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Abstract

Background: Personalized medicine for patients receiving radiation therapy remains an elusive goal due, in part, to
the limits in our understanding of the underlying mechanisms governing tumor response to radiation. The purpose
of this study was to develop a kinetic model, in the context of locally advanced lung cancer, connecting cancer cell
subpopulations with tumor volumes measured during the course of radiation treatment for understanding
treatment outcome for individual patients.

Methods: The kinetic model consists of three cell compartments: cancer stem-like cells (CSCs), non-stem tumor
cells (TCs) and dead cells (DCs). A set of ordinary differential equations were developed to describe the time
evolution of each compartment, and the analytic solution of these equations was iterated to be aligned with the
day-to-day tumor volume changes during the course of radiation treatment. A least squares fitting method was
used to estimate the parameters of the model that include the proportion of CSCs and their radio-sensitivities. This
model was applied to five patients with stage III lung cancer, and tumor volumes were measured from 33 cone-
beam computed tomography (CBCT) images for each of these patients. The analytical solution of these differential
equations was compared with numerically simulated results.

Results: For the five patients with late stage lung cancer, the derived proportions of CSCs are 0.3 on average, the
average probability of the symmetry division is 0.057 and the average surviving fractions of CSCs is 0.967,
respectively. The derived parameters are comparable to the results from literature and our experiments. The
preliminary results suggest that the CSC self-renewal rate is relatively small, compared to the proportion of CSCs for
locally advanced lung cancers.

Conclusions: A novel mathematical model has been developed to connect the population of cancer stem-like cells
with tumor volumes measured from a sequence of CBCT images. This model may help improve our understanding
of tumor response to radiation therapy, and is valuable for development of new treatment regimens for patients
with locally advanced lung cancer.
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Backgrounds
Radiation therapy (RT) is the treatment of choice for
many lung cancer patients. The aim of an RT plan is to
deliver high radiation dose to tumor volume to eliminate
cancer cells without causing severe damage to surround-
ing healthy tissue. The efficacy of a planned treatment,
often quantified by tumor control probability (TCP), de-
pends on several patient-specific factors such as the sur-
viving fraction of tumor cells and treatment regimens
used [1, 2]. Many models and methods have been pro-
posed to calculate the control probability [3]. In general,
TCP is defined as an exponential function of the number
of surviving cells after a given treatment [4]. The number
of the surviving cells depends on the radiation dose and
the radio-sensitivity of each cell subpopulation within the
tumor. Much effort has been devoted to the development
and validation of treatment response models such as, for
example, the linear quadratic and the modified linear
quadratic models [5, 6]. However, without calibrating
radio-sensitivity parameters such as the α/β ratio for indi-
vidual patients [7, 8], inter-patient differences cannot be
taken into account in these models [9–11].
The radio-sensitivity of tumor cells could be heteroge-

neous among its subpopulations [12]. Bhaumik and Jain
divided cells into the proliferating and non-proliferating
compartments, and investigated the tumor growth kinet-
ics on the basis of interactions between the two com-
partments [13]. Rockne et al. extended the reaction-
diffusion model of tumor proliferation and invasion to a
general form to include tumor response to radiation
therapy [14, 15], and Ribba et al. proposed a multiscale
model of cancer to investigate tumor response to radi-
ation [16]. Zhong et al. used a pair of ordinary differen-
tial equations to capture the essential features of tumor
dynamics, modeling radiation-induced kinetics in the
number of tumor cells [17, 18]. Zaider showed that the
amount of radiation dose necessary for obtaining a 90%
TCP can be dominated by radio-resistant cells which
could be as small as a millionth of the total number of
tumor cells [11]. The challenge to all these approaches
has been the lack of a measure of the number of these
cells and their radio-sensitivities [9, 19, 20].
In the context of cancer stem-like cells (CSCs) which,

by definition, are self-renewing with unlimited prolifera-
tive potential and a capacity to generate differentiated cells
(i.e. cells that evolve to express proteins that confer advan-
tages for growth, metastasis, invasion, and resistance to
treatment) [21], Hillen et al. developed a mathematical
model of a heterogeneous population of CSCs and
non-stem tumor cells (TCs) to investigate movement be-
tween these components [19]. With this model, Yu et al.
investigated the impact of different radio-sensitivities be-
tween stem-like and non-stem cancer cells, and demon-
strated the importance of CSCs for tumor local control

