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On the suitability of an allometric proxy for
nondestructive estimation of average leaf
dry weight in eelgrass shoots I: sensitivity
analysis and examination of the influences
of data quality, analysis method, and
sample size on precision
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Abstract

Background: The effects of current anthropogenic influences on eelgrass (Zostera marina) meadows are noticeable.
Eelgrass ecological services grant important benefits for mankind. Preservation of eelgrass meadows include several
transplantation methods. Evaluation of establishing success relies on the estimation of standing stock and productivity.
Average leaf biomass in shoots is a fundamental component of standing stock. Existing methods of leaf biomass
measurement are destructive and time consuming. These assessments could alter shoot density in developing transplants.
Allometric methods offer convenient indirect assessments of individual leaf biomass. Aggregation of single leaf projections
produce surrogates for average leaf biomass in shoots. Involved parameters are time invariant, then derived proxies yield
simplified nondestructive approximations. On spite of time invariance local factors induce relative variability of parameter
estimates. This influences accuracy of surrogates. And factors like analysis method, sample size and data quality also impact
precision. Besides, scaling projections are sensitive to parameter fluctuation. Thus the suitability of the addressed allometric
approximations requires clarification.

Results: The considered proxies produced accurate indirect assessments of observed values. Only parameter estimates fitted
from raw data using nonlinear regression, produced robust approximations. Data quality influenced sensitivity and sample
size for an optimal precision.

Conclusions: Allometric surrogates of average leaf biomass in eelgrass shoots offer convenient nondestructive assessments.
But analysis method and sample size can influence accuracy in a direct manner. Standardized routines for data quality are
crucial on granting cost-effectiveness of the method.

Keywords: Eelgrass conservation, Nondestructive estimation, Allometric projection suitability, methodological influences,
Sensitivity analysis

* Correspondence: heheras@icloud.com; http://www.editorialmanager.
com/tbmm/default.aspx
1Centro de Investigación Científica y de Estudios Superiores de Ensenada,
Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Código Postal 22860,
Apdo. Postal 360 Ensenada, B.C., Mexico
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Echavarría-Heras et al. Theoretical Biology and Medical Modelling  (2018) 15:4 
https://doi.org/10.1186/s12976-018-0076-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12976-018-0076-y&domain=pdf
mailto:heheras@icloud.com
http://www.editorialmanager.com/tbmm/default.aspx
http://www.editorialmanager.com/tbmm/default.aspx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Based on published data for 17 ecosystem services in 16
biomes, Costanza et al. [1] estimated the value of ecosys-
tem services at the level of the whole biosphere. They
found a lower bound in the range of US$16–54 trillion
(1012) per year, with an average of US$33 trillion per year.
Marine systems produced near 63% of the annual value.
Almost half derived from coastal ecosystems. Approxi-
mately 25% of this share related to algal beds and sea-
grasses. This contribution to human welfare is deem
relevant. Thus maintaining the health of marine ecosys-
tems is subject of scientific concerns. Currently, increasing
anthropogenic pressures pose important threats. And glo-
bal climate change could also threaten future viability of
seagrass meadows [2, 3]. For instance, water quality and
other local stressors promote unprecedented meadow loss
[4–6]. This reduces mitigation of wave action [7] and fil-
tration [8]. Diminishes food and shelter for a myriad of or-
ganisms [9–11]. Weakens nutrient cycling [12, 13],
erosion abatement and shoreline stabilization [14–16].
Moderates support for detrital food web foundation [17].
And inhibits carbon sequestration [18, 19].
Eelgrass (Zostera marina L.) is a dominant along the

coasts of both the North Pacific and North Atlantic [20].
This species supports communities known as among the
richest and most diverse in sea life [21]. Contribution of
organic materials for food webs in shallow environments
[22] is noticeable. Indeed, eelgrass produced up to 64%
of the whole primary production of an estuarine system
[23]. Current deleterious effects of anthropogenic influ-
ences on eelgrass prompted special restoration strat-
egies. Among remediation efforts replanting plays an
important role [24–27]. Transplant success amounts to
reinstatement of ecological functions of natural popula-
tions. Evaluation relies on monitoring standing stock
and productivity of transplanted plants. Then comparing
with assessments of a reference population, which
usually settle nearby [28].
Combined biomass of leaves in shoots is an important

component of standing stock. Assessments rely on the
estimation of the biomass of individual leaves. This re-
quires shoot removal followed by dry weight measure-
ment procedures in the laboratory. Elimination of shoots
could infringe damage to natural eelgrass populations
[29]. And reduced shoot density makes these effects
even more perceptible for transplanted plots. Allometric
methods make it possible simplified-indirect estimations
of eelgrass productivity and standing stock. Echavarría-
Heras et al. [30] considered an allometric representation
for eelgrass leaf biomass and related length. Agreeing
with Solana et al. [31], the involved parameters are in-
variant within a given geographical region. Estimates
and leaf length measurements grant nondestructive ap-
proximations of observed leaf biomass values. This way,

leaf length measurements grant nondestructive approxima-
tions for observed leaf biomass values. Leaf growth rates es-
timation relies on successive measurements of leaf biomass.
Then the allometric model in [30] entails nondestructive
assessments of eelgrass productivity. But, invariance does
not impede local factors to imply variability of parameter
estimates. Besides, local influences other factors could ex-
plain numerical differences in parameter estimates. There
are methodological influences that may render biased par-
ameter estimates. Analysis method, sample size, and data
quality can influence scaling results (e.g. [32, 33]). And,
since scaling relationships are particularly sensitive to para-
metric uncertainties, Echavarría-Heras et al. [30] concluded
that the actual precision of derived allometric surrogates re-
quires clarification.
Here we deal with allometric surrogates for average leaf

biomass in eelgrass shoots. These derive from the model
w(t)= βa(t)α for leaf biomass w(t) and area a(t) measured
at time t, and α and β parameters. Leaf area is more in-
formative of eelgrass leaf biomass than corresponding
length. Thus, the present scaling endures a boost in preci-
sion of parameter estimates by the model in [30]. This
could increase the accuracy of derived surrogates for leaf
biomass in shoots. Besides, eelgrass leaf area and length
admit an isometric representation [34, 35]. Then, the time
invariance found by Solana-Arellano et al. [31] also holds
for parameter estimates of the present scaling. This by the
way imbeds a nondestructive advantage to the present
shoot-biomass substitutes. But, agreeing with Echavarría-
Heras et al. [30], we must examine influences on precision
of estimates for suitability of projections. Since, such an
analysis was not produced before, we took here the try of
filling that gap. Achieving the related goals, required the
assemblage of an extensive data set. It comprises coupled
measurements of eelgrass leaf biomasses and related areas.
This is further called “raw data set”. A data cleaning pro-
cedure adapted from Echavarría-Heras et al. [30] removed
inconsistent leaf biomass replicates from the raw data.
Thereby forming what we call a “processed data set”. Dif-
ferences in reproducibility strength allowed to assess data
quality effects in precision. A similar procedure evaluated
sample size effects. And a sensitivity analysis evaluated ro-
bustness of the projection method. This supports consist-
ent, cost-effective allometric projections of observed
values from raw data. But, this depends on nonlinear re-
gression as an analysis method. Besides, sample size must
be optimal. Data quality as expected improved reproduci-
bility strength of the allometric projection method. But,
this factor was more relevant in optimizing sample size. A
detailed explanation of used procedures appears in the
methods section. The results section is not only devoted
to the presentation of our findings. It also examines the
relative strengths of factors influencing the precision of
proxies. A Discussion section emphasizes on the gains
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and the limitations of the method. Appendix 1 deals with
the model selection problem. Appendix 2 is about data
processing methodology. Appendix 3 presents the proced-
ure for sensitivity assessment.

