
RESEARCH Open Access

The self-organization model reveals
systematic characteristics of aging
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Abstract

Background: Aging is a fundamental biological process, where key bio-markers interact with each other and
synergistically regulate the aging process. Thus aging dysfunction will induce many disorders. Finding aging
markers and re-constructing networks based on multi-omics data (i.e. methylation, transcriptional and so on) are
informative to study the aging process. However, optimizing the model to predict aging have not been performed
systemically, although it is critical to identify potential molecular mechanism of aging related diseases.

Methods: This paper aims to model the aging self-organization system using a series of supervised learning
methods, and study complex molecular mechanisms of aging at system level: i.e. optimizing the aging network;
summarizing interactions between aging markers; accumulating patterns of aging markers within module; finding
order-parameters in the aging self-organization system.

Results: In this work, the normal aging process is modeled based on multi-omics profiles across different tissues. In
addition, the computational pipeline aims to model aging self-organizing systems and study the relationship
between aging and related diseases (i.e. cancers), thus provide useful indicators of aging related diseases and could
help to improve prediction abilities of diagnostics.

Conclusions: The aging process could be studied thoroughly by modelling the self-organization system, where key
functions and the crosstalk between aging and cancers were identified.
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Introduction
Aging is a complex process regulated by key bio-
markers, reflecting disorders / declined abilities of tis-
sues [1]. Dysfunction of aging has been shown to be re-
lated to many diseases, such as diabetes, Parkinson
disease [2], Alzheimer’s disease [3] and cancers [4]. As a
result, finding aging markers is critical to study aging re-
lated diseases and identify healthy genomic diagnostics

(i.e. by predicting the chronological age (group) based
on molecular profiles). For example, multi-tissue predic-
tors of age have been calculated by DNA methylation [5]
or mRNA expression profiles [6]; and there are more
age predictors based on single tissue (e.g. brain [7],
breast [8], ans so on), which also provide insights on
aging related diseases [6] (i.e. Alzheimer’s disease and
cancers).
Further, the aging markers interact with each other

[9], and synergistically coordinate the aging process,
herein generating the self-organization system [10] of
aging, where particular bio-markers regulate the aging
process in different age groups, respectively. Although
tissues become disordered reflected by a functional de-
cline during aging in general (often evaluated by in-
creased entropies [11]), a series of aging markers
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perform particular / ordered functions in special aging
stages / age groups. In addition, these markers / genes
interact with each other, coordinating regulation of the
aging process; therefore, the interactions / modules be-
tween such markers also provide critical patterns of aging.
In summary, finding bio-markers to predict the chrono-
logical ages, summarizing interactions between aging
markers, and optimizing the aging self-organization sys-
tem based on molecular profiles (i.e. methylation, expres-
sion and so on) of normal tissues from healthy persons,
could help predict future health risks at system level.
However, these works have not been solved entirely for
the aging process.
In this work, we modeled the aging self-organization

system using a series of computational methods: filtering
inter-connection networks between different age groups
by the maximum mutual information and minimum re-
dundancy criterion in the information theory; summariz-
ing interactions between bio-markers by the convolution
technology; calculating patterns by accumulating
weighted genes within the same module; selecting mod-
ule scales by the hierarchical clustering method and
cross validation; identifying order parameters in the
aging self-organization system by network sparsification.
The prediction results show high classification accur-

acy between different age groups; moreover, the enrich-
ment analysis and network analysis also found key
functions of the order parameters. Thus critical complex
characteristics (i.e. hierarchies, emergencies and bifurca-
tions) were identified in different aging stages. Aging ac-
celeration patterns were also identified across cancers.
In short, the aging process can be thorough studied by
modelling the self-organization system.

