, and in some cases to beyond detection.
This results in a reduction on the density of infected
cells, causing a rise on the CD4 cell count of infected
individuals. So generally the CD4 cell count of an
individual receiving therapeutic intervention is
expected to rise to well above 500 cell/mm3, assum-
ing a proper adherence to treatment. Hence the use
of increase in CD4 cell count as the marker of
efficacy of treatment.
During the course of treatment, some individuals

developed some adverse reaction (React) to treatment.
For these individuals the adverse reactions were
treated and drugs administered to them were chan-
ged. Change of treatment was also based on the viral
load monitoring.
For the purpose of analysis, the variables are coded

into the model as follows:
WSBL
 Gender
 Age
 CD4BL
 VLBL
 DTB
 TBB4
 React
1
 4
 Male
 ≤ 40years
 ≤ 350
 ≥10 000
 Yes
 Yes
 Yes
0
 other
 Female
 > 40years
 > 350
 < 10 000
 No
 No
 No
Model formulation
At any time t + Δt, the state of an HIV-infected individ-
ual is defined basing on the CD4 cell count level or
whether the individual is dead or has withdrawn as
follows:
State 1-CD4≥ 750
 State 2–500≤ CD4 < 750
State 3–350≤ CD4 < 500
 State 4–200≤ CD4 < 350
State 5-CD4 < 200
 State 6-Death
State 7-Withdrawal.
Basing on these seven states, progression of HIV
positive individuals on treatment is defined by the state
diagram on Fig. 1 below. The arrows in the diagram
show possible transitions between the seven states
defined above.
The information in Fig. 1 shows that state 6 and 7 are

absorbing states hence no transitions from these states.
As HIV progresses in an individual’s body, there is a
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possibility of an individual being in the same state in
consecutive visit times.
Basing on the classification above, Table 1 summarises

transition counts that took place for the whole period of
study 2005 to 2009.
Table 1 shows that, transition counts from state i to i

± j are higher for all the values in which j = 1 than for
j > 1 where i, j ∈ { 1,…, 5}. As a result a bidirectional
model is proposed which defines transitions from state i
to i ± 1 or from i to j = 6; 7.
The model is formulated basing on the assumptions

that between times (t, t + Δ t), where Δt is a very small
value, there is a transition from any one of the states i =
1, 2, …, 5 (transient states) to state j = 1, 2, …, 7 defined
as follows:

� CD4 cell count of an individual is expected to
rise due to efficacy of treatment at a rate of αij,
where j = i − 1;

� Some individuals fail to adhere to treatment therapy.
These individuals can move to a state of lower CD4
cell count at a rate of αij, where j = i + 1;

� From any state i = 1, 2, …, 5 an infected individual
can die (state 6) at a rate of αi6;

� An individual in state i = 1, 2, …, 5 can decide to
withdraw (state 7) at a rate of αi7;

� An individual can remain in the same state at a rate
of αii = − λi = − (αi, i − 1 + αi, i + 1 + αi6 + αi7). This is
based on the fact that the sum of transition rates
from any state is equal to zero.

These assumptions can be represented by the
following transition rate matrix Q(t):
Q tð Þ ¼

− α12 þ α16 þ α17ð Þ α12 0

α21 − α21 þ α23 þ α26 þ α27ð Þ α23
0 α32 − α32 þ α34 þ α36ð
0 0 α43
0 0 0
0 0 0
0 0 0

0
BBBBBBBBBB@
Once the transition rate matrix has been obtained, the
matrix of transition probabilities can be obtained using
Kolmogorov’s forward differential equations defined in
(3). This yields the following differential equations for
the Markov jump processes:

dpi1 tð Þ
dt

¼ − α12 þ α16 þ α17ð Þpi1 tð Þ þ α21pi2 tð Þ for i ¼ 1; 2; ð4Þ

dpi2 tð Þ
dt

¼ α12pi1 tð Þ− α21 þ α23 þ α26 þ α27ð Þpi2 tð Þ
þα32pi3 tð Þ for i ¼ 1; 2; 3;

ð5Þ

dpi3 tð Þ
dt

¼ α23pi2 tð Þ− α32 þ α34 þ α36 þ α37ð Þpi3 tð Þ
þα43pi4 tð Þ for i ¼ 2; 3; 4;

ð6Þ

dpi4 tð Þ
dt

¼ α34pi3 tð Þ− α43 þ α45 þ α46 þ α47ð Þpi4 tð Þ
þα54pi5 tð Þ for i ¼ 3; 4; 5;