[22]. In these studies, the CSC self-renewal rate was as-
sumed to be 1% [19, 22, 23]. These models have helped us
to get a better understanding of the mechanism of hetero-
geneous tumor response to radiation treatment. However,
the parameters used in these models are associated with
large uncertainties [24]. For example, the population of
CSCs has been reported to range from 0.1 to 82.5% [25–
27]. It has been difficult to identify CSCs and measure
their subpopulations and radio-sensitivity for individual
patients. The lack of an efficient method to measure these
radiobiological parameters has limited the clinical use of
these models for treatment planning and monitoring re-
sponse in individual patients.
With advances in radiation therapy techniques, it has

become possible to measure changes in tumor volume, a
major index of treatment response for solid tumors, using
daily anatomical images acquired during the course of ra-
diation treatment. In this study, we have developed a set
of differential equations that includes the compartments
of cancer stem-like and non-stem cells, and dead cells so
that changes in each of these cell compartments affecting
tumor volume during treatment can be evaluated. The
analytical solution of these equations, after validating
using numerical simulations, was applied to treatment
regimens to form an iterative model for individual pa-
tients. Based on the tumor volumes measured from daily
CBCT images, patient-specific parameters including the
proportion of CSCs and their radio-sensitivities were esti-
mated, and stabilities of these parameters were assessed.
In the next sections the theoretical model is developed,
and applied to a sequence of CBCT images to evaluate
radiobiological parameters. The derived parameters are
compared with those reported in the literature.

Materials and methods
The observations of radiosensitivity of normal tissue
stem cells by Bergonie and Tribondeau at the turn of
the last century, confirmed by 100 years of experience
with radiation, indicate that normal tissue stem cells are
typically more sensitive to radiation than differentiated
cells [28]. However, many factors such as cell quies-
cence, DNA repair ability, overexpression of anti-apop-
totic proteins, detoxifying enzymes such as glutathione
and a hypoxic niche microenvironment render CSCs to
be radiation resistant and responsible for tumor growth
and relapse [29–31]. CSCs shared some characteristics
in common with normal tissue stem cells [32]. For ex-
ample, CSCs were assumed to exhibit unlimited prolifer-
ation and a low baseline apoptosis [33]. From CSCs to
differentiated cells, there are multiple stages of differen-
tiations. Due to the limited availability of clinical and ex-
perimental data, it is impossible to model cellular
interactions at all these stages. In this study we divide
cells in a tumor volume observable in CBCT images into
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three compartments: cancer stem-like cells, non-stem
tumor cells (TC) and dead cells (DC).

A kinetic model of tumor response to radiation treatment
To model the transient status of hierarchical cancer
cells, each cell subpopulation is described as a compart-
ment, and different compartments are connected by
transitional events with fixed rates. For example, a can-
cer stem-like cell is assumed to divide at a constant rate,
to either two CSCs (symmetric division) or one CSC and
one TC (asymmetric division). Let u(t) and v(t) denote
the numbers of CSCs and TCs per unit volume, and w(t)
the number of DCs before being moved out of the
tumor volume. Let mu and mv denote the division rates
of CSCs and TCs. Let δ represent the probability of the
symmetry division which is equivalent to the rate of the
CSC self-renewal, and let ϒu and ϒv denote the rates of
the radiation-induced cell death for CSCs and TCs, ma

the rate of the programmed cell death for TCs without
irradiation, and ϒw the clearance rate of DCs. The inter-
action of the three compartments (CSC, TC and DC)
can be mathematically represented by

_ut ¼ δmuu tð Þ−ϒ uu tð Þ
_vt ¼ 1−δð Þmuu tð Þ þmvv tð Þ− ma þ ϒvð Þv tð Þ ð1Þ
_wt ¼ ϒ uu tð Þ þ ma þ ϒ vð Þv tð Þ−ϒ ww tð Þ