Results and discussion
A brief description of the aging self-organization system
In the aging self-organization system, genes interacted
with each other, and synergistically coordinated the
aging process. Therefore, the aging process should also
be evaluated by interactions between aging markers. The
aging markers clustered nearby would drive similar func-
tion [12], and could be summarized within the same
module. Each module takes a particular part during
aging, and regulates the aging process altogether. Differ-
ent levels / hierarchies of aging markers or modules
reflected special complexities of the self-organization
system, herein reflecting particular patterns in different
aging stages. As a result, the aging self-organization sys-
tem would identifies and emphasizes important charac-
teristics that no single isolated marker or module would
be able to achieve. In summary, modules based on aging
markers in coordination determined the bifurcations and
displayed critical differential patterns between age
groups, where key aging markers within modules could

be identified as the order parameters in the aging self-
organization system.
Further, the system from pathological samples show

deviation from the normal aging self-organization sys-
tem (from healthy persons): for example, the aging
system with disease (i.e. cancers) should display sig-
nificant acceleration compared tothe normal aging
process. Accordingly, the following parts of this paper
presents results of modelling the aging self-organization
system as well as the computational pipeline was shown in
Fig. 1.

Fig. 1 Overview of the aging self-organization system. a the
computational pipeline of modelling the aging self-organization
system; b an example of the convolution of interactions between
methylation cg27583030 (SLC25A4) and other genes in the model of
age group 50–70 vs. 70-survival
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Classification results of the aging self-organization system
The expression and methylation profiles were used to test
the classification abilities of the aging self-organization
system between different age groups, respectively (Figs. 2
and 3). Tables 1, 2 and 3 shows that classification results
based on the self-organization system have lower error
rates than traditional feature selection methods (i.e. the

relieff-mRMR pipeline [13]), using both methylation and
expression data between age groups. As a result, the self-
organization system reduced the feature dimensions ef-
fectively and extracted critical modules by finding order-
parameters, and identifying key differences based on aging
markers / interactions in the aging process at system
level.

Fig. 2 Learning curves of the the aging self-organization system. a, c, e, g methylation profiles; b, d, f, h expression profiles; a, b 0–50 vs. 50-
survival; c, d 0–20 vs. 20–50; e, f 20–50 vs. 50–70; g, h 50–70 vs. 70-survival

Wang et al. Theoretical Biology and Medical Modelling            (2020) 17:4 Page 3 of 13



Biological features of the order parameters
The results of the order-parameters were shown in
Table S1-S2. The methylation order parameter with the
maximum relieff weight was the convolution interactions
of cg27583030 (SLC25A4, weight = 0.1974, shown in Fig.

1b) in the model of age group 50–70 vs. 70-survival.
Common SLC25A4 related pathway were apoptosis and
survival regulation of apoptosis by mitochondrial pro-
tein, reflecting the relationship between aging and cellu-
lar apoptosis [14]. The expression order parameters with

Fig. 3 ROC curves of the the aging self-organization system in test data. a, c, e, g methylation profiles; b, d, f, h expression profiles; a, b 0–50 vs.
50-survival; c, d 0–20 vs. 20–50; e, f 20–50 vs. 50–70; g, h 50–70 vs. 70-survival;
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the largest relieff weight was original profile of NRBF2
(weight = 0.2493) between age group 50–70 vs. 70-
sruvival. NRBF2 played a role in cellular survival and
neural progenitor cell survival during differentiation
[15], and dysfunction of NRBF2 also affected the aging
process.
Further, enrichment analyses of the order parameters

in each module were performed on Biological Process
(BP) terms of Gene Ontology (GO) and KEGG pathways
using the hypergeometric test (Tables 4 and 5 and S1-
S2). The most significant BP term was the negative regu-
lation of viral process (GO:0048525, fdr = 0.0005) in the
245th module of the model between age group 20–50

vs. 50–70 based on the methylation profiles, reflecting
the relationship between the immunity system and aging
[16]; and the most significant KEGG pathway was
Phenylalanine metabolism (fdr = 0.0009) based on the
methylation profiles in the model between age group 0–
50 vs. 50-survival, indicating the critical metabolism dur-
ing aging. In addition, the annotation of order-
parameters also reveal key functions across different
aging stages, i.e. BP terms were enriched in aging related
diseases in the early stage of aging, and enriched in tis-
sue dysfunction in the later stage. It is perhaps indicative
of functional decline of the immunity system induced
aging / tissue dysfunction.