ð7Þ

dpi5 tð Þ
dt

¼ α45pi4 tð Þ− α54 þ α56 þ α57ð Þpi5 tð Þ for i ¼ 4; 5; ð8Þ

dpi6 tð Þ
dt

¼
X5

k¼1
pik tð Þαk6 for i ¼ 1;…; 5; ð9Þ

dpi7 tð Þ
dt

¼
X5

k¼1
pik tð Þαk7 for i ¼ 1;…; 5: ð10Þ

Equations (4) to (10) represent all the possible transition
probabilities from state i, for i = 1, 2, ...5, to state j = 1, …, 7.
pij(t) represents the probability that a patient in state
i makes a transition to state j and its coefficients represent
the transition rates. For example, in equation (4), −(α12
+ α16 + α17) = α11. These states denoted by i are defined
based on the CD4 cell count grouping. So there is a
0 0 α16 α17
0 0 α26 α27

þ α37Þ α34 0 α36 α37
− α43 þ α45 þ α56 þ α57ð Þ α45 α56 α57

α54 − α54 þ α56 þ α57ð Þ α56 α57
0 0 0 0
0 0 0 0

1
CCCCCCCCCCA



Table 1 Transition Counts from 2005 to 2009

To 1 2 3 4 5 6 7

From 1 69 34 5 1 1 1 1

2 47 80 37 4 0 2 4

3 21 79 193 46 9 6 5

4 0 14 128 203 37 8 9

5 0 3 26 117 204 42 8
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possibility of a backward or forward movement transition
between transient states due to failure or efficacy of
treatment respectively. There is no possible transition from
state i = 6 and state i = 7 because these states are absorbing
states where i = 6 represents death of an infected individual
and state i = 7 represents withdrawal from treatment by an
infected individual. All the analysis is done using the
package ‘msm’ for multistate modelling in R software. The
package was developed by Jackson in 2011 [16].
Fig. 2 The score residuals plot for detecting outliers
Results and discussions
Estimation of the transition rate matrix
Estimation of the transition intensities is done using the
method of maximum likelihood to estimate the
transition intensities. The likelihood, L, is given by:

L ¼ eα11: t1 þ α22:t2 þ…þ α77:t7 � αn1111 α
n12
12 …αn7777 ;

ð11Þ

where ti : i = 1, 2, …, 7, is the total number of observed
waiting/holding time in state i, αii ¼ −

P
i≠jαij and nij is

the number of transitions observed from state i to state
j. The estimates are obtained by taking the logarithm of
the likelihood and differentiating this with respect to each
of the transition intensities αij's. This leads to the maximum
likelihood estimates of the transition intensities as αij ¼ nij

ti
,

where nij is the number of transitions from state i to state j,
and ti the total observed waiting/holding time in state i.
The plot of residuals for each of the individuals in the

study was drawn to identify the outliers (subjects with
higher influence) in the data. Once the outliers are
identified they can simply be deleted and the model is
re-fit. According to Titman in 2007 [17] residuals for
multi-state models can be determined as follows;
If n subjects and a parameter vector θϵΘ, with

maximum likelihood estimator based upon the whole

data θ̂ . Let θ̂ jð Þ represent the estimate with subject j

deleted. Thus the quantity θ̂ jð Þ−θ̂ for j = 1, …, n is of
interest. The influence of each point on each parameter
can be compared separately and to get a measure of the
overall influence of a particular subject we take the
scalar quantity;
θ̂ jð Þ−θ̂
� �0

I θ̂
� �

θ̂ jð Þ−θ̂
� �

where I(θ) is the observed Fisher information matrix at
the maximum likelihood estimates for the full data.
Consider the contribution to the score function of each
subject evaluated to the maximum likelihood estimate
for the full model. Highly influential subjects will have
scores of high magnitude. For a single subject, the score
residual is given by an analogous scalar measure:

Uj θ̂
� �0

I θ̂
� �−1

Uj θ̂
� �

where Uj θ̂
� �

is the vector of first derivatives of the log-

likelihood for that subject at maximum likelihood esti-
mates θ. That is, U θð Þ ¼ ∂l

∂θ θð Þ; is determined using the
derivative of the transition probability matrix P(t) with
respect to θ. These derivatives were given by Kalbfleisch
and Lawless [18]. The residuals plot displays the resid-
uals for each subject in the order labelled by subject
identifiers. Subjects with a higher influence on the max-
imum likelihood estimates will have higher score resid-
uals [16]. The plot helps to identify any outliers in the
data. Figure 2 below shows the plot of residuals.
Results from Fig. 2 show that patients with ID numbers