To apply this set of differential equations to daily
treatment regimens which specifies when the treatment
will be delivered and how much radiation dose will be
used during the course of radiation therapy, these equa-
tions have to be solved explicitly. Let SFu and SFv denote
the surviving fraction of cells in u(t) and v(t) after being
irradiated by one daily fraction, 2 Gy. ϒu and ϒv can be
represented as ϒu = − ln SFu and ϒv = − ln SFv. The pa-
rameters mu, mv are related to the tumor doubling times
Tu and Tv by mu = ln 2/Tu and mv = ln 2/Tv, and the
clearance rate of DCs is ϒw = ln 2/Th, and ma = ln 2/Ta
where Th is the half time for the dead cell recycling and
Ta is the half time for the programmed cell death. Fol-
lowing the mathematical reasoning illustrated in [17],
the differential equations can be explicitly solved as

u tð Þ ¼ u 0ð ÞeAt

v tð Þ ¼ Bu 0ð Þ
A−C

eAt þ v 0ð Þ−Bu 0ð Þ
A−C

� �
eCt ð2Þ

w tð Þ ¼ ϒ uu 0ð Þ
Aþ ϒ w

þ Bu 0ð Þ
A−C

mv þ ϒ v

Aþ ϒ w

� �
eAt−e−ϒwt
� �

þmv þ ϒ v

C þ ϒ w
v 0ð Þ−Bu 0ð Þ

A−C

� �
ect−e−ϒ wt
� �

þ w 0ð Þe−ϒwt

where A ¼ δln2
Tu

þ lnSFu , B = (1 − δ) ln 2/Tu, and C
¼ ln 2ð 1

Tv
þ 1

Ta
Þ þ lnSFv . Let t = 1, then the resultant

solution can be applied to each RT fraction or non-RT
days: for non-RT days SFu and SFv will be set to 1;
otherwise, these parameters will be optimized. The re-
sultant kinetic model is executed on each day, and the
computed numbers of the cells in each compartment at
day i + 1 can be written as:

Uiþ1 ¼ Uie
A;

V iþ1 ¼ Ui
B

A−C
eA þ V i−

B
A−C

Ui

� �
eC ð3Þ

Wiþ1 ¼ Ui
− lnSFu

Aþ ln 2=Th
þ B
A−C

ln 2=Tv− lnSFv

Aþ ln 2=Th

� �
� eA−e− ln 2=Th

� �
þ ln 2=Tv− lnSFv

C þ ln 2=Th
V i−

B
A−C

Ui

� �
� ec−e− ln 2=Th

� �
þWie

− ln 2=Th :

Since CBCT imaging was used in patient treatment,
radiation impact on cell survival can be assessed on a
daily basis. By iterating Eq. (3) for each day, the number
of the survived cells in each compartment can be calcu-
lated, and consequently the number of the total survived
cells can be compared with the CBCT-measured results.

The numerical solution of the kinetic model
With any given parameter, Eq. (1) can be numerically
solved. The numerical solution can be used to validate
those generated by the iterative functions in Eq. (3). Spe-
cifically, an Euler method was applied to Eq. (1) with the
procedure sketched below:
Let X(t) = (u(t), v(t), w(t)), and let _Xt ¼ f ðt;XÞ with

f(t, X) defined by the differential Eq. (1). Let the initial
condition satisfy X(0) = X0 = (u0, v0, 0). For k = 0, . . .,
n-1, let a = k, b = k + 1, and h = (b – a)/m. Then for i = 0,
…, m,

Xiþ1 ¼ Xi þ hf ti;Xið Þ; ti ¼ aþ ih ð4Þ
The vector Xm will be an approximation to the solu-

tion X(k + 1) of the differential equations, for each k = 0,.
.., n-1. By adding all the components in Xm together, the
number of the total tumor cells can be calculated and
compared to the results derived from the analytical it-
erative model in Eq. (3).
Equation (4) can be used to validate the analytical so-

lution (3), but is not suitable to be used for parameter
optimization. Note that the numerical method costs
more computation time than using the explicit, analytic
solution, and also the limited precision of the numerical
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solution may compound the uncertainties of the param-
eter derivation. After verification of the consistency of
the two models, only the analytical model in (3) was
used to derive radio-biological parameters. The simula-
tion of treatment regimens and its related parameter
optimization were programmed using C++ on a Linux
workstation.