Table 1 Overview of the aging self-organization system

Model Profiles Samples
(training
data + test
data)

Order parameters
(original profiles +
summarized
interactions)

Modules
(dimensions)

0–20
vs. 20–
50

methylation 1760 + 798 4360 + 6408 2683

20–50
vs. 50–
70

methylation 1875 + 845 2137 + 6713 2920

50–70
vs. 70-
survival

methylation 1285 + 585 1484 + 5497 1918

0–50
vs. 50-
survival

methylation 3045 + 1381 4825 + 4891 2746

0–20
vs. 20–
50

expression 655 + 315 246 + 2211 1173

20–50
vs. 50–
70

expression 975 + 473 2658 + 4660 2388

50–70
vs. 70-
survival

expression 845 + 411 2201 + 6044 2454

0–50
vs. 50-
survival

expression 1500 + 726 2832 + 4413 2067

Table 2 Classification results (error rates) based on methylation
data

Age group Training data
(cross
validation)

Test
data

Training data
(control
method)

Test data
(control
method)

0–20 vs.
20–50

0.279 0.3356 0.44 0.4726

20–50 vs.
50–70

0.2916 0.2719 0.422 0.461

50–70 vs.
70-survival

0.3097 0.3098 0.3262 0.3137

0–50 vs.
50-survival

0.259 0.2549 0.3791 0.4136

Table 3 Classification results (error rates) based on expression
data

Age group Training data
(cross
validation)

Test
data

Training data
(control
method)

Test data
(control
method)

0–20 vs.
20–50

0.3185 0.3084 0.351 0.3911

20–50 vs.
50–70

0.2333 0.2308 0.2613 0.4325

50–70 vs.
70-survival

0.2337 0.279 0.2726 0.4659

0–50 vs.
50-survival

0.2161 0.2066 0.3492 0.4297

Table 4 Top enriched BP terms within module

Model Profiles Pathway FDR

0–20 vs. 20–
50

methylation negative regulation of cellular
senescence
(GO:2000773)

0.0016

20–50 vs. 50–
70

methylation negative regulation of viral
process
(GO:0048525)

0.0005

50–70 vs. 70-
survival

methylation prostage gland morphogenesis
(GO:0016578)
branch elongation of an
epithelium
(GO:0060602)
axis elongation
(GO:0003401)

0.0041

0–50 vs. 50-
survival

methylation histone deubiquitination
(GO:0016578)

0.003

0–20 vs. 20–
50

expression response to electrical stimulus
(GO:0051602)

0.0324

20–50 vs. 50–
70

expression fatty acid beta-oxidation using
acyl-CoA oxidase
(GO:0033540)
alpha-linolenic acid metabolic
process
(GO:0036109)

0.0014

50–70 vs. 70-
survival

expression progesterone metabolic process
(GO:0042448)

0.0028

0–50 vs. 50-
survival

expression purinergic nucleotide receptor
signaling pathway
(GO:0035590)

0.0012
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Strikingly, enriched functions across modules indicated
the common themes of aging (Tables 6 and 7). For ex-
ample, BP terms of organ morphogenesis were enriched
during both young (0–20 vs. 20–50) and old (50–70 vs.
70- survival) age groups, reflecting the basal role of tissues
affected by the aging process. Moreover, cancer and re-
lated signaling KEGG pathways were enriched across dif-
ferent aging stages based on both methylation and
expression profiles (Fig. 4). These results reflected the
cross-talk between aging and cancer, where dysfunction of
aging might indicate diseases / cancerization of tissues.

Complexity characteristics of the aging self-organization
system
In the self-organization system, molecules interacted
with each other, and synergistically regulate particular

process (i.e. aging). For example, summarized interac-
tions of methylation profiles of cg27583030 (SLC25A4)
was with the maximum relieff value (Fig. 1b). Moreover,
a series of order parameters were with summarized in-
teractions other than the ordinary profiles, indicating
functions of cross-talks between key markers during
aging (Table 1).
In addition, any single isolated marker / module could

not reflect the whole bifurcation between age groups ef-
fectively, but combinations of modules could. It should
be that cross-talks across modules generated the aging
self-organization system with key differential patterns /
bifurcations between age groups. Thus the hierarchies
across modules promoted emergencies of the aging self-
organization system, which were not displayed by any
single module or order parameter. Therefore, the inter-
action across modules indicated the hierarchies / emer-
gence of the aging self-organization system.
The corresponding networks across modules (using

the maximum mutual information minimum redun-
dancy criterion) were investigated to find core modules
in the hierarchies of the self-organization system (Figure
S1). Based on the methylation profiles, the 492th module
were with the maximum interaction score (mean value =
0.0189), connecting other 2682 modules (in the model
of age group: 0–20 vs. 20–50). This module acted as a
“hub” and connected 45 key BP functions (i.e. negative
regulation of cellular senescence, regulation of attach-
ment of spindle microtubules to kinetochore and nega-
tive regulation of potassium ion transmembrane
transporter activity) and 60 KEGG pathways (i.e. Matur-
ity onset diabetes of the young and Pentose and glucur-
onate interconversions), reflecting the crosstalk between
immunity and key metabolic pathway during aging.