81 and 82 are outliers as indicated by their positions from
the rest of the patients in the cohort. The corresponding
residuals for these values are 1.58315799 and 1.58315999,
respectively compared to the rest of the subjects whose
residuals below 1. Patient number 81 is a 2 year old
enrolled whilst in state 1 and maintained the state
throughout the study period. Patient number 82 was
enrolled whilst in state 5 and, during the third visit, was
already in state 1 and maintained it throughout the study



Table 2 Transition intensities and their corresponding confidence
intervals for the model with and the model without outliers

With outliers Without outliers

α12 0.9820 (0.6695,1.4410) 0.8872 (0.6355,1.2390)

α16 0.1176 (0.0678,0.2040) 0.1016 (0.0541,0.1907)

α17 0.1153 (0.0663,0.2005) 0.1418 (0.0843,0.2386)

α21 0.6871 (0.4814,0.9808) 0.5183 (0.3723,0.7217)

α23 0.4256 (0.3129,0.5790) 0.4959 (0.3729,0.6593)

α26 0.0726 (0.0406,0.1300) 0.0811 (0.0468,0.1404)

α27 0.0261 (0.0093,0.0734) 0.0377 (0.0167,0.0850)

α32 0.4373 (0.3605,0.5305) 0.4231 (0.3451,0.5186)

α34 0.3382 (0.2639,0.4335) 0.3324 (0.2605,0.4241)

α36 0.0273 (0.0127,0.0587) 0.0145 (0.0047,0.0444)

α37 0.0298 (0.0155,0.0574) 0.0311 (0.0166,0.0584)

α43 0.5524 (0.4693,0.6503) 0.5183 (0.4389,0.6120)

α45 0.2242 (0.1686,0.2980) 0.2523 (0.1936,0.3287)

α46 0.0361 (0.0171,0.0763) 0.0033 (0.0149,0.0742)

α47 0.0382 (0.0225,0.0647) 0.0541 (0.0352,0.0833)

α54 0.5482 (0.4651,0.6463) 0.5164 (0.4356,0.6123)

α56 0.0904 (0.0622,0.1316) 0.0906 (0.0625,0.1313)

α57 0.0357 (0.0211,0.0605) 0.0288 (0.0158,0.0524)

-2xLL 3969.72 3941.971

Table 3 Expected holding times in each state

i Estimates SE L U

1 0.8844741 0.12602569 0.6689603 1.169418

2 0.8826571 0.09158707 0.7202261 1.081721

3 1.2482706 0.09636263 1.0729973 1.452175

4 1.2077295 0.07925375 1.0201303 1.331720

5 1.5728163 0.11539878 1.3621492 1.816065
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period. These patients are excluded from the analysis
leaving us with 317 subjects. Table 2 shows transition
intensities αij for i = 1, 2, …, 5 and j = 1, 2, …, 6, 7 for the
two models, one with outliers and the other one without
outliers. The corresponding confidence interval is also
given for each transition intensity. The state space is Xt

= {1, 2, 3, 4, 5, 6, 7}.
The results from Table 2 show narrow confidence

intervals which is an indication that the suggested
continuous time Markov model gives a precise estimate of
the data. Results from Table 2 show that transitions to
better CD4 cell count states are higher than transitions to
worse CD4 cell count states which is an indication of
efficacy of ART. The model with outliers has got a higher
log-likelihood than the model without outliers as expected
since the model with outliers has got a greater dimension.
A further analysis on the transition intensities was also
done for each of the CD4 baseline (CD4BL) and WHO
stage baseline (WHOSBL) levels coded as follows:

CD4BL ¼

1; CD4 > 750
2; 500 < CD4 ≤ 750
3; 350 < CD4 ≤ 500
4; 200 < CD4 ≤ 350
5; CD4 ≤ 200

and;WHOSBL ¼
1; Asymptomatic

2; Mild symptoms

3; Advanced symptoms
4; Severe symptoms

8>>><
>>>:

8>>>>><
>>>>>:

The results are shown in Appendix 2 and 3 for CD4BL
and WHOSBL respectively. The results from Appendix
2 show that transition rates to CD4 recovery (2 to 1, 3
to 2, 4 to 3 and 5 to 4) were high for patients who
initiated therapy when their CD4 baseline level was well
above 350 per mm3. These rates of CD4 recovery
decrease with as the CD4 cell count at treatment
initiation decrease with a baseline CD4 cell count below
200 per mm3 recording the lowest rates of CD4
recovery. The results from Appendix 3 show that
regardless of the WHO stage baseline, transition rates to
CD4 recovery are higher than transition rates to CD4
deterioration. The rates of CD4 recovery are the highest
for transitions from state 5 to state 4. Transition rates to
state 6 (death) are the highest for those individuals who
had severe HIV symptoms (WHOBL = 4) and these
intensities decrease as the symptoms decrease from
severe to asymptomatic levels.

