Ka S, Kerje S, Bornold L, Liljegren U, Siegel PB, Andersson L, Hallböök F: Proviral integrations and expression of endogenous avian leucosis virus during long term selection for high and low body weight in two chicken lines. Retrovirology. 2009, 6: 68-10.1186/1742-4690-6-68.
Article
PubMed Central
PubMed
Google Scholar
Rauscher FJ, Allen BV: Growth curve of a murine leukemia virus in mice. J Natl Cancer Inst. 1964, 32: 269-275.
CAS
PubMed
Google Scholar
Wolfe ND, Switzer WM, Carr JK, Bhullar VB, Shanmugam V, Tamoufe U, Prosser AT, Torimiro JN, Wright A, Mpoudi-Ngole E, McCutchan FE, Birx DL, Folks TM, Burke DS, Heneine W: Naturally acquired simian retrovirus infections in central African hunters. Lancet. 2004, 363: 932-937. 10.1016/S0140-6736(04)15787-5.
Article
PubMed
Google Scholar
Gualco G, Chioato L, Weiss LM, Harrington WJ, Bacchi CE: Analysis of human T-cell lymphotropic virus in CD25+ anaplastic large cell lymphoma in children. Am J Clin Pathol. 2009, 132 (1): 28-33. 10.1309/AJCP6Q7QMUVGMVMF.
Article
PubMed Central
PubMed
Google Scholar
Hahn BH, Shaw GM, De Cock KM, Sharp PM: AIDS as a zoonosis: scientific and public health implications. Science. 2000, 287: 607-614. 10.1126/science.287.5453.607.
Article
CAS
PubMed
Google Scholar
Freed EO: HIV-1 replication. Somat Cell Mol Genet. 2001, 26 (1-6): 13-33. 10.1023/A:1021070512287.
Article
CAS
PubMed
Google Scholar
Brooks JI, Rud EW, Pilon RG, Smith JM, Switzer WM, Sandstrom PA: Cross-species retroviral transmission from macaques to human beings. Lancet. 2002, 360: 387-388. 10.1016/S0140-6736(02)09597-1.
Article
PubMed
Google Scholar
Franklin SP, Troyer L, Terwee JA, Lyren LM, Boyce WM, Riley SP, Roelke ME, Crooks KR, Vandewoude S: Frequent transmission of immunodeficiency viruses among bobcats and pumas. J Virol. 2007, 81 (20): 10961-10969. 10.1128/JVI.00997-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vandewoude S, Troyer J, Poss M: Restrictions to cross-species transmission of lentiviral infection gleaned from studies of FIV. Vet Immunol Immunopathol. 2009, PMID 19896218.
Google Scholar
Wayengera M: Emergence of zoonotic retroviral infections in this era. Why?. Abstract book and programme of Proceedings of the International Students' Conference on Emergencies (ISCE). 2001, 7- , Dec 11-14th
Google Scholar
Wayengera M: The evolutionary adaptation hypothesis to explain the origin of ebola VHF. Makerere Medical Journal. 2002, 36: 36-37.
Google Scholar
Heneine W: Emergence of novel retroviruses. Retrovirology. 2009, 6 (Suppl 2): I5-10.1186/1742-4690-6-S2-I5.
Article
PubMed Central
Google Scholar
Bagasra O, Amjad M: Protection Against Retroviruses Are Owing to a Different Form of Immunity: An RNA-Based Molecular Immunity Hypothesis. Applied Immunohistochemistry & Molecular Morphology. 2000, 8 (2): 133-146. 10.1097/00022744-200006000-00008.
Article
CAS
Google Scholar
Sopper S, Sauer U, Hemm S, Demuth M, Müller J, Stahl-Hennig C, Hunsmann G, Meulen V, Dörries R: Protective Role of the Virus-Specific Immune Response for Development of Severe Neurologic Signs in Simian Immunodeficiency Virus-Infected Macaques. J Virol. 1998, 72 (12): 9940-9947.