Methods
The symbol wm(t) will stand for average leaf dry weight
of shoots collected at sampling date t. An the average of
these values over all sampling dates symbolized through
〈wm(t)〉. Formal representations of these variables appear
in Appendix 3 (cf. Eq. (15) and Eq. (16)). The symbols
w(t) and a(t) will one to one stand for biomass and area
of an individual leaf collected at a sampling time t. We
assume that these variables are linked through the
scaling relationship

wðtÞ ¼ βaðtÞα: ð1Þ
The present raw data come from a coastal lagoon

located in San Quintin Bay, México [30]. This comprises
10,412 leaves and measured lengths [mm], widths [mm]
and dry weights (g). The product of length times width
provided estimations of leaf area [mm2] [36]. In what fol-
lows the symbol nra stands for number of leaves in raw
data. Processed data results by applying direct and statis-
tical data cleaning techniques. The direct hinges on the
consistency of allometric models for eelgrass leaf biomass.
Leaf length or area are allometric descriptors of eelgrass
leaf biomass [30, 31, 34]. A model selection exploration
corroborated a power function like trend assumption for
the present data. Details appear in Appendix 1. Severe de-
viations, from the mean response curve, are inconsistent
and must be removed. This took care of sets containing
less than ten leaf dry weight replicates. The statistical pro-
cedure worked on sets with a larger number of replicates.
It centers on properties of the median of a group of data.
This is immune to sample size and also a robust estimator
of scale. The adapted Median Absolute Deviation (MAD)
data cleaning procedure [37] appears in Appendix 2. Pro-
cessing data resulted in a number of nqa = 6094 pairs of
leaf dry weights and areas.

Parameter estimates α̂ and β̂ and leaf area values yield

allometric proxies wmðα̂; β̂; tÞ for wm(t). (cf. Eq. (19)). The

symbol hwmðα̂; β̂; tÞi (cf. Eq. (20)) stands for the pertinent
average over sampling dates. We use Lin’s Concordance
Correlation Coefficient (CCC) [38] as an evaluation of re-
producibility. This meant as the extent to which two con-
nected variables fall on a line through the origin and with
a slope of one. We represent this statistic by means of the
symbol ρ̂. Agreement defined as poor whenever ρ̂ < 0:90,
moderate for 0:90≤ ρ̂ < 0:95, good for 0:95≤ ρ̂≤0:99 or
excellent for ρ̂>0.99 [39]. Values of ρ̂ gave an evaluation of

the strength of the wmðα̂; β̂; tÞ devise to reproduce ob-
served values.

In getting parameter estimates α̂ and β̂ we relied on two
procedures. The traditional analysis method of allometry
and nonlinear regression. Assessing analysis method effects

on reproducibility strength of wmðα̂; β̂; tÞ depended on test-
ing differences in ρ̂ . The traditional approach involves a
linear regression equation (cf. Eq. (4)). This obtained
through logarithmic transformation of response and
descriptor in Eq. (1). The nonlinear regression analysis
method relied on maximum likelihood [40, 41]. This
approach fitted the model of Eq. (1) in a direct way in the
original arithmetical scale. The nonlinear fit allowed the
consideration of homoscedasticity or heteroscedasticity (cf.
Eqs. (5) and (6)). All the required fittings for both raw and
processed data depended on the use of the R software.
We also fitted the model of Eq. (1) to samples of different

sizes taken out from primary and processed data sets. Each
sample of size k; with 100 ≤ k ≤ nra produced estimates α̂ðkÞ
for α and β̂ðkÞ for β, and resulting wmðα̂ðkÞ; β̂ðkÞ; tÞ projec-
tions. The symbol ρ̂ðkÞ denotes the value of ρ̂ for a sample
of size k. Differences in ρ̂ðkÞ allow exploring sample size in-
fluences in reproducibility.
Deviations Δαq and Δβr convey fluctuating values αq = α

+Δαq and βr = β +Δβr for the parameters α and β one to
one. The modulus of the vector of parametric changes
(Δαq, Δβr) defines a tolerance range θ(q, r). And the value
of θ(q, r) determined by the standard errors of parameter
estimates denoted by mean of θste. A fixed value of θ(q, r)
leads to four possible characterizations of the pair
(Δαq, Δβr). Each one associates to a trajectory wm(αq, βr, t)
shifting from a reference one wm(α, β, t). The symbol
δwmθ(αq, βr, t) (cf. Eq. (42)) denotes deviations between ref-
erence and average of shifting trajectories at sampling dates.
And the average of δwmθ(αq, βr, t) values taken over all sam-
pling dates denoted through 〈δwmθ(αq, βr, t)〉 (cf. Eq. (43)).
The absolute value of the ratio of 〈δwmθ(αq, βr, t)〉 to 〈wm(α,
β, t)〉 defines a relative deviation index ϑ(θ). It measures
sensitivity of 〈wm(α, β, t)〉 to fluctuations of tolerance θ(q, r)
on α and β. Appendix 3 presents detailed formulae.

Results
Figure 1 shows the variation of leaf dry weight and area ob-
served in the raw data. Smallest and largest leaf areas were
2 mm2 and 7868 mm2 respectively. Associated dry weights
were 1 × 10−5 g and 0.1588 g one to one. The time average
of mean leaf dry weight in shoots was 〈wm(t) 〉 = 0.01461g
(cf. Eq. (16)). Each leaf area measurement associate to
several replicates of leaf biomass. Number of replicates in-
creased from a single association up to a largest value of 84.
Dispersion masks a power function like trend. Contents of
Appendix 1 corroborate this at formal level. And explor-
ation of dispersion reveals severe deviations from the inher-
ent power function-like trend. Inconsistencies are more
visible for leaves with areas under 350 mm2 and also for
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those over 5000 mm2. This hints about the relevance of
data quality.
Figure 2 exhibits the spreading of leaf dry weight after

data quality control. About 40% of the replicates in the
raw data were eliminated. A power function like trend
appears more depicted than that showing on Fig. 1. But

dispersion still shows significant deviations around the
expected power function like trend. This suggests lack of
standardized routines for data gathering. In this work
the length times width proxy [36] approximated leaf
area. Errors in estimation of area of older damaged
leaves could explain uneven replicates. Faulty

Fig. 1 Distribution of eelgrass leaf dry weight and linked area values in raw data. Dispersion shows a masked power function-like trend. Devia-
tions from this trend are more manifest for areas under 350 mm2 and also for those bigger than 5000 mm2. This suggests data quality effects on
accuracy of allometric projections

Fig. 2 Plot of processed data. Distribution of eelgrass leaf dry weight and area values remaining after data quality control procedures. Although
about 40% of the replicates in the raw data were found inconsistent and eliminated, this plot still shows significant residual variability around an
expected power function like trend
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equipment, or incorrect recording could explicate incon-
sistencies for small leaves.