Tumor volume measurement from CBCT images for lung
cancer patients
With the approval from the Institutional Review Board
(IRB) of Henry Ford Health System (HFHS), five lung
cancer patients treated at HFHS were investigated in this
study. Among the five patients, 2 are with adenocarcin-
oma and 3 with squamous cell cancer (see Table 1). All
of them were at stage III, and treated 33 fractions, 2 Gy/
fraction using 6MV IMRT. Daily CBCT images were ac-
quired to help setup patients and monitor tumor regres-
sion. Gross tumor volumes (GTVs) were contoured by
physicians on each of these CBCT images, and the con-
toured volumes were calculated using the Eclipse plan-
ning system (Varian Medical Systems, Palo Alto, CA).
The dates for RT and CBCT imaging, and the tumor
volume measured on each of these images were written
into an input file for the kinetic model. Most of the pa-
tients have their treatment course completed within 47
days, except patient A2 who had no treatment for one
week, resulting in the RT course extended to 55 days.

A least squares fitting method to optimize the model
For the five patients investigated in this study, the tumor
volumes delineated in 33 CBCT images were normalized
to that in the first CBCT to obtain the rate of tumor re-
gression for each of these RT days. The coefficients δ, p,
Th, and SFu in the model were estimated by comparing
the modeled tumor volumes with those measured from
CBCT images using a least squares fitting method. With
the assumption that tumor volume is proportional to
the number of its clonogens with a linear constant coef-
ficient [34], an objective function can be defined by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
i¼1;…;n

Mi

M0
−
Gi

G0

				
				

s
ð5Þ

where Mi is the tumor volume measured from the i-th
CBCT scan, and Gi =Ui +Vi +Wi is its corresponding
cell number predicated by the kinetic model (3). At the
beginning of treatment, it is assumed that W0 = 0 and
the proportion of CSCs is denoted by p =U0/(U0 + V0).
Let Tu, Tv, and Ta share the same doubling time as sug-
gested in [22–24], and the surviving fraction SFT of the
total cells be written as

SFT ¼ pSFu þ 1−pð ÞSFv: ð6Þ

The two terms in the right-hand side of Eq. ((6)) rep-
resent the survival fractions of stem and non-stem cells,
respectively. With the parameters Tu and SFT measured
for different types of cancer cells, the other parameters
were derived by minimizing the function R in Eq. ((5))
using the least squares fitting method.
It has been reported that the cell surviving fraction

under 2 Gy is 0.90 and the cell division time Tdiv is 60 h
for squamous cell cancer [35, 36]. For adenocarcinoma
(A549), it has been reported that the surviving fraction
is 0.62 and cell division time is 22 h [37, 38]. However,
Tdiv is not appropriate to be used directly as the tumor
doubling time in Eq. (3) due to the existence of quies-
cent cells. On the other hand, the time (Tvol) required to
double tumor volume was reported to be 166.3 days on
average over 237 patients, with 221.6 days for adenocar-
cinoma, 115.2 days for squamous cell carcinoma [39].
Note that the measured time (Tvol) is based on the re-
sultant volumes that already included the factor of cell
loss, and therefore, does not represent the cell division
time required in Eq. (3).
Different from the above two rates of tumor growth,

the potential doubling time (Tpot), calculated as the ratio
of the time for DNA synthesis and the proportion of
cells synthesizing DNA, takes into account the number
of quiescent cells, and is a more objective index estimat-
ing proliferation occurring during a course of radiation
treatment [40]. Typical values for Tpot have been found
to be 6.2 days for squamous and 7.1 days for adenocar-
cinoma cells [22, 41]. In the next section, we will com-
pare the potential doubling time with the cell division
and volume doubling times, and evaluate the impact of
tumor growth uncertainties on the optimized parame-
ters. We will also measure the cell survival fraction and
compare the measured results with those reported in lit-
erature for squamous cell carcinoma.