Table 5 Top enriched KEGG pathways within module

Model Profiles Pathway FDR

0–20 vs. 20–50 methylation Maturity onset diabetes of the
young

0.0019

20–50 vs. 50–70 methylation Focal adhesion 0.0015

50–70 vs. 70-
survival

methylation Homologous recombination 0.0014

0–50 vs.
50-survival

methylation Phenylalanine metabolism 0.0009

0–20 vs. 20–50 expression Lysosome 0.0104

20–50 vs. 50–70 expression Retinol metabolism 0.0022

50–70 vs. 70-
survival

expression Prion diseases 0.0027

0–50 vs. 50-
survival

expression Long-term potentiation 0.0035

Table 6 Top enriched BP terms across modules

Model Profiles Pathway FDR range Enriched modules Score

0–20 vs. 20–50 methylation outflow tract morphogenesis
(GO:0035902)
cardiac septum morphogenesis
(GO:0060411)

0.0409~0.0614 2 1.8977

20–50 vs. 50–70 methylation negative regulation of viral process
(GO:0048525)

0.0061~0.1663 2 1.8276

50–70 vs. 70-survival methylation developmental growth involved in morphogenesis
(GO:0060560)

0.0266~0.0845 3 2.8406

0–50 vs. 50-survival methylation response to immobilization stress
(GO:0035902)

0.0031~0.0937 2 1.9031

0–20 vs. 20–50 expression obsolete regulation of cyclic nucleotide metabolic process
(GO:0030799)

0.0791~0.0867 2 1.8342

20–50 vs. 50–70 expression regulation of response to external stimulus
(GO:0032101)

0.0752~0.1723 3 2.5805

50–70 vs. 70-survival expression cardiac septum development
(GO:0003279)

0.0358~0.0915 2 1.8725

0–50 vs. 50-survival expression neural tube formation
(GO:0051602)

0.0333~0.0775 2 1.8892
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Based on the expression profiles, the 1799th module
were with the maximum interaction score (mean value =
0.0762), connecting other 2387 modules (in the model
of age group: 20–50 vs. 50–70). The module connected
46 key BP functions (i.e. fatty acid beta oxidation using
acyl coa oxidase, cell aggregation and cytokine produc-
tion) and 51 KEGG pathways (i.e. Retinol metabolism,
alpha linolenic acid metabolism and Pyruvate metabol-
ism), revealed basal metabolism pathways during aging.
In short, the corresponding networks reflected correla-
tions of important parts / functions in the aging self-
organization system, such as the immunity system, can-
cer related pathways, and so on. It might be the cross-
talk between the immunity system and cancers that
cause of emergence of critical themes in the aging
process.

Therefore, the bifurcations (differential patterns) be-
tween age groups were investigated, where order parame-
ters with convoluted interactions were summarized by
each relieff weight, indicating order-disorder patterns of
interactions between aging order-parameters from low
(near the ordered / similar pattern with low entropic
values of the aging system) to high (near disordered / dif-
ferent patterns with high entropic values) values, or vise
verse. As a result, significant differential patterns were
found between age groups using both methylation and ex-
pression profiles (Fig. 5). In the early aging stage (0–20 vs.
20–50), the aging self-organization systems were with sig-
nificantly ordered patterns based on both methylation and
expression profiles. As aging was regulated by special
markers / order-parameters, the self-organization system
showed ordered patterns in the early aging stage.