Table 1 gives estimates α̂ and β̂ for the parameters α
and β and corresponding standard errors. Assuming het-
eroscedasticity in the model of Eqs. (5) and (6) did not
affect estimates. Thus, presentation of results of nonlinear
regression refers to the homoscedastic case of the model
of Eqs. (5) and (6). Figure 3 displays mean response curves
fitted using raw data. Figure 4 shows those associated to
quality controlled data. Results for the log-linear
transformation method included correction for bias of re-
transformation [42]. The smearing estimate of bias of
Duan [43] provided the form of the correction factor.
For raw data the log-linear transformation method pro-

duced ρ̂ ¼ 0:8910, entailing poor reproducibility. This ex-
plains a biased distribution of replicates around the mean
response curve (Fig. 3a). Meanwhile, estimates acquired
by nonlinear regression from raw data conveyed adequate
reproducibility (ρ̂ ¼ 0:9307Þ. This explains a displayed fair
distribution of projected leaf biomass values (Fig. 3b).
Estimates via log-linear transformation for processed

data seemed enhance reproducibility ( ρ̂ ¼ 0:9777
=̂0.9455). But, Fig. 4a, reveals a bulk of inconsistent
replicates for leaves areas under 5000 mm2. Notice
that this subset of replicates distributes almost evenly
around the mean response curve. Yet replicate spread
for areas beyond 5000 mm2 shows significant bias
(Fig. 4a). Meanwhile, nonlinear regression and proc-
essed data associate to ρ̂ ¼ 0:9777. This corresponded
to good reproducibility strength. Indeed, spread of
replicates around the mean response is fair (Fig. 4b).
Estimates acquired from raw data via the traditional

analysis method of allometry returned a value of ρ̂ ¼ 0:9

285 for wmðα̂; β̂; tÞ projections (Table 2). This seems to
correspond to moderate reproducibility. Yet, corre-
sponding rms = 0.01265 was largest among analysis
method- data set combinations (Table 2). Figure 3a
shows a relative wider bias in spread around the mean
response curve for larger leaves. This explains resulting

inconsistencies in reproducibility of wmðα̂; β̂; tÞ projec-

tions shown in Fig. 5a. Display reveals biased wmðα̂; β̂; tÞ
projections for near 50% of sampling dates. This, led to
a smallest value of 0.8436 for the ratio of projected to
observed averages.
Instead, nonlinear regression and raw data produced a

value of ρ̂ ¼ 0:9915: And root mean squared deviation

attained a value of rms = 0.00460 (Table 2). This suggest

a remarkable reproducibility strength for wmðα̂; β̂; tÞ pro-
jections (Table 2). Correspondence between projected

and observed values, shown in Fig. 5b. corroborates high

agreement. Moreover, the ratio of projected to observed

leaf dry weight averages attained an outstanding value of

0.9773 (Table 2).
Processed data and log-linear transformation analysis

produced ρ̂ ¼ 0:9489 for wm(α, β, t) projections. This
figure is bigger than corresponding to raw data for this
method. Nevertheless, lines in Fig. 6a show that this re-
sult does not correspond to a real gain in reproducibility.
Besides data quality could not significantly reduce calcu-
lated root mean squared deviation (Table 2). Also, a
value of 0.8588 for a ratio of projected to observed leaf
dry weight averages is still low for suitable agreement
(Table 2). Thus, regardless data quality, log-linear ana-
lysis failed to produce consistent wm(α, β, t) projections
of wm(t) averages.
In turn, wm(α, β, t) projections made by nonlinear

regression and processed data yield the highest value of
ρ̂ ¼ 0:9976. (Table 2). And also the smallest root mean
squared deviation among analysis method–data set
combinations (Table 2). As shown by Fig. 6b this
corresponds to a fairly good reproducibility strength.
Additionally, data quality and nonlinear regression led to
an outstanding value of 0.9975 for the ratio of projected
〈wm(α, β, t)〉 to observed 〈wm(t)〉 averages.
Results exhibit that log-linear transformations failed to

produce consistent projections for observed wm(t) aver-
ages. In contraposition, nonlinear regression entailed

Table 1 Parameter estimates α̂ and β̂ associated standard errors (steðα̂Þ; steðβ̂)) found by fitting the model of Eq. (1). Nonlinear
regression estimates associate to the homoscedastic case of the model of Eqs. (5) and (6) (see Appendix 1). Values of ρ̂ give an
evaluation of reproducibility strength of the proxy of Eq. (1)

Analysis method Data β̂ steðβ̂Þ α̂ steðα̂Þ ρ̂

Log-linear Transformation
Raw

1.3674x10−5 2.9355 × 10− 7 1.023 3.662 × 10− 3 0.8910

Nonlinear Regression
Raw

8.718x10−6 3.530 × 10−7 1.104 5.101 × 10−3 0.9307

Log-linear Transformation
Processed

1.142 x10−5 2.0831 × 10−7 1.046 3.035 × 10−3 0.9455

Nonlinear Regression
Processed

6.956 x10−6 2.200 × 10−7 1.132 3.954 × 10−3 0.9777
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parameter estimates of noteworthy reliability. Thus
studying sample size effects on reproducibility addressed
only this analysis method. Figure 7 exhibits variation of
CCC values depending on sample size k. This is
expressed as a percentage of the extent of data set ( nra
= 10412 for raw) or (nqa = 6094 for processed). For raw
data, a sample sized k = 0.20nra endures reasonable re-
producibility ðρ̂ðkÞ ¼ 0:9889Þ . But samples beyond this
threshold would not induce a significant change in re-
producibility. Meanwhile, for the quality controlled data,
the sample size threshold for excellent reproducibility
was k = 0.10nrq. This leads to a high reproducibility
strength of ρ̂ðkÞ ¼ 0:9929 . Thus, a sample 10% the size
of processed data set produced excellent reproducibility.
Again sample sizes beyond this threshold failed to in-
crease ρ̂ðkÞ values.
In Appendix 3 we consider variations αq = α + Δαq and

βr = β + Δβr. We found that shifting trajectories, wm(αq,
βr, t) overestimated reference projections wm(α, β, t)
whenever Δαq > 0 and Δβr > 0. In correspondence under-
estimation of wm(α, β, t) occurs for −α < Δαq < 0 and −β
< Δβr < 0. Fig. 8 explains that for Δαq ∙ Δβr > 0, shifting
trajectories overestimate (see red lines in panel a)) or
underestimate the reference one (see blue lines in panel
a)). We can also make certain that relatively smaller de-
viations between wm(αq, βr, t) and wm(α, β, t), values

occur for the case, Δαq ∙ Δβr < 0, (see red and blue lines
in panel b)).
The simulation code of Eqs. (39) through (44) ex-

plored the sensitivity of the wm(α, β, t) projection
method, to numerical variation of parameters α and β.
Available parameter estimates yield reference values for
α and β (Table 2). Again, since nonlinear regression as-
sociates to highest reproducibility strength, for easier
presentation, we only explain results using this analysis
method.
The variation of the absolute deviation index for raw

data is shown in Fig. 9. A range 0 ≤ θ(q, r) ≤ θste, places
the relative ϑ(θ) deviation index within the domain 0≤
ϑ(θ) ≤ 0.0205 (Table 3). Therefore, for a bound of θ(q, r)
set by the standard errors of estimates largest absolute
deviation between wm(αq, βr, t) and wm(t) amounts to
about 2% of 〈wm(t) 〉. Moreover, a range 0 ≤ θ(q, r) ≤ 2θste
produces 0 ≤ ϑ(θ) ≤ 0.031. This leads to an equivalent 3%
of 〈wm(t) 〉. Figure 10 displays the dynamics of ϑ(θ)
depending on θ(q, r) for processed data. We have that
θ(q, r) varying in a range of 0 ≤ θ(q, r) ≤ θste implies 0 ≤
ϑ(θ) ≤ 0.003 (Table 3). This time largest absolute devi-
ation was only 0.03% of 〈wm(t)〉. Comparing with re-
sults for raw data, we ascertained remarkable gain in
precision of wm(α, β, t) projections. This exploration
highlights on importance of data quality control as a

Fig. 3 Fit of the model of Eq. (1) to raw data. Panel a Fitting results of the model of Eq. (1) by the log-linear transformation method. Distribution of rep-
licates around the mean response curve shows a significant bias. This entails poor reproducibility (ρ̂ =0.8910) of leaf dry weight values. Panel b Shows
fitting results for nonlinear regression and raw data. For this arrangement parameter estimates and Eq. (1) produced ρ̂ =0.9307. Thus, nonlinear regres-
sion stands a gain in reproducibility strength
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procedure leading the consistent w m(α, β, t) projec-
tions. But, results show that the projection method is
robust even when parameter estimates are obtained
from raw data.