Results
Results of the kinetic modeling
Based on the potential doubling times reported for
adenocarcinoma and squamous cell cancer, the least
squares fitting method was applied to the CBCT image
sequences acquired from the five patients to minimize
the objective function R. The resultant residues were
found to be less than 8.2%. The optimized parameters
were listed in Table 2. For the patients with squamous
cell cancer, the derived proportions of CSCs are 0.229
on average, the probability of the symmetry division are
0.036 and the surviving fractions of CSCs are 0.981, re-
spectively. For the adenocarcinoma patients, the average
probability of the symmetry division is 0.09, and the
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average surviving fractions and proportions of CSCs are
0.945 and 0.408, respectively.
With these optimized parameters, the number of

tumor cells in each compartment was calculated using
the iterative function in Eq. (3). The total number of the
tumor cells computed for each day was normalized to
that on the first RT day to get compared with the rela-
tive tumor volumes measured from 33 CBCT images.
The model-calculated and measured tumor volumes,
relative to their values on the first RT day, were shown
in Fig. 1. The fitting errors in percentage are 2.6 ± 2.33,
2.1 ± 1.75, 3.0 ± 2.81, 4.95 ± 4.72, 5.73 ± 4.78 for the five
patients, respectively.
With the same optimized parameters, the number of

the tumor cells on each of the RT days was calculated
using Eqs. (3) and (4), respectively. The computed re-
sults were plotted as shown in Fig. 1f. Note that while
the Eqs. (3) and (4) were derived with two totally differ-
ent methods, the numbers of the tumor cells on each
day computed by the two equations are almost identical.
This has verified that both the analytical and numerical
solutions have been implemented correctly in this study.

Impact of tumor doubling time on the derived
parameters
In the previous section, the Tpot values reported in litera-
ture were assigned to the parameter Tu. When these
values were replaced by the cell division time Tdiv, which
is 22 h for adenocarcinoma, the tumor volumes calculated
by the kinetic model would be in a zigzag shape as shown
in Fig. 2a (in red). The rapid increase after each weekend
is due to the short doubling time used in the model, no
matter how the other parameters were optimized. This ex-
ample demonstrated that without using an appropriate

tumor volume doubling time, the kinetic model cannot fit
to the measured tumor volumes accurately, and Tdiv is
not suitable to be used as Tu in this model. In contrast,
the tumor volume doubling time (Tvol = 221.6 days) is
much longer than the potential doubling time [39]. Use of
the volume doubling time makes the tumor growth over
weekend negligible, and the optimized curves are very
smooth. However, the calculated volumes still could not
fit to the measured tumor volumes (Fig. 2b). Compared to
Tdiv and Tvol, the measured Tpot values showed the best fit
for the kinetic model (Fig. 1).
The fitness of different doubling times used in the

model was quantitatively assessed for the five patients. It
has been found that the Tpot-based residual values R are
less than or comparable to those generated by the Tdiv

or Tvol-based model, for each of these patients. All the
optimized residual values were shown in Table 3.

Stability of the kinetic model at the optimized parameters
With the proportion of the CSCs (p) changed from 10− 3

to 1.0, and the other parameters fixed at the optimized
values as shown in Table 2, the resultant function R was
plotted in Fig. 3a. It can be found that only one minimum
point exists for each patient. Similarly, let the probability
of the symmetry division (δ) change within a reasonable
range of 0.001 to 0.2 as reported in [22, 23], and the sur-
viving fraction of CSCs change within the range of 0.001
and 1.0, the objective function R was computed with re-
sults illustrated in Fig. 3b and c, respectively.
Figure 3 showed that the kinetic model is stable at the

optimized points for the parameters p and SFu, where the
minimum points for the function R were clearly demon-
strated. In contrast, the rate of the CSC self-renewal was
shown to be sensitive to the objective function R.

Verification of the cell surviving fraction
Tumor cell radiosensitivity is a major determinant of
tumor response to radiation treatment [2]. The following
experiment was conducted to verify the surviving frac-
tion of cancer cells under radiation. The cell lines of
NCI-H2170, originated from a lung patient with squa-
mous cell carcinoma, were cultured and investigated.
The first step of the experiment was to evaluate the
growth of this type of cells without irradiation. The cell

Table 2 Parameters derived from the CBCT-measured tumor
volumes for the five patients

Patient δ p SFu SFv Th (day) R

A1 0.018 0.416 0.950 0.385 1.5 0.035

A2 0.162 0.400 0.942 0.406 8.1 0.027

S1 0.024 0.242 0.980 0.874 1.1 0.041

S2 0.048 0.235 0.978 0.876 0.5 0.067

S3 0.037 0.211 0.986 0.877 0.5 0.082

Table 1 Characteristics of the five patients investigated in this study, where Adeno Ca represents adenocarcinoma, LUL, RUL and
RLL represent left upper lobe, right upper lobe, and right lower lobe, respectively, and GTV represents gross tumor volume