Table 7 Top enriched KEGG pathways across modules

Model Profiles Pathway FDR range Enriched modules Score

0–20 vs. 20–50 methylation Glioma 0.0193~0.184 11 9.8185

20–50 vs. 50–70 methylation Prostage cancer 0.0922~0.185 16 13.6894

50–70 vs. 70-survival methylation Pancreatic cancer 0.0714~0.1931 9 7.9217

0–50 vs.
50-survival

methylation Pancreatic cancer 0.041~0.1988 17 14.7595

0–20 vs. 20–50 expression ERBB signaling pathway
VEGF signaling pathway
Non-small cell lung cancer

0.0902~0.1844 5 4.3889

20–50 vs. 50–70 expression Insulin signaling pathway 0.0213~0.1858 10 8.8731

50–70 vs. 70-survival expression VEGF signaling pathway
Fc epsilon RI signaling pathway

0.0134~0.194 9 7.8764

0–50 vs. 50-survival expression Prostage cancer 0.0692~0.1887 11 9.4625

Fig. 4 Biological features of the the aging self-organization system. The top 10 enriched KEGG pathways across different models of aging
self-organization systems
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However, the self-organization systems were with disor-
dered patterns in the middle (20–50 vs. 50–70) or later
(50–70 vs. 70-survival) stage based on expression or
methylation profiles, respectively. These results indicated
tissues were with declined function / disordered patterns
during aging. In short, the aging process was driven by
both special markers / order parameters (with ordered

patterns) and tissue declined function (with disordered
patterns), perhaps determined by the former in the early
aging stage, and by the latter in the later aging stage.

Aging acceleration of cancers
To study the crosstalk between aging and cancer, the
aging associated accelerations were investigated in

Fig. 5 Order-disorder patterns in different aging stages. a, c, e, g methylation profiles; b, d, f, h expression profiles
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cancer samples (from the TCGA platform). The order
parameters were extracted using the cancer profiles
based on each self-organization model, and the module
patterns in each model were summarized. Then the
aging score were calculated by the module patterns (ad-
jacent normal samples were as the training data, cancer
samples were as the test data, and the 0–1 SVM regres-
sion was used as the predictor). Strikingly, the results
showed that the scores in cancer samples were signifi-
cantly higher compared to adjacent normal samples,
based on both methylation and expression profiles
(Fig. 6). These results were consistent with previous re-
sults, which might reflect the protection of the cancer
tissues [5, 17].
The correlation between somatic mutation and aging

acceleration was also investigated, but none of SNPs
with significant (p-value< 0.05 and fdr < 0.2, using the
non-parameter Kruskal-Wallis Test [18]) aging acceler-
ation were identified. The results were perhaps because
of inadequate samples of paired profiles, aging acceler-
ation tissues in cancer with fewer somatic mutations, or
the complexity of aging [5]. Moreover, it has been found
that there was negative correlation between age acceler-
ation and number of somatic mutations [5]. Therefore,
our work also found the negative correlations in most
types of cancers (Figure S2 and S3). However, only a few
cancers were with significant correlation (e.g. THCA,
shown in Figure S2l and S3l).
Further, the 11 types of cancer profiles were clustered

based on the mean value of aging acceleration patterns
using mean acceleration ratios based on simplified
methylation and expression models. As a result (Fig. 6c
and S4), 7 cancers were identified as one aging acceler-
ation pattern, including BLCA, COAD, ESCA, HNSC,
KIRC, KIRP and PRAD; and other 4 cancers were identi-
fied as another aging acceleration pattern (BRCA, LIHC,
LUAD and THCA). In addition, 49 significant modules
were identified based on both differential methylation
and expression profiles, where the top differential mod-
ule (the 926th expression module) connected 50 key BP
terms (i.e. cellular localization, skeletal muscle adapta-
tion and GABAergic neuron differentiation) and 51
KEGG pathways (Long-term potentiation and Retinol
metabolism), indicating key functions of the aging
process of the neuron system. The aging acceleration
patterns also revealed basal characteristics across
cancers.