Discussion
Results of Solana-Arellano et al. [31] explain invariance of
the allometric parameters α and β in Eq. (1). This suggest
wm(α, β, t) proxies as possible nondestructive estimations of
the average leaf dry weight in eelgrass shoots. These assess-
ments are essential for monitoring the efficiency of trans-
planted eelgrass plots, fundamental in remediation aims.
The present examination shows that the wm(α, β, t) proxies
could in fact offer reliable and cost-effective assessments.
This on condition that practitioners take in to account our
guidelines. For instance, our results typify the extent on
which accuracy of estimates of the parameters α and β in-
fluences the predictive power of the wm(α, β, t) projections.

And, our findings clarify that there are methodological fac-
tors affecting the accuracy of estimates. Related influences
could spread significant bias in approximations supported
by the wm(α, β, t) device. Indeed, analysis method turned
into a main factor inducing bias in parameter estimates of
the model of Eq. (1). Moreover, only parameter estimates
acquired by nonlinear regression yield consistency of the
model of Eq. (1) (Table 1 and lines in Fig. 3b and Fig. 4b).
And, only these estimates upheld conclusive predictive
power of the wm(α, β, t) proxies (Table 2, as well as, lines in
Fig. 5b and Fig. 6b). Our results also show that data quality
could not improve the performance of wm(α, β, t) projec-
tions acquired via log-linear transformations. Without
doubt, parameter estimates acquired from processed data
by this method still led to significant bias in w m(α, β, t)
projections (Fig. 6a). Meanwhile, data processing improved
reproducibility of projections built for raw data using non-
linear regression (Table 2 and lines in Fig. 5b and Fig. 6b).

Fig. 4 Fit of the model of Eq. (1) to processed data. Panel a Fitting results for model of Eq. (1) via traditional log-linear transformations. Though data
processing improved goodness of fit, still a notorious bias remains. Panel b Fitting results by taking nonlinear regression as an analysis method. Shown
spreading of replicates around the mean response curve is fair. Hence, ρ̂ =0.9777 entails suitable reproducibility of observed values via Eq. (1)

Table 2 Reproducibility results for wm(α, β, t). Entries include, Lin’s concordance correlation coefficients ðρ̂Þ, root mean square
deviations (rms) and ratios of 〈wm(α, β, t)〉 to 〈wm(t)〉 averages

Analysis method Data 〈wm(α, β, t)〉/〈wm(t) 〉 ρ̂ rms

Log-linear Transformation Raw 0.8436 0.9285 0.01265

Nonlinear Regression Raw 0.9773 0.9915 0.00460

Log-linear Transformation Processed 0.8588 0.9489 0.01264

Nonlinear Regression Processed 0.9975 0.9976 0.00293
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Besides, relevance of data quality was also evident for opti-
mizing sample size. Indeed, while for raw data, a sample of
approximately 2000 leaves shows reasonable reproducibil-
ity, for the quality controlled data this threshold drops to
near 1000. However, samples sized beyond these thresholds
would not induce a noteworthy gain in reproducibility. This
result on its own, ties to efficiency of the wm(α, β, t) projec-
tion method. Undoubtedly routines for leaf dry weight as-
sessment are tedious and time consuming. So, reducing
size of data set for parameter estimation increases cost-
effectiveness of the wm(α, β, t) projection method.
Nonlinear regression estimation also showed advantages

in sensitivity over the log-linear analysis counterpart.
Estimates from raw data led to a largest absolute deviation
between wm(α, β, t) and wm(t) values amounting only 3%
of the average of wm(t) over sampling dates. And, for pro-
cessed data, the fluctuation range for equivalent sensitivity
widened to 2.8 times the range for standard errors of esti-
mates. But, on spite of data quality relevance, sensitivity
results for raw data reveal that the wm(α, β, t) projection
method is robust relative to expected fluctuations in
parameter estimates.
Our results show that both the accuracy and cost-

effectiveness of projections can be enhanced by the
addition of data quality control procedures. However,
including data processing can become a weakness for the
wm(α, β, t) projection method. Indeed, data cleaning

procedures convey niceties that relate in a fundamental
way to detection and rejection of inconsistent replicates.
Also, compromising about which particular rejection edge
should work, is hard to determine. Thus, the use of any
data processing will endure a doubt, that the examiner se-
lects an arrangement producing the most probable results
[37]. In that order of ideas, when attempting to enhance
the reproducibility power of wm(α, β, t) projections it is de-
sirable to avoid depending in any form of data processing.
For that aim, prior to data assembly, we must bear in
mind standardized routines yielding accurate measure-
ments for w(t) and a(t). This will favor direct identification
of the model of Eq. (1) in a consistent way. It is of a funda-
mental importance to be aware, that errors in leaf dry
weight or area assessment differentiate in terms of leaf
size. Certainly, leaves produced anew normally present a
complete and undamaged span. But, they normally yield
very reduced dry weight values. Therefore, we can expect
estimation errors imputable to the precision of the analyt-
ical scale for individual leaf dry weight assessments. To
this, we may add errors in the reading and/or recording of
the scale output. These issues could explain a perceptible
accumulation of inconsistent replicates for leaves with
areas between 2 mm2 and 350 mm2 (Fig. 1). And, even
after data cleaning procedures, leaf dry weight replicate
spread for leaves bigger than 2000 mm2 shows significant
residual variability (Fig. 2). Likewise, as far as, bigger and

Fig. 5 Effects of analysis method on reproducibility of wm(α,β,t) projections (raw data). Continuous lines display wm(t) averages of leaf dry weight in
shoots. Dashed lines in panel a show wm(α,β,t) projections produced by log-linear transformation. Dashed lines in panel b display those projected via
nonlinear regression. Nonlinear regression estimates support greater reproducibility of observed wm(t) values through wm(α,β,t) proxies (Table 2)
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Fig. 6 Effects of analysis method on reproducibility of wm (α,β,t) projections (processed data). Continuous lines depict observed wm(t) averages.
Dashed lines in panel a) are projections yield by log-linear analysis. Dashed lines in panel b) stand for projections linked to nonlinear regression

Fig. 7 The effects of sample size on reproducibility of w(α,β,t). For raw data a sample of size k = 0.20nra (or near 2000 leaves) yields reasonable
reproducibility (ρ̂ (k) = 0.9889). But, for quality controlled data similar reproducibility associates to only k = 0.10nrq (about 1000 leaves). Larger
sample would not induce a significant changes in the values of ρ̂ (k)
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older leaves is concerned, there are issues on dry weight
estimation errors. These seem to relate to damage caused
by exposure to environmental factors. The fact that we es-
timated leaf area by means of the product of related length
and width could explain these effects. For complete un-
damaged eelgrass leaves, the use of a leaf times width

proxy grants simplified and accurate estimations of leaf
area [36].
But, this approach could deliver inaccurate estimations

for long and damaged leaves. Actually, bigger leaves
remain exposed during significant periods of time to en-
vironmental influences such as drag forces or herbivory.