Expected holding times
The expected holding time in each state also known as the
mean sojourn time describes the average time an individual
spends in each state in a single stay before he/she makes a
transition to another state. The mean sojourn time in each
state i for i = 1, 2, …, 5, is estimated as 1

λi
, where λi ¼

P
i≠j

αij is the total force of transition out of state i. For example,
the expected holding time in state 1 is 1/(0.887 + 0.1016 +
0.1418) ≈ 0.8844 as shown in Table 3 below:
Results from Table 3 show estimates of the holding

time, the standard error (SE), the lower bound (L) and
the upper bound (U) for each of the transient state i.
From the results, if an individual is in state 5
(corresponding to a CD4 count below 200cell/mm3) he
spends more time in that state before making a
transition to other states. This could be due the time
taken by an individual to respond to treatment since
state 5 is the worst state in HIV/AIDS progression.

The jump chain
This is when a Markov process is observed at the times it
makes transitions to a new state. In other words a jump
chain is a stochastic matrix R of probabilities where each
row sums to one, on the state space Xt, which gives the
conditional probability of the next state an individual goes
to after leaving state i. If αii > 0 then given that there is a
jump to a different state, it means we never stay in state i,
we make a jump out resulting in having Rii= 0 and if αii= 0



Shoko and Chikobvu Theoretical Biology and Medical Modelling  (2018) 15:3 Page 8 of 14
then we never leave state i meaning that Rii= 1 (States 6 and
7). The computed matrix of probabilities of each state being
next (also known as the jump chain), together with the
mean sojourn times in each state, fully define a continuous-
time Markov model. This is a more intuitively meaningful
description of a model than the transition intensity matrix.
The matrix for the probabilities that the next state after state
i is state j is approximated as pij ¼ αij

λi
, for each i and j such

that i≠ j. αij is the force of transition from state i to state j
and αii is the total force of transition out of state i. For ex-
ample, p12 ¼ α12

λ1
¼ 0:8872

0:8872þ0:1016þ0:1418 ¼ 0:7847, as shown in

the matrix below. The results are shown Table 4 below:
The results from Table 4 show that Ri, 1− 1 > Ri, i+ 1,

which shows that the probability of jumping to a better
state is higher than the probability of jumping to a worse
state. This is more pronounced for individuals in state 5
where the probability of jumping to state 4 (recovery) is
0.8123 which is very high compared to probability of
making a jump to state 6. This is an indication of the
effectiveness of treatment. Probability of the death state
being next is the highest for those patients with CD4
counts less than 500. These probabilities increase with the
decreasing number of CD4 counts.

Forecast of the total length of stay in each state
We need to forecast the total time spent in the good
states and the bad states by individuals who are on HIV
treatment before death or withdrawal from the study.
Estimates of the forecasted total lengths of time spent in
each state j between two future time points t1 and t2 are
estimated using the formula:

Lj ¼
Zt2
t1

Pij tð Þdt

where i is the state at the start of the process, which
defaults to 1. The results are shown below:
State1
Table 4 P

To

From 1

2

3

4

5

6

7

State2
robability

1 2

0 0

0.4575 0

0 0

0 0

0 0

0 0

0 0
State3
of each St

3

.7847 0

0.4

.5282 0

0.6

0

0

0

State4
ate being

4

0

377 0

0.414

041 0

0.812

0

0

State5
next (Rij)

5

0

0

9 0

0.294

3 0

0

0

State6
6

0.0899

0.0715

0.0181

0.0388

0.1425

1

0

State7
8.988960
 8.806075
 7.767124
 3.520485
 1.153648
 Inf
 Inf
7

0.1254

0.0333

0.0388

0.0631

0.0451

0

1

The results show that each individual is forecasted to
spend approximately 8.99 half years in state 1, 8.8 half
years in state 2, 7.77 half years in state 3, 3.52 half years
in state 4 and finally 1.153 half years in state 5. These
results show that HIV positive individuals on treatment
are expected to spend more time in good states
compared to the time spent in bad states.
Percentage prevalence for the model without

covariates.
Using the fitted time-homogeneous Markov model,

the percentage prevalence were plotted to compare the
expected values with the observed values. The results
are shown in Fig. 3 below:
The results from Fig. 3 show that for the state i = 1, …,