Patient Age Sex Stage Histology GTV (cm3) Location Treatment

A1 77 Male IIIA Adeno Ca 162.5 LUL RT/chemo

A2 80 Male IIIB Adeno Ca 177.1 RUL RT/chemo

S1 65 Female IIIA Squamous 115.9 RLL RT/chemo

S2 78 Male IIIB Squamous 77.6 RUL RT/chemo

S3 80 Female IIIA Squamous 91.8 RUL RT/chemo
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lines were counted on 5 different days, 3 samples per
day with 1.6 million cells used at the beginning of the
experiments (see Table 4). The second step is similar to
step 1 except that the cells were irradiated by 2 Gy after
attached to the plate. The numbers of the cells were
counted 3 times (days 2, 6, and 9), 3 samples per day.
The ratios of the cell numbers in step 2, relative to those
in step 1 are 0.78, 0.56 and 0.44 for the three days.

Due to the effect of cell repopulation, the ratio N2/N1

continuously decreases. Exponential extrapolations showed
that the number of the survived cells on day 0 is 1.476 (mil-
lion) for the non-irradiated experiments, and 1.344 (mil-
lion) for the irradiated experiments. Consequently, the
surviving fraction after 2Gy, SF2, counted as the ratio N2/
N1 on day 0, is 0.91. The fitted exponential formula in
Fig. 4a showed that the cell division time is ln2/0.2865 =

Fig. 1 (a-e) The tumor volumes calculated by the kinetic model compared with those measured from CBCT images for the five patients; (f) The
tumor volumes calculated with the analytical and numerical solutions (3) and (4), respectively. Note that the x-axis represents the treatment dates,
and the y-axis highlights the range of tumor regression
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2.42 days or 58.1 h. The measured values (0.91 and 58.1 h)
are consistent to 0.90 for SF2 and 60 h for the cell division
time reported for squamous cell carcinoma [35, 36].

Discussion
Radiation dose for locally advanced lung cancer patients
is often limited by radiation toxicity to healthy organs
due to the large size of tumor volume, and the 5-year
surviving rate for these patients is only about 5~ 14%.
For non-small cell lung cancer (NSCLC) patients, tumor
volume usually will shrink after a few treatment frac-
tions. Consequently, the original treatment plan could
be reassessed to determine if the remaining tumor can
be better targeted[42, 43]. The goal, of course, is to use
the minimal dose that is necessary to eliminating cancer
cells in the remaining tumor target. Cancer stem-like
cells complicate treatment planning because of their re-
ported radiation resistance [44]. Kinetic modeling of
CSCs may provide a better understanding of tumor re-
sponse to radiation therapy, and is valuable for develop-
ing new treatment regimens for cancer treatment [26].
In the context of CSCs, the minimal dose required

may depend on the proportion of CSCs and their
radio-sensitivities. The fraction of the stem cells is cen-
tral to the cancer stem cell debate [26]. Although often a
small population has been reported to be present, e.g.

0.2~0.8% for pancreatic cancer [45] and ~ 1% for pros-
tate cancer [46], a much larger fraction (27%) with
tumor initiation capability may be present for other can-
cers, such as melanoma [47]. Indeed, in some tumors al-
most the entire tumor could be comprised of CSCs.
Other factors also could affect the fraction of CSCs in a
tumor. For example, CSC numbers could depend on a
tumor’s stage [19] and the frequency of CSCs might in-
crease during tumor progression [27]. In the current
study, the proportion of CSCs derived from the analyses
was as high as 40% for the locally advanced NSCLC pa-
tients. It was found that the average proportions of
stem-like cells were 22.9 and 40.8% for the patients with
squamous cell cancer and with adenocarcinoma, respect-
ively. Furthermore, in previous studies it was presumed
that the CSC self-renewal rate δ is 0.01 [19, 23]. In this
study we found that the rate is between 0.018~0.048 for
4 out of the five patients except patient A2 who has a
relatively large δ value (0.16). This patient missed treat-
ment for one week after RT started, but the reason for
the relatively large δ needs to be further investigated.
While many kinetic models of cancer stem cells have