Fig. 8 Examples of changing trajectories wm(αq, βr,t). Black lines a reference trajectory wm(α,β,t). This produced by raw data and nonlinear regression as
an analysis method. For Δαq. Δβr > 0, shifting trajectories wm (αq, βr,t) overestimate or underestimate wm(α,β,t) projections (see red or blue lines in panel
a)). The case Δαq∙Δβr < 0, leads to relative smaller deviations between wm(αq, βr,t) and wm(α,β,t) (see red and blue lines in panel b))

Fig. 9 The variation of the relative deviation index ϑ(θ) (raw data). The standard errors of estimates acquired by nonlinear regression from raw
data, produced ϑ(θste) = 0.0205. And for a range 0≤ θ(q,r) ≤ θste the largest value of the absolute deviation between wm(αq, βr,t) and wm(t) is
around 2% of 〈wm(t) 〉 (see Appendix 3 for details)
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This could remove large amounts of leaf tissue while
leaving length unaffected. Thus, causing overestimation
of true leaf area when using a width and length product
estimation. At the same time, lost portions of a leaf will
produce a smaller dry weight than expected for an over-
estimated area. These effects will bring dry weight repli-
cates that deviate from the power function–like trend
associated to the model of Eq. (1). Estimation bias for
the dry weights of smaller and longer leaves could ex-
plain the anomalous proliferation of inconsistencies
(around 41 % ) found while applying the proposed data
cleaning procedure to the present raw data. These ef-
fects will propagate uncertainty of parameter estimates
of the model of Eq. (1), influencing accuracy of the
wm(α, β, t) projections. Hence, for the sake of consistent
reproducibility of observed values via wm(α, β, t) projec-
tions, we need to be aware of these effects. And as
elaborated, a good starting point for granting
consistency, is appropriate gathering of primary data for

the identification of the model of Eq. (1). This will make
subsequent data cleaning procedures unnecessary.

Conclusion
This research show that precise estimates of allometric pa-
rameters in Eq. (1) grant accurate non-destructive projec-
tions of the average leaf dry weight in eelgrass shoots.
These projections offer efficient appraisal of eelgrass restor-
ation projects, thereby contributing to the conservation of
this important seagrass species. Our findings support views
in Hui and Jackson [32], Packard and Birchard [33] and
Packard et al. [44], on the relevance of analysis method in
scaling studies. Indeed, we found that for assuring suitabil-
ity of the wm(α, β, t) proxies, the use of nonlinear regression
is crucial. On spite of claims that the use of the traditional
log-linear analysis method is a must in allometric examin-
ation [45], exploration of spread of present crude data re-
veals curvature [46]. This explaining failure of the
traditional analysis method to produce unbiased results for
the present data. Besides proxies supported by nonlinear re-
gression and raw data, are robust.
Data cleaning could only marginally enhance the accur-

acy of proxies produced by nonlinear regression and raw
data. But results underline a relevant influence of data qual-
ity in setting optimal sample size for a suitable precision of
parameter estimates. Nevertheless, the use of data cleaning
procedures leads to intricacies. They in a fundamental way
relate to choosing thresholds for rejection of detected in-
consistencies, which are often regarded as subjective. Thus,
instead of using later data cleaning, data gathering should
seek for suitability. Special care must be taken when

Table 3 Sensitivity of the wm(α, β, t) projections to changes in
estimates of the parameters α and β. Included are calculated
θste values. This gives θ(q, r) as determined by the standard
errors of estimates. We also present corresponding values of the
relative deviation index ϑ(θste)
Analysis method Data θste ϑ(θste).

Log-Linear transformation Raw 3.662×10−3 0.1598

Nonlinear regression Raw 5.101 × 10−3 0.0205

Log-Linear transformation Processed 3.035×10−3 0.1419

Nonlinear regression Processed 3.954 × 10−3 0.003

Fig. 10 The variation of the relative deviation index ϑ(θ) (processed data). The standard errors of estimates acquired by nonlinear regression from
processed data, produced θste =3.954 × 10− 3). This set a range 0≤ ϑ(θ)≤ 0.003. Thus, the largest absolute deviation between wm(αq, βr,t) and wm(t)
amounts to about 0.3% of the 〈wm(t) 〉 average. Data quality control could be a factor improving accuracy of wm(α,β,t) projections
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processing bigger and older leaves. These are often dam-
aged or even trimmed so that their dry weights do not con-
form to a true weight to area relationship. Irregularities in
raw data may also associate to biased estimation of leaf
length or width. Moreover, in a lesser way faulty equipment
for leaf dry weight assessment, rounding off, or even incor-
rect data recording could as well contribute.
Taking advantage of a time invariance of the parame-

ters in Eq. (1) the wm(α, β, t) device could offer to the
eelgrass conservation practitioner highly consistent and
truly nondestructive assessments of the average value of
leaf dry weight in shoots. But the explained guidelines
on analysis method, sample size and data appropriate-
ness are mandatory for cost-effectiveness. Moreover, the
present results suggest that the use of the wm(α, β, t)
method could be extended to other seagrasses species
with similar leaf architecture to eelgrass.

Appendix 1
Model selection
This Appendix covers the selection problem of Eq. (1) as a
model for the variation of eelgrass leaf dry weight in terms
of related area. On first sight the spread in Fig. 1 may sug-
gest that instead of clinging to the power function model
of Eq. (1) we should explore fitting an alternative linear
model. There are two possible ways to achieve a linear
model fit for the present data. One by fitting an isometric
model. This follows by setting α = 1 in Eq. (1) to yield a
linear model with w-intercept through origin, that is,

w tð Þ ¼ βa tð Þ ð2Þ

A second choice is considering a standard linear equa-
tion with intercept different from zero, that is,

w tð Þ ¼ βa tð Þ þ δ; ð3Þ

where β is the slope and δ the intercept. But, by looking
at the spread in Fig. 1, we realize that this model turns
out to be inconsistent. This because for a vanishing leaf
area we expect a vanishing dry weight. In any event, we
fit the model of Eq. (3) as a device to analyze the suit-
ability of the model of Eq. (2).

Fitting of the model of Eq. (1) by means the traditional
analysis method of allometry
For this fit we used raw data. Appling a logarithmic
transformation on both sides of the Eq. (1), since we
have available data pairs (wi, ai), we get

InðwiÞ ¼ In ðβÞ þ α In ðaiÞ þ εi; i ¼ 1; 2;…; n; ð4Þ
where the additive errors ε1, ε2, …, εn are independent
and identically distributed, with distribution N(0, σ2).
Fitting the model of Eq. (4) to data produced entries in
Tables 4, 5 and 6.
Residual and normal probability plots for the fit of the

model of Eq. (4) appear in Fig. 11. We notice that a
value α = 1.0 is not included in the confidence interval
for the parameter α. This impairs Eq. (2) as a consistent
model for the present raw data.

Fitting of the model of Eq. (1) via non-linear regression
For the aim of fitting the model of Eq. (1) to raw data
using nonlinear regression, we use the equation

wi ¼ βaiα þ εi ð5Þ
the error term εi has a normal distribution with mean μ
zero and standard deviation σi. This chosen to contem-
plate heteroscedasticity or homoscedasticity. Moreover,
σi depends on the predictor variable ai through the
model

σ i ¼ γ0 þ γ1ai; ð6Þ
where γ0 and γ1 are parameters to be estimated. The
case γ1 different from zero associates to heteroscedasti-
city. Whenever γ1 vanishes allows the consideration of
homoscedasticity.
The response variable w i resulting from Eq. (5) is

normally distributed, with mean μi = βai
α and standard

deviation σi given by Eq. (6). Fitting this regression
model to raw data relied on a likelihood approach,
i.e., acquiring estimates for the parameters β, α, γ0
and γ1, which yield the largest value of the log likeli-
hood function [40, 41]

lðβ; α; γ0; γ1Þ ¼ −
n
2
logð2πÞ−

Xn

1
logðσ iÞ− 1

2

Xn

1
ðwi−μi

σ i
Þ2;
ð7Þ

with μi = βai
α and σi given by Eq. (6).