6 the expected prevalence fit the observed data perfectly
well except for the withdrawal state where the expected
prevalence overestimate the observed. The plots further
show a sharp decrease on state 5 percentage prevalence
with the fitted model, underestimating the model for
observed data up to time = 7 half years. The percentage
prevalence for the death state is increasing at a slow rate
and from time = 2 half years to time = 8 half years the
percentage prevalence is stable.
Effects of covariates on transition intensities
A continuous-time Markov model for the effects of co-
variates; Age, CD4BL, VLBL, WSBL, Reaction, DTB,
TBB4 and Gender is fitted. Identification of covariates
that have a significant contributory effect is done by en-
tering each covariate one after the other and performing
the likelihood ratio test in comparison to the model
without covariates. All the other variables proved to be
significant to the progression except for the variable gen-
der which could not be eliminated because of its demo-
graphic importance. The baseline transition intensities

α 0ð Þ
ij

� �
relate to the transitions from state i to state j.

Baseline transition intensities and linear effect of each of
the covariates is estimated and the results are shown in
two separate Table 5 and Appendix 1 respectively:
The fitted time homogeneous model with covariates

has -2xLL = 3699.259, which represents an improvement
of 242.712 compared to the model without covariates. A
Likelihood ratio test is performed to compare the two
nested models that were fitted, the one without
covariates and the other with covariates. The value of

the LRT ¼ −2loge
Ls θ̂ð Þ
Lg θ̂ð Þ

� �
where Ls θ̂

� �
is the simple

model (no covariates) and Lg θ̂
� �

is the general model

(with covariates). A likelihood ratio test statistic of
1770.618 is compared to a χ2 distribution with 144
degrees of freedom. The test was performed and the
results are shown below:



Fig. 3 Comparison of observed and expected prevalence from the time-homogeneous model without covariates
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−2logLR
 Df
 p-value
with.covariates
 1770.186
 144
 10−4
The results show that the model with covariates fits
significantly better than the model without covariates.

Hazard ratios of covariates on transition intensities
In this section the hazard ratios for each of the covariates;
VLBL-viral load baseline, DTB-develop TB during treat-
ment period, TBB4-develop TB before treatment, Gender,
React-reaction to treatment, CD4BL-CD4 baseline,
WSBL-WHO stage baseline and Age are estimated. The
relationship between these covariates and the transition
intensities is defined by the following equation:

αij Zð Þ ¼ α 0ð Þ
ij exp βij0Z

� �
; i≠j;

where Z= [VLBL, DTB,TBB4, Gender, React, CD4BL,W
SBL, Age ] is a k= 8-dimensional vector of covariates and βij
is a vector of k regression parameters relating the
instantaneous rate of transitions from state i to state j to the

covariates Z and baseline intensities α 0ð Þ
ij relating to the
transition from state i to state j as shown in Table 5 above.
Estimates of βij’s, regression coefficients, were calculated and
the results are shown in Appendix 1. The regression
coefficients can be interpreted similarly to those in the
proportional hazards regression model [19]. The results are
shown in Table 6.
The -2xLL for the model fitted in Table 6 is 3699.259.

The results show that the strongest predictor of transition
from state 1 to 2 is a negative reaction to treatment,
which has a hazard ratio of 4.715. This means that
patients who developed some form of reaction were over
4 times more likely to transit from a level of CD4 ≥ 750 to
a level of 500 ≤ CD4 < 750 than patients who did not react
to treatment. However, from all the other states, hazard
ratios for the patients who reacted to treatment are higher
for immune recovery than for immune deterioration.
The strongest predictor of immune deterioration from a

CD4 level between 350 and 500 to a CD4 level between
200 and 350 (3 to 4) is developing TB during treatment,
with a hazard ratio of over 2. Developing TB is also the
strongest predictor of immune deterioration from 4 to 5,
with a hazard ratio also greater than 2. This means that
TB is the major cause of further immune deterioration
when the immune system is too weak. Hence the



Table 5 Baseline intensities and their corresponding confidence
intervals for the covariate effects

(i, j) Intensities (αij) B.L. Intensities α 0ð Þ
ij

� �
(1, 2) 0.8872 (0.6355,1.2390) 0.5030 (0.4277,0.8612)

(1, 6) 0.1016 (0.0541,0.1907) 0.0200 (0.0100,0.4641)

(1, 7) 0.1418 (0.0843,0.2386) 0.0175 (0.009,0.4934)