PubMed Central
CAS
PubMed
Google Scholar
Evans D, Bricker J, Lifson J, Lang S, Desrosiers R: Virus-specific Immune Responses in Macaques Inoculated with Single-cycle SIV. Conf Retrovir Oppor Infect-Boston Mass. 2003, 10: abstract no. 78.
Google Scholar
Malim MH: APOBEC proteins and intrinsic resistance to HIV-1 infection. Phil Trans R Soc B. 2009, 364 (1517): 675-687. 10.1098/rstb.2008.0185.
Article
PubMed Central
CAS
PubMed
Google Scholar
Okeoma CM, Low A, Bailis W, Fan HY, Peterlin BM, Ross SR: Induction of APOBEC3 In Vivo Causes Increased Restriction of Retrovirus Infection. J Virol. 2009, 83 (8): 3486-3495. 10.1128/JVI.02347-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chiu Y-L, Greene WC: APOBEC3G: an intracellular centurion. Phil Trans R Soc B. 2009, 364 (1517): 689-703. 10.1098/rstb.2008.0193.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conticello SG, Thomas CJF, Petersen-Mahrt SK, Neuberger MS: Evolution of the AID/APOBEC Family of Polynucleotide (Deoxy)cytidine Deaminases. Molecular Biology and Evolution. 2005, 22 (2): 367-377. 10.1093/molbev/msi026.
Article
CAS
PubMed
Google Scholar
Kajaste-Rudnitski A, Pultrone C, Marzetta F, Ghezzii S, Coradin T, Vicenzi E: Restriction factors of retroviral replication: the example of Tripartite Motif (TRIM) protein 5alpha and 22. Amino Acids. 2009, PMID: 19943174.
Google Scholar
Tokarev A, Skasko M, Fitzpatrik K, Guatelli J: Antiviral Activity of the interferon induced cellular protein BST-2/tetherin. AIDS Res Human Restroviruses. 2009, PMID: 19929170.
Google Scholar
Bagasra O, Prilliman KR: RNA interference: the molecular immune system. J Mol Histo. 2004, 35 (6): 545-553. 10.1007/s10735-004-2192-8.
Article
CAS
Google Scholar
Wayengera M: Pre-Integration gene slicing as an alternate or complimentary gene therapy modem to RNA interference. J Appl Biol Sci. 2008, 1 (2): 54-63.
Google Scholar
Hannon GJ, Rossi JJ: Unlocking the potential of the human genome with RNA interference. Nature. 2004, 431: 371-378. 10.1038/nature02870.
Article
CAS
PubMed
Google Scholar
Vijaya S, Steffan DL, Robinson HL: Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J Virol. 1986, 60: 683-692.
PubMed Central
CAS
PubMed
Google Scholar
Withers-Ward ES, Kitamura Y, Barnes JP, Coffin JM: Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 1994, 8: 1473-1487. 10.1101/gad.8.12.1473.
Article
CAS
PubMed
Google Scholar
Sels FT, Langer S, Schulz AS, Silver J, Sitbon M, Friedrich RW: Friend murine leukaemia virus is integrated at a common site in most primary spleen tumours of erythroleukaemic animals. Oncogene. 1992, 7: 643-652.
CAS
PubMed
Google Scholar
Stevens SW, Griffith JD: Human immunodeficiency virus type 1 may preferentially integrate into chromatin occupied by L1Hs repetitive elements. Proc Natl Acad Sci USA. 1994, 91: 5557-5561. 10.1073/pnas.91.12.5557.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stevens SW, Griffith JD: Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J Virol. 1996, 70: 6459-6462.
PubMed Central
CAS
PubMed
Google Scholar
Howard MT, Griffith JD: A cluster of strong topoisomerase II cleavage sites is located near an integrated human immunodeficiency virus. J Mol Biol. 1993, 232: 1060-1068. 10.1006/jmbi.1993.1460.
Article
CAS
PubMed
Google Scholar
Bushman FD, Craigie R: Integration of human immunodeficiency virus DNA: adduct interference analysis of required DNA sites. Proc Natl Acad Sci USA. 1992, 89: 3458-3462. 10.1073/pnas.89.8.3458.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carteau S, Hoffmann C, Bushman F: Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J Virol. 