Estimates β̂ and α̂ are very similar for the homoscedas-
tic and heteroscedastic cases of Eq. (5). Notice that a

Table 4 Residual statistics for the fitting of model of Eq. (4)

Minimum 1Q Median 3Q Maximum

−4.7535 −0.2642 0.0042 0.2151 8.3509

Table 5 Fitting results for the model of Eq. (4)

Parameters Estimate Std. Error t value Pr(>|t|) Confidence Interval (95%)

α 1.022775 0.003662 279.3 <2e-16 (1.015597, 1.029953)

lnβ −11.202199 0.021515 − 520.7 <2e-16 (− 11.24437, − 11.16003)
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value α = 1.0 is not included in the confidence interval
for the parameter α. Thus, this fit also excludes the
model of Eq. (2) (isometric case).
Confidence intervals in Table 7 show a wide overlap

region. It follows that parameter estimates do not dif-
fer in a significant way. This is also supported by the
estimated CCC value ( ρ̂ ¼ 0:9307) that was the same
for the heteroscedastic and homoscedastic cases. Like-
wise, plotting the response curves wi = βai

α on a dis-
persion diagram, reveals that curves estimated
considering heteroscedasticity or homoscedasticity co-
incide (Fig. 12).
Figure 13 shows the scatter diagram of dry weight re-

siduals against leaf area. It also displays the region
bounded by lines for 95% confidence intervals (blue
lines). Figure 14 displays raw data and response curve
(median) for the heteroscedastic model. It includes
curves for region comprising 95% of leaf dry weight
values (blue lines).

Thus, predictive strength from the homoscedastic or
heteroscedastic regression models are similar. This be-
cause assumed distributions of the error term, in both
models are symmetric. What makes a difference is the
form capturing the uncertainty pattern.

Fitting of the linear model of Eq. (3)
Since, raw data composes of pairs (wi, ai), in order to test
the consistency of the model of Eq. (3), we consider the
regression equation

wi ¼ βai þ δ þ εi; ð8Þ

where the additive errors ε1, ε2, …, εn are independent
and identically distributed N(0, σ2). Fitting regression Eq.
(8) to raw data produced the results in Table (8),Table
(9) and Table (10).
Residual and normal probability plot for this fit appear

in Fig. 15. Looking at the confidence intervals in Table 7,
we observe that a value α = 1 is not included. This im-
plies rejection for the model of Eq. (2) (isometric case).
Also, the intercept in Eq. (8) is negative, which is incon-
sistent. This is inconsistent with observations. Thus, we
must reject the model of Eq. (3).
In summary, fitting results for the model of Eq. (1) ex-

cludes the value α = 1. Now, for α = 1, the model of Eq.
(1) takes the form of a straight line through the origin
(isometric model of Eq. (2)). In the other hand, for the
fit of the linear model of Eq. (3) the intercept is negative.

Table 6 Fitting tests for the model of Eq. (4)

Test Value

Residual standard error 0.5723 on 10,410 degrees of freedom

Multiple R-squared 0.8823

Adjusted R-squared 0.8823

F-statistic 7.802e + 04 on 1 and 10,410 DF

p-value < 2.2e-16

Fig. 11 Residuals and normal probability plots for the fitting of the model of Eq. (4). This plot associates to a fit to raw data by means of the
traditional analysis method of allometry. We observe a biased distribution of residuals around the zero line. Also, normal Q-Q plot shows heavier
tails than expected for a normal distribution (left and right panels one to one)
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This means that this model could predict negative values
of leaf dry weight. Thus, the model of Eq. (1) is the only
one supporting a good selection criterion.

Appendix 2
Data processing
This Appendix explains the Median Absolute Deviation
(MAD) criterion for data cleaning. A first step is detect-
ing the group of leaf dry weight replicates that associate
to a given leaf area. The symbol G(a) stands for this
group, and the number of replicates it contains denoted
by means of the symbol n(G). Formally, G(a) = {wi(a) | 1 ≤
i ≤ n(G) }. The median of G(a) is denoted by means of
MED(G(a)), that is,

MED G að Þð Þ ¼ MED w1 að Þ;…:;wn Gð Þ að Þ� �
: ð9Þ

And, for 1 ≤ i ≤ n(G) the absolute deviation of replicate
wi(a) from the median MED(G(a)) represented by means
of δi(a), that is,

δi að Þ ¼ wi að Þ−MED G að Þð Þj j: ð10Þ
Similarly, the median of the set of absolute deviations

is signified by the symbol MED(δG(a)), that is,

MED δG að Þð Þ ¼ MED δ1 að Þ;…:; δn Gð Þ að Þ� �
: ð11Þ

We use the character MAD(G(a)) to denote median
absolute deviation of a group G(a). After Huber [47] and
recalling that eelgrass leaf dry weight values are log-
normally distributed, this is calculated through,

MAD G að Þð Þ ¼ bMED δ1 að Þ;…:; δn Gð Þ að Þ� �
; ð12Þ

where b = 1/Q(0.75), being Q(0.75) the 0.75 quantile of
the lognormal distribution.
The removal of inconsistent replicates in a group G(a)

follows the decision criterion

MED G að Þð Þ−T �MAD G að Þð Þ < wi að Þ
< MED G að Þð Þ þ T �MAD G að Þð Þ; ð13Þ

where T is the rejection threshold. Following Miller [48],
we set T = 3. In what follows, the symbol nqa stands for
the size of the resulting quality controlled data set.

Table 7 Maximum likelihood estimates for parameters β and α
in Eq. (5). This fit considers heteroscedasticity (γ1≠ 0) or
homoscedasticity (γ1 = 0)

Parameters Estimate Std. Error Confidence Interval (95%)

Homoscedastic model

α 1.104 5.101 × 10−3 (1.094, 1.114)

β 8.718 × 10−6 3.530 × 10−7 (8.052 × 10−6, 9.433 × 10−6)

Heteroscedastic model

α 1.107 6.116 × 10−3 (1.095, 1.119)

β 8.477 × 10−6 3.950 × 10−7 (7.703 × 10−6, 9.251 × 10−6)

Fig. 12 Data dispersion and allometric functions fitted through Eq. (5). This plot shows allometric function lines fitted by means of Eq. (5) and
raw data. Homoscedasticity (blue lines) and heteroscedasticity (red lines) (cf. Eq. (6)). Notice that both lines overlap
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Fig. 13 Scatter diagram of residuals of Eq. (5). This shows residuals against leaf area that associate to the fit of the regression model of Eqs. (5)
and (6) allowing heteroscedasticity. Blue lines bound region 95% confidence intervals

Fig. 14 Dispersion around response curve fitted using Eq. (5) assuming heteroscedasticity. This displays leaf dry weight against leaf area in
arithmetical scale and response curve (median) estimated by the heteroscedastic regression model of Eqs. (5) and (6) (red lines). Also shown is
region comprising 95% of leaf dry weight values observed for a given value of leaf area
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Appendix 3
Sensitivity of wm(α, β, t)
This Appendix presents a study of the influences of par-
ameter fluctuations in the precision of the wm(α, β, t)
projections. The examination is performed on the basis
of both analytical and simulation approaches. Presenta-
tion requires a formal description of variables of interest.
For that aim we label a generic eelgrass shoot by using a
subscript s. Correspondingly, the characters nl(s) and ws

(t) shall stand for the associated number of leaves and
their combined dry weight. Similarly, ns(t) denotes the
number of shoots collected at a sampling date t. And,
the number of sampling date symbolized by means of
n(t).
Observed dry weight in a shoot s is represented by

mean of

ws tð Þ ¼
X

nl sð Þw tð Þ; ð14Þ

where ∑nl(s) indicates summation of the leaves that the
shoot s, holds. Meanwhile, the matching average leaf dry
weight of shoots denoted by the symbol wm(t) is given by

wm tð Þ ¼
P

ns tð Þws tð Þ
ns tð Þ ; ð15Þ

where ∑ns(t) indicates summation of the ns(t) shoots col-
lected at a time t.