(2, 1) 0.5183 (0.3723,0.7217) 0.3900 (0.3846,0.6863)

(2, 3) 0.4959 (0.3729,0.6593) 0.4440 (0.2973,0.5550)

(2, 6) 0.0811 (0.0468,0.1404) 0.0111 (0.0073,0.2018)

(2, 7) 0.0377 (0.0167,0.0850) 0.0116 (0.001,0.0189)

(3, 2) 0.4231 (0.3451,0.5186) 0.3760 (0.3252,0.5010)

(3, 4) 0.3324 (0.2605,0.4241) 0.2333 (0.2076,0.3641)

(3, 6) 0.0145 (0.0047,0.0444) 0.0063 (0.00367,0.1287)

(3, 7) 0.0311 (0.0166,0.0584) 0.0095 (0.00285,0.3149)

(4, 3) 0.5183 (0.4389,0.6120) 0.5600 (0.4485,0.6284)

(4, 5) 0.2523 (0.1936,0.3287) 0.2300 (0.1522,0.2785)

(4, 6) 0.0033 (0.0149,0.0742) 0.0070 (0.0049,0.4210)

(4, 7) 0.0541 (0.0352,0.0833) 0.0084 (0.00589,0.1547)

(5, 4) 0.5164 (0.4356,0.6123) 0.5020 (0.4450,0.6297)

(5, 6) 0.0906 (0.0625,0.1313) 0.0198(0.00662,0.1456)

(5, 7) 0.0288 (0.0158,0.0524) 0.0055 (0.001280,3.936)

-2xLL 3941.971 3699.259

Table 6 Hazard ratios for the covariates on intensities

(i, j) VLBL DTB TBB4 Gender React CD4BL WSBL Age

(1, 2) 0.69 2.29 0.31 2.04 4.72 1.17 0.55 1.45

(1, 6) 1.57 0.87 1.11 1.55 0.60 1.30 1.11 0.83

(1, 7) 1.01 0.96 1.00 1.26 0.68 0.92 0.56 0.40

(2, 1) 0.48 1.14 0.76 1.33 1.46 1.17 0.74 2.63

(2, 3) 0.92 1.98 0.67 6.46 0.67 1.37 0.26 0.40

(2, 6) 1.12 0.96 1.69 1.45 0.54 0.997 1.16 1.10

(2, 7) 1.30 1.19 1.92 0.93 0.73 1.33 0.79 0.70

(3, 2) 0.68 1.58 1.10 2.35 2.08 0.69 0.75 0.83

(3, 4) 0.42 2.55 0.53 1.04 0.55 1.57 1.06 0.89

(3, 6) 0.92 1.17 2.03 1.20 0.59 1.05 1.32 1.77

(3, 7) 1.34 0.86 2.34 0.72 0.20 1.20 0.54 2.06

(4, 3) 1.52 1.72 0.86 0.61 1.02 0.27 0.84 1.08

(4, 5) 0.74 2.25 1.65 1.36 0.65 1.05 0.46 0.89

(4, 6) 1.31 1.09 1.09 1.59 0.22 1.01 1.40 1.96

(4, 7) 1.56 1.17 1.88 0.58 0.36 1.02 0.52 2.18

(5, 4) 0.51 1.86 1.02 0.81 1.32 0.61 0.40 0.63

(5, 6) 0.92 0.65 0.41 2.10 0.06 1.003 2.09 2.60

(5, 7) 0.97 1.20 0.88 1.19 0.66 0.87 0.40 2.31
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recommendation that HIV patients should continuously
have their TB status checked. Those individuals who had
TB before enrolment had the strongest predictor for the
transition from state 3 to state 6. These patients had a
hazard ratio of over 2 times more likely to die from state 3
than those who were enrolled without having TB.
However, for these individuals, transitions to better states
were generally higher than transitions to worse states for
almost all states.
A hazard ratio of 6.46 for the predictor variable male

shows that males were over 6 times more likely to transit
from state 2 to 3 than their female counterparts. The
hazard ratios of males from a bad state to a better state
are less than 1, which is an indication that males are less
likely to respond to treatment compared to females.
The hazard ratios for the transitions to a better state for

patients who were enrolled with CD4 counts below 350 are
less than one, but hazards to worse states are greater than
one, an indication that starting treatment when the CD4
levels are below 350 retards immune recovery. The
transitions to the death state for individuals who started
treatment when they were on the WHO stage of 4 are all
more than one, meaning that starting treatment with a
WHO stage of 4 is a leading cause of being absorbed in the
death state.