Discussion
The aging process is regulated by a series of key
markers. The aging markers interact with each other,
and performed their functions in the specific aging net-
works. As a result, identifying modules clustered by
these markers during aging was more informative to

research the aging process compared to finding isolated
markers.
In other words, differential interactions (evaluated by

the mutual information) in proper networks were also
powerful to study key gene regulations in biological pro-
cesses (i.e. aging and related diseases) [19]. Both the net-
work markers and gene markers were integrated based
on the background networks to identify critical markers

Fig. 6 Aging acceleration in cancers. a methylation profiles; b
expression profiles; c The heatmap of aging acceleration patterns
across cancers
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in the aging process thereby. Further, these aging
markers were extracted as crucial features of aging,
where the separation margin of SVM was optimized /
converged to discriminate different age groups. As a re-
sult, the SVM hyper plane based on extracted network
markers (both methylation and expression profiles) had
enough efficiency to classify age groups and explorer
critical mechanisms of the aging process, compared with
other classfiers (Table S3 and S4).
In this paper, we presented a computational pipeline

to model the aging self-organization system and select
the order parameters using a series of supervised learn-
ing technologies. The discrimination results showed that
our prediction ability had more accuracy than traditional
gene selection / classification methods.
Tissues suffer declined functions during aging. How-

ever, the aging markers interact with each other, and
synergistically regulate the aging process. Therefore, the
aging process is affected by both ordered and disordered
factors. In this work, the complexity characteristics
across modules were also found to show critical patterns
in different age groups.
In the immunity theories of aging [20], tissues exhibit

progressively functional declines during aging. The func-
tional analysis found that the order parameters were
enriched in particular BP terms / KEGG pathways in dif-
ferent age groups, where immunity dysfunction and can-
cer related pathways indicated the common theme of
aging. Therefore, our results showed the aging process
could be predictive by modelling the self-organization
system, and indicated crosstalk among aging, immunity
and cancers.
Further, the cancer profiles also identified the aging ac-

celeration of cancer samples with aging scores based on
the self-organization system being statistically significant.
Both methylation and expression profiles found the cancer
samples showed aging acceleration compared to normal
samples. The results indicated the protective roles of aging
in cancers [5]. Moreover, different aging acceleration pat-
tern could also discriminate cancer types.

Conclusion
In summary, we presented the self-organization model
of the aging process based on both methylation and ex-
pression profiles in this work, where both ordered and
disordered critical patterns were identified in different
aging stages. Biological features of the order parameters
indicated dysfunction of the immunity system and other
common properties during aging (i.e. cancers). Thus the
aging acceleration also revealed the relationship between
aging and cancers. In conclusion, the aging self-
organization system described here is informative to
both aging and aging related diseases.

Materials and methods
Data and pre-processing
We obtained methylation and expression profiles from
MuTHER study [21] and GEO database (https://www.
ncbi.nlm.nih.gov/geo/) with the chronological age (Table
S5, S6, S7 and S8), respectively. Only profiles in normal
tissues of healthy persons were considered for modelling
the aging self-organization systems (samples from normal
tissues from persons with cancer and disease status sam-
ple / blood, e.g. traumatic blood from healthy persons
were discarded). As a result, there were 2226 samples of
Gene expression data from 37 datasets, and 4428 samples
methylation data from 35 datasets were selected to model
the aging self-organization systems, respectively.
For each methylation / expression dataset, the data was

treated by a Singular Value Decomposition (SVD) method
[16, 22] (regress the first 3 principle components) to assess
the sources of inter-sample variation separately in each
tissue, and then were normalized to have zero mean and
unit variance. Finally the profiles were discretized using
two thresholds mean+/−std. If the data came from differ-
ent platform (e.g. GPL96 / GPL97) even in the same GEO
Series, or came from different region of brain (e.g. hippo-
campus, Posterior cingulate region and so on), the data
were treated as independent dataset.
The age groups were partitioned as: (0, 20], (2050),

[50, 70) and [70, survival). The choice of age groups was
guided by the following criterion: first, the partition of
methylation and expression data should be accordance
for further integration; second, the human methylation
“age acceleration” is significant before age of 20 [5];
third, the sample imbalances between age groups need
to be small. Data from different age nearby were used to
model the aging self-organization system (0–20 vs. 20–
50; 20–50 vs. 50–70; 50–70 vs. 70-sruvival) based on
methylation and expression profiles, respectively. Fur-
ther, simplified classification models were also con-
structed to discriminate “young” (0–50) and “old” (50-
survival) age group [6] based on expression and methyla-
tion profiles, respectively.
We also downloaded paired methylation, expression,

somatic mutation profiles and clinical data (both cancer
and adjacent normal tissue) from the TCGA platform
(through the xena website: https://xenabrowser.net/hub/
) to further analyze aging related genomic alterations
(totally 333 paired samples were obtained).

The computational pipeline of modelling aging self-
organization systems
Step 1, filtering the aging background network by
maximum mutual information minimum redundancy
criterion
Aging is a gradual process with biological functional de-
cline / disorder. The degree of disorder is often evaluated
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by entropy. The aging process is usually accompanied by
increasing entropy; however, in the biological non-closed
molecular system, particular bio-markers perform special
function with ordered patterns in the aging process.
Therefore, key order-disorder transitions (or vice versa)
accounts towards important changes between age group
in the aging process.
In this work, the mutual information between different

age groups was used to evaluate relevance between genes
(i.e. methylation or expression profiles), and the mutual
information between genes (from all training samples /
age groups) was used to evaluate gene redundancy. In
addition, the background interaction system / network
of the aging process satisfied maximum mutual informa-
tion and minimum redundancy criterion:

network←find
X

jI i; jð Þ
group1−I

i; jð Þ
group2j >

X
redundancy i; jð Þ

� �

ð1Þ
where I(i,j)group indicates the mutual information between
genes within the same age group, evaluating the changed
dispersion of gene interaction between age groups by
the absolute difference, and redundancy(i,j) indicates the
redundancy between genes. As a result, the mutual in-
formation between age groups was filtered by the redun-
dancy in the background network as the preliminary
gene interaction system of the aging process.

Step 2, summarizing gene interactions by the convolution
technology
Each “edge” in the aging background network indicating
the changed dispersion of gene interaction. As a result,
the entire interaction of a gene could be calculated by
convoluting all the edges in the background network (i.e.
Fig. 1b), where the absolute differences of mutual infor-
mation between age groups were used as the convolu-
tion kernel.

interactioni ¼
X

interaction i; jð Þ�
j sign geneið Þ− sign gene j

� � j ð2Þ
where genei and genej was the profile of i-th and j-th
gene, respectively; and

interaction i; jð Þ ¼ I j sign geneið Þ− sign gene j
� �j; age group

� �

ð3Þ
where I(x,y) was the mutual information between x and
y.

Step 3, calculating the entire pattern by accumulating
genes within module
Highly interconnected genes in the network are usually
involved in the same biological functions. In this work,
genes in the same module were accumulated, where the

weights were calculated by the relieff algorithm. Either
gene original profiles or convoluted interactions were ac-
cumulated was determined by their relieff weights (sub-
tracting the minimum value of the relieff weights). As a
result, each module could be a feature in classification of
different age groups.

Step 4, determining module size by clustering method and
cross-validation
The size of module (how many genes within the
module) was determined using a hierarchical cluster-
ing method, where correlation of genes was evaluated
by mutual information in the background network be-
tween different age groups in the aging process. The
clustering degree / times was determined by (5-fold)
cross validation.

Step 5, identifying order parameters by network
sparsification
In this work, only a small ratio of interactions were con-
voluted in step 2, sorted by the mutual information; and
only genes with top relieff values were accumulated in
the module in step 2. sqrt(n) interactions / genes were
selected as the order parameters of the aging process
using the network sparsification method, where n was
the total number interacted with each gene / within the
module, respectively.
In this work, the 0–1 SVM classifier (with the linear

kernel) was used to discriminate the age groups. The
value of Box Constraint was 1, and the hyperplane was
optimized by imposing a penalty on the length of the
margin for every observation that is on the wrong side
of its class boundary.

Enrichment analysis
Enrichment analyses were carried out to gain signifi-
cantly biological functions. GO Biological Processes (BP)
terms of Gene Ontology (GO) and KEGG pathways were
downloaded from Gene Set Enrichment Analysis (GSEA)
platform (version 6.1) [23].
The hypergeometric test [24] was performed to esti-

mate the enrichment of these selected genes compared
to known GO terms or pathways. Finally, the selected
significant enrichment p-values were controlled by False
Discovery Rate [25]. The thresholds were set as p-
value< 0.05 and FDR < 0.2.
To evaluate annotated functions across, enriched BP

terms / KEGG pathways were calculated by summar-
izing values of 1-fdr, where fdr < 0.2 was set as the
threshold.

score ¼
X

fdr<0:2

1−fdrð Þ ð4Þ
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