been developed to investigate cell biological dynamics
[23, 24], quantifying the population of the stem cells,
and measuring parameters used in these models have
proved to be difficult [21, 48]. We extended the kinetic
models to include a compartment of dead cells so that
changes in tumor volume observed from a sequence of
CBCT images can be incorporated into the investigation
of radio-biological parameters. This requires the math-
ematical model to be relatively simple, and in this study,
components such as transitional progenitors were not
explicitly modeled. For the same reason, many other
factors such as cell quiescence, intercellular signaling,
immune function and tumor microenvironment were
not specifically modeled in this study [49–51].

Fig. 2 The measured tumor volumes compared with the model-calculated volume using (a) the cell division time (Tdiv = 0.92) for patient A1, and
(b) the volume doubling time (Tvol = 221.6) for patient A2

Table 3 The residues of the optimized objective function R
with the potential doubling time (Tpot), cell division time (Tdiv)
and volume doubling time (Tvol) used, respectively, for the five
patients

R A1 A2 S1 S2 S3

Tu = Tpot 0.035 0.027 0.041 0.067 0.082

Tu = Tdiv 0.192 0.933 0.074 0.173 0.269

Tu = Tvol 0.031 0.292 0.051 0.156 0.185
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Nevertheless, the set of ordinary differential equations
modeled three representative compartments, and char-
acterized the time evolution of each cell subpopulation
with the analytic solution aligned with the day-to-day
tumor volume changes. As a preliminary study, this
work demonstrated the potential to correlate the prop-
erties of CSCs with tumor volume changes measured
from anatomical images acquired during the course of
radiation treatment.
It should be mentioned that due to the quality of

CBCT images, uncertainties may exist in the contoured
tumor volumes, especially for patients with tumor

attached to chest walls or mediastinal structures. How-
ever, these uncertainties averaged over 33 fractions may
have limited impact on the residual function R. Further-
more, with more anatomical and functional images such
as magnetic resonance imaging (MRI) and PET/CT be-
ing used during the course of radiation therapy, the
tumor volumes could be measured more precisely and
consequently will help improve the accuracy of the kin-
etic model. On the other hand, new therapies that target
CSCs are under development. Antibody-based con-
structs that target cell surface proteins expressed on
CSCs, natural products like resveratrol and curcumin,
some small molecule inhibitors, and classical drugs such
as metformin have all shown potential cytotoxicity
against CSCs [52]. Since radiation therapy is a standard
treatment for many lung cancers, these agents will be
adjuvant to RT and since CBCT images are often ac-
quired during the course of fractionated RT, tumor vol-
ume data used for the current analysis could be available
for subsequent evaluation of the efficacy of new therap-
ies that target CSCs. To our knowledge, this is the first
kinetic model that relates the changes in proportion of

Fig. 3 The stability of the optimized parameters: (a) the proportion of CSCs, (b) probability of the symmetry division, (c) surviving fraction of
CSCs, and (d) surviving fraction of TCs

Table 4 N1 and N2 representing the average numbers of the
sample cells counted in step 1 (non-irradiated) and step 2
(irradiated by 2 Gy), respectively. X indicates no experimental
data for that day

Day 2 Day 3 Day 4 Day 6 Day 9

N1 (million) 2.78 3.24 4.32 8.27 21.2

N2 (million) 2.16 X X 4.62 9.38

N2/N1 0.78 X X 0.56 0.44
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cancer stem-like cells to tumor volume changes mea-
sured in lung cancer patients. This model could also be
applied to patients with other cancers, treated with ther-
apies other than radiation, or with measured tumor vol-
umes using other imaging modalities.

Conclusion
A mathematical model has been developed to relate the
kinetics of cancer stem-like cell proportions to tumor
volume changes observed from a sequence of CBCT im-
ages acquired during the course of radiation treatment.
The model integrated with clinical data may help in our
understanding of the underlying mechanism of tumor
response to radiation treatment and perhaps other ther-
apies that target CSCs, and therefore is valuable in the
development of new treatment regimens for individual
patients.
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