Percentage prevalence for the model with covariates
The prevalence for the model with covariates were plotted
to examine areas of poor fit of the time-homogeneous
model with covariates. The plots are shown in Fig. 4.
Figure 4 confirms that the inclusion of covariates on the

model improves the fitness of the model since the expected
prevalence is now perfectly closer to the observed
prevalence for all states than the model without covariates.

Conclusion
In this paper a continuous-time homogeneous Markov
model is fitted to explore predictors of HIV/AIDS progres-
sion for patients on antiretroviral therapy. A continuous-
time homogeneous model is fitted with and without covari-
ates and comparison of these two models is done using the
likelihood ratio test. Parameters that define progression of
HIV/AIDS were estimated and these include transition in-
tensities, mean sojourn times and probability of each state
being next or jump chains. The fitted model is used to ana-
lyse the effects of the covariates on the transition intensities.
These covariates were reaction to treatment, development
of TB during treatment and gender among others.
Results from the likelihood ratio test show that the

model with covariates provides a better fit than the model
with no covariates with a p-value =10{−4}. The results show
that transition rates to immune recovery are generally
higher than the transition rates to immune deterioration.
However, the results show that the strongest predictor of



Fig. 4 Comparison of observed and expected prevalence from the time-homogeneous model with covariates
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immune deterioration from state 1 (CD4 cell count greater
than 750) to state 2 (CD4 cell count between 500 and 750)
is reaction to treatment. These patients are 4 times more
likely to transit from state 1 to state 2 than those who did
not react to treatment.
Patients who developed TB during the course of

treatment have higher chances of immune deterioration
than immune recovery compared to those who did not
develop any TB co-infection. These incidences are quite
high for transition from state 4 (CD4 cell count between
200 and 350) to state 5 (CD4 cell count below 200). For
these states the immune system is still weak. As a result
patients on antiretroviral drugs should consistently be
screened for TB co-infection. Patients who had initially
been diagnosed with TB before commencement of ART
recover better from HIV/AIDS disease except that transi-
tions to death for patients with CD4 cell count between
350 and 500 cells/mm3 are two times higher than that of
patients who were not initially diagnosed with TB.
From this cohort, transitions to bad states are higher for

males than for their female counterparts. This is quite
pronounced on transitions from state 2 (CD4 cell count
between 500 and 750) to state 3 (CD4 cell count between
350 and 500) where the hazards for males are 6 times that
of females. This result is consistent with the findings from
Maskew and others, they discovered that men gain fewer
CD4 cell counts than did women [20]. An assessment of
published studies by Castillo and others [21] from both
resource-limited and resource-rich countries suggest an
improved survival outcomes for females than males. How-
ever, the studies they assessed do not show a clear sex dis-
parity in the disease progression or in treatment effects of
viral suppression and immunologic recovery.
The results from the fitted model show that the rates of

immune recovery were much higher than the rates of
immune deterioration which is an indication of
effectiveness of treatment. Patients who started treatment
when their CD4 baseline was at least 350 had higher rates
of immune recovery than those who had a lower CD4
baseline. This result is commensurate with the findings
from Moore and Keruly who also discovered that patients
with baseline CD4 cell count above 350 cells/mm3

returned to nearly normal CD4 cell count after 6 years
[22]. The probability of dying increases with decreasing
CD4 count of the individual at enrolment. This is
supported by the findings of [23–25], who also concluded
that being in the AIDS defining stage leads to the highest
probability of reaching the death state.