The character 〈wm(t)〉 stands for the average of wm(t)
values over the number n(t) of sampling times. It is
given by

wm tð Þh i ¼
P

n tð Þ wm tð Þ
n tð Þ ; ð16Þ

where
X
nðtÞ

indicates summation over the number of

sampling times.
We assumed that w(t) and a(t) are linked through the

scaling expression of Eq. (1). Then, we can obtain an
allometric proxy for ws(t). The symbol ws(α, β, t) repre-
sents this surrogate and it is given by

ws α; β; tð Þ ¼
X

nl sð Þβa tð Þα: ð17Þ

Moreover,

ws tð Þ ¼ ws α; β; tð Þ þ ϵs α; β; tð Þ; ð18Þ

that is, ws(α, β, t) is an approximation to the true value of
ws(t), being ϵs(α, β, t) the error of estimation. Similarly, Eq.
(17) produces an allometric proxy for wm(t), the average
leaf dry weight in shoots at a time t. This surrogate, repre-
sented here by means of wm(α, β, t), is given by

wm α; β; tð Þ ¼
P

ns tð Þ ws α; β; tð Þ
ns tð Þ : ð19Þ

In turn, the average of wm(α, β, t) over the number n(t)
of sampling times, denoted through 〈wm(α, β, t) 〉, is cal-
culated by means of

Table 8 Residual statistics for the fit of Eq. (8)

Minimum 1Q Median 3Q Maximum

− 0.1004000 −0.0017230 0.000000 0.0010230 0.36210

Fig. 15 Residual and normal probability plots of fitting of Eq. (3). This shows the residual and normal probability plots resulting from the fitting of
the linear regression model of Eq. (3) to raw data (left and right panels respectively)
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wm α; β; tð Þh i ¼
P

n tð Þ wm α; β; tð Þ
n tð Þ : ð20Þ

Similarly,

wm tð Þ ¼ wm α; β; tð Þ þ ϵm α; β; tð Þ; ð21Þ
where ϵm(α, β, t) stands for the resulting approximating
error. Moreover, the root mean squared deviation be-
tween wm(t) and wm(α, β, t) is denoted by means of
rms(α, β) and given by

rms α; βð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n tð Þϵm α; β; tð Þ2=n tð Þ
r

; ð22Þ

again ∑n(t) indicates summation over the sampling dates
n(t).
We assume changes in parameters α and β given by

factors of their standard errors. Then, a factor q asso-
ciates to a shift of the value of the parameter α. This
deviation, denoted by means of the symbol αq, is
given by

αq ¼ αþ Δαq; ð23Þ
where

Δαq ¼ q � steðαÞ; ð24Þ
with ste (α) symbolizing the standard error of α and q
satisfying.

jqj≤q max: ð25Þ
Similarly, a factor r, such that.

rj j≤r max; ð26Þ
associates to a fluctuation in β denoted by means of

Δβr and expressed by way of

Δβr ¼ r � steðβÞ; ð27Þ
being ste(β) the standard error of β. This returns a

variation of the parameter β, denoted via βr and repre-
sented in the form

βr ¼ βþ Δβr: ð28Þ

Qualitative exploration of sensitivity of wm(α, β, t)
A qualitative study is intended to set domains where
reference estimations wm(α, β, t) are underestimated or
overestimated by changing values wm(αq, βr, t).For that
aim, we firstly set reasonable local variation ranges for the
numerical deviations αq and βr. Fittings of Eq. (1) to eel-
grass leaf dry weight and area data demonstrate that the
inequality 0 < β < α holds [30]. As stated by Eqs. (24) and
(27), letting |q| < ste(α)/α along with | r| < ste(β)/β set do-
mains |Δαq| ≤ α and |Δβr| ≤ β. This enables suitable do-
main to pursue a qualitative study of the effects of
parametric changes in ws(α, β, t) (cf. Eq. (17)). For that
aim, let’s consider deviations δws(αq, βr, t) defined through

δws αq; βr; t
� � ¼ ws αq; βr; t

� �
−ws α; β; tð Þ: ð29Þ

Then,

δws αq; βr; t
� � ¼ X

nl sð Þ βþ Δβrð Þa tð ÞαþΔαq−βa tð Þα
� �

;

ð30Þ
and factoring the term βa(t)α

δws αq; βr; t
� � ¼ X

nl sð Þβa tð Þαμa Δαq Δβr ; a tð Þ� �
; ð31Þ

where

μa Δαq Δβr ; a tð Þ� � ¼ π Δαq
� �
φ Δβrð Þ−1 ð32Þ

with

φðΔβrÞ ¼
β

βþ Δβr
ð33Þ

and

π Δαq
� � ¼ a tð ÞΔαq : ð34Þ

Now, since a(t) is positive, for fixed values of the para-
meters α and β in the domain |Δαq| < α, the factor π(Δαq)
remains positive and increasing. Respectively, for Δβr
varying in the interval |Δβr| < β, the factor φ(Δβr) is posi-
tive and decreasing. Furthermore, for Δαq = Δβr= 0, we
have π(Δαq) = φ(Δβr) = 1 (Fig. 16).

Table 9 Fitting results for the model of Eq. (8)

Parameters Estimate Std. Error t value Pr(>|t|) Confidence Interval (95%)

β 2.04e-005 7.838e-08 260.23 2e-16 (2.02e-005, 2.055e-005)

δ −0.001158 8.954e-05 −12.93 2e-16 (−0.001158, − 0.0009825)

Table 10 Fitting test statistics for the model of Eq. (8)

Test Value

Residual standard error 0.007279 on 10,410 degrees of freedom

Multiple R-squared 0.8668

Adjusted R-squared 0.8667

F-statistic 6.772e04 on 1 and 10,410 DF

p-value 2.2e-16
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From Eq. (31) the proxies ws(α, β, t) will be overesti-
mated by shifting projections ws(αq, βr, t) whenever the
inequality

μa Δαq;Δβr; a tð Þ� �
> 0 ð35Þ

is satisfied. And from Eq. (32) this last inequality leads
to

π Δαq
� �

> φ Δβrð Þ: ð36Þ

But, for −α ≤ Δαq ≤ 0 the factor π(Δαq) is continuous
and increases monotonically from a value π(−α) > 0,
until it reaches a value of π(0) = 1, while the factor
φ(Δβr) takes positive and arbitrarily large values when-
ever Δβr approaches –β, and decreases monotonically
towards a value of φ(0) = 1. Thus, the continuity of
φ(Δβr) and π(Δαq) implies the order relationship π(Δαq)
< φ(Δβr), in the domain−α ≤ Δαq ≤ 0 and –β < Δβr ≤ 0. In
the other hand in the domain 0 ≤ Δαq ≤ α and 0 ≤ Δβr ≤ β,
both π(Δαq) and φ(Δβr) steer away from one being
π(Δαq) increasing and φ(Δβr) decreasing. Therefore, by
continuity the statement of inequality (36) will hold only
in the domain Δαq > 0 and Δβr > 0.
Similarly, reference values ws(α, β, t) will be underesti-

mated by fluctuating ones ws(αq, βr, t) whenever, the
statement

μa Δαq;Δβr; a tð Þ� �
< 0 ð37Þ

holds, or equivalently whenever

π Δαq
� �

< φ Δβrð Þ; ð38Þ

which as it has been discussed above, only holds when-
ever the increments Δαq and Δβr vary in.
the domain −β < Δβr < 0 and −α < Δαq < 0.

Since, the ws(α, β, t) projections are always positive, the
wm(α, β, t) reference projections will be overestimated or
underestimated by changing wm(αq, βr, t) values in the
same domains of variation of Δαq and and Δβr where the
ws(α, β, t) projections are overestimated or underesti-
mated by ws(αq, βr, t) values.

Exploration of sensitivity of wm(α, β, t) by simulation
methods
In order to perform a simulation study of sensitivity, we
considered a combined range of variability for α and β
given by the modulus of the vector of parametric
changes (Δαq, Δβr). This is denoted by means of the
symbol θ(q, r) and calculated through

θ q; rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δαq2 þ Δβr

2:

q
ð39Þ

Equivalently, using Eqs. (24) and (27) yield

θ q; rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q � ste αð Þð Þ2 þ r � ste βð Þð Þ2:

q
ð40Þ

And, setting q = 1 and r = 1 give (Δαq, Δβr) = (ste(α),
ste(β)). This produces vectors of shifting parametric
values with modulus determined by the standard errors
of estimates. Denoting by means of the symbol θste the
associated range of variability we have

θste ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ste αð Þ2 þ ste βð Þ2

q
: ð41Þ

By virtue of Eq. (39), every fixed value of θ(q, r) returns
different pairs (Δαq,Δβr) of increments, each one giving
rise to a couple of shifting parameter values (αq, βr). Be-
sides, for each ordered pair of changing parameters, leaf
data in shoots and Eq. (19) return a shifting trajectory,
that is denoted trough the symbol wm(αq, βr, t). The aver-
age of the values taken by the fluctuating trajectories at a

Fig. 16 The variation of the auxiliary factors φ(Δβr)and π(Δβr). This plot presents the variation of the auxiliary factors φ(Δβr) and π(Δβ r) defined by
Eqs. (33) and (34) respectively. Both Δαq and Δβrr vary in the horizontal axis. Similarly, the corresponding variations of π(Δβr) and φ(Δβr) are
projected in the vertical axis
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sampling date t is denoted by 〈wm(αq, βr, t)| θ〉. The pro-
cedure estimates the deviations between the observed
wm(t) and the average 〈wm(αq, βr, t)| θ〉 trajectory for each
time t. This is denoted by δwmθ(αq, βr, t) and calculated by
way of

δwmθ αq; βr; t
� � ¼ wm tð Þ− wm αq; βr; t

� �jθ	 

: ð42Þ

The average of the δwmθ(αq, βr, t) deviation values over
all sampling times n(t), represented thorough the symbol
〈δwmθ(αq, βr, t)〉, is given by

δwmθ αq; βr ; t
� �	 
 ¼

P
n tð Þ δwmθ αq; βr; t

� �
n tð Þ ; ð43Þ

where,
X
nðtÞ

indicates summation over the involved n(t)
sampling dates. These statistics along with, the average
of wm(t) values over the number n(t) of sampling times
are used to produce a relative deviation index repre-
sented by means of the symbol ϑ(θ) and given by

ϑ θð Þ ¼ δwmθ αq; βr; t
� �	 
�� ��
wm tð Þh i : ð44Þ

The value of ϑ(θ) stands a measure of the sensitivity of
the reference trajectory wm(α, β, t) to a change of toler-
ance θ(q, r) on the values of α and β. Moreover, ϑ(θ) as-
sess in what percentage of 〈wm(t)〉 the absolute deviation
between wm(αq, βr, t) and wm(t) amounts.

Application to present data
The results of Appendix 1 show that there are not differ-
ences in parameter estimates of the nonlinear regression
model of Eqs. (5) and (6) assuming heteroscedasticity or
homoscedasticity. Therefore, in order to explore the sensi-
tivity of wm(α, β, t) by means of the simulation code of Eqs.
(39)–(44), we take as a reference parameter estimates ac-
quired from the raw data using the homoscedastic case.
Parameter estimates were α̂ ¼ 1:104 with steðα̂ Þ ¼ 5:101

�10−3 for α and of β̂ ¼ 8:71� 10−6 with steðβ̂Þ ¼ 3:53
�10−7 for β (Table 1). Then, letting q = 1 and r = 1 in Eqs.
(24) and (27) allows to consider a combined range of para-
metric change set by the standard errors of estimates. Eq.
(41) returned θste = 5.101 × 10−3. Afterwards, for every fixed
value of θ(q, r) we determined all ordered pairs (Δαq,Δβr)
complying with condition set by Eq. (39). This returned
fluctuating values αq for α and βr for β, given one by one by
Eqs. (23) and (28). Observed leaf area data and shifting par-
ameter values, shaped the associated changing wm(αq, βr, t)
trajectories. Moreover, while 0 ≤ θ(q, r) ≤ θste, the values of
the relative deviation index ϑ(τ) satisfied 0≤ ϑ(θ) ≤ 0.0205
(Fig. 9). Thus, for a parametric variation range set by the
standard errors of estimates the maximum value of the ab-
solute deviation ϑ(θ) between wm(αq, βr, t) and wm(t)
amounts to approximately 2% of the average of wm(t) taken

over all sampling dates (〈wm(t) 〉 cf. Eq. (16)). Moreover, for
θ(q, r) in a range 0 ≤ θ ≤ 2θste we have 0 ≤ ϑ(θ) ≤ 0.031. This
leads to a maximum absolute deviation between wm(αq, βr,
t) and w m(t) of around 3% of 〈wm(t) 〉. This shows the ro-
bustness of the wm(α, β, t) projection method.
In turn, fitting the model of Eq. (1) to the quality con-

trolled data using nonlinear regression, produced estimates,

α̂ ¼ 1:132 with steðα̂ Þ ¼ 3:954� 10−3 for α and of β̂ ¼ 6:9

56� 10−6 withsteðβ̂Þ ¼ 2:202� 10−7 for β (Table 1). Let-
ting p= 1 and q = 1 in Eq. (40) gives θste= 3.954 × 10−3,
therefore, 0 ≤ θ(q, r) ≤ θste implies 0 ≤ ϑ(θ) ≤ 0.003 (Fig. 10).
Hence, the maximum absolute-relative deviation between
wm(αq, βr, t) and wm(t) amounts to only 0.03% of the 〈wm(t)〉
average. On addition, a range 0 ≤ θ ≤ 2.8θste leads to 0 ≤ ϑ(θ)
≤ 0.03006. This leads to a maximum absolute deviation be-
tween wm(αq, βr, t) and wm(t) of around 3% of 〈wm(t)〉. Com-
paring with results for raw data, we can ascertain that data
quality induces a relative gain in the precision of the wm(α,
β, t) projections.
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