Table 8 Transition intensities for each CD4 baseline

Transition 2 3 4 5

1 to 2 3.1280 6.3180 12.760 25.780

1 to 6 0.0125 0.0203 0.0330 0.0537

1 to 7 0.0389 0.0560 0.0807 0.1163

2 to 1 0.6644 0.5991 0.5407 0.4870

2 to 3 0.2842 0.4054 0.5783 0.8249

2 to 6 0.0176 0.0184 0.0194 0.0203

2 to 7 0.0227 0.0278 0.0341 0.0417

3 to 2 0.2450 0.1658 0.1123 0.0760

3 to 4 0.2749 0.1781 0.1153 0.0747

3 to 6 0.0079 0.0088 0.0098 0.0108

3 to 7 0.0347 0.0332 0.0318 0.0305

4 to 3 1.3990 0.8116 0.4708 0.2731

4 to 5 0.8935 0.6913 0.5348 0.4138

4 to 6 0.0110 0.0011 0.0103 0.0099

4 to 7 0.0496 0.0510 0.0524 0.0539

5 to 4 13.140 5.3300 2.1620 0.8774

5 to 6 0.0192 0.0167 0.0145 0.0126

5 to 7 0.3747 0.2259 0.1362 0.0821
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The mean sojourn times revealed that patients take
longer time in the AIDS defining states (CD4 cell count
below 200) before they move to the other states. Research
has also shown that CD4 cell count rises gradually despite
the suppressed viral load particularly in older patients.
Hence, there is need to use both CD4 cell count and viral
load in monitoring the efficacy of treatment. The younger
people below the age of 40 have higher chances of immune
recovery than the older ones. This finding is supported by
some previous studies who concluded lower mean CD4
increases for older patients than younger patients [20, 26].
Alioum and others further argued that this could be caused
by the fact that older subjects may have a reduced capacity
to generate CD4 cells in response to the viral killing [10].
Although continuous time Markov models can handle

multiple or recurrent outcomes compared to the Kaplan
Meier analysis and Cox proportional hazards models, the
assumption of constant hazard function that is frequently
unrealistic [27] and puts limitations on the disease history
behaviour [28], especially on HIV/AIDS progression for
patients on ART. Some studies have shown that if a patient
responds well to treatment and manages to achieve viral
load suppression within the first 6 months, that patient is
likely to continue responding well to treatment [29]. This
goes against the Markov and memoryless properties of the
models. Thus a limitation in the application of time
homogeneous Markov processes.

Appendix 1
Table 7 Linear effects of covariates on transition intensities

Param. VLBL CD4BL WSBL React

β12 −0.37 0.15 −0.59 1.55

β16 0.45 0.27 0.101 −0.52

β17 0.0071 −0.088 −0.58 −0.39

β21 −0.73 0.156 −0.31 0.38

β23 −0.84 0.31 −1.35 −0.40

β26 0.112 −0.0028 0.150 −0.63

β27 0.26 0.29 −0.24 −0.32

β32 −0.39 −0.37 −0.28 0.73

β34 −0.86 0.45 0.057 −0.59

β36 −0.085 0.047 0.28 −0.53

β37 0.29 0.181 −0.24 −1.63

β43 0.42 −1.32 −0.17 0.020

β45 −0.305 0.049 −0.77 −0.43

β46 0.27 0.0079 0.34 −1.50

β47 0.45 0.020 −0.66 −1.01

β54 −0.66 −0.501 −0.91 0.27

β56 −0.079 0.0030 0.74 −2.83

β57 −0.028 −0.141 −0.92 −0.41
Appendix 2
DTB TBB4 Gender Age

0.83 −1.17 0.7118 0.37

−0.14 0.11 0.4379 −0.18

−0.039 0.00086 0.23 −0.90

0.13 −0.28 0.29 0.97

0.68 −0.39 1.87 −0.92

−0.044 0.53 0.37 0.100

0.17 0.65 −0.077 −0.36

0.46 0.096 0.86 −0.18

0.94 −0.63 0.036 −0.116

0.16 0.71 0.18 0.57

−0.15 0.85 −0.33 0.72

0.54 −0.15 −0.49 0.080

0.81 0.50 0.31 −0.12

0.087 0.089 0.46 0.67

0.16 0.63 −0.55 0.78

0.62 0.022 −0.22 −0.46

−0.43 −0.89 0.74 0.95

0.19 −0.13 0.18 0.84
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Appendix 3
Table 9 Transition for the WHO Stage Baseline Line

Transition 1 2 3 4

1 to 2 0.3143 0.1289 0.0529 0.0217

1 to 6 0.0044 0.0041 0.0038 0.0035

1 to 7 0.0139 0.0103 0.0076 0.0057

2 to 1 0.8460 0.8758 0.9066 0.9384

2 to 3 0.1250 0.1119 0.1001 0.0896

2 to 6 0.0171 0.0182 0.0194 0.0207

2 to 7 0.0139 0.1286 0.0119 0.0109

3 to 2 0.8116 1.2320 1.8700 2.8390

3 to 4 0.8856 1.1970 1.6170 2.1850

3 to 6 0.0072 0.0081 0.0091 0.0102

3 to 7 0.0305 0.0245 0.0197 0.0159

4 to 3 4.5930 5.0750 5.6070 6.1950

4 to 5 1.2360 1.0240 0.8484 0.7028

4 to 6 0.0139 0.0165 0.0195 0.0232

4 to 7 0.0325 0.0226 0.0157 0.0109

5 to 4 67.220 56.630 47.710 40.190

5 to 6 0.0390 0.0596 0.0912 0.1394

5 to 7 0.5792 0.3253 0.1827 0.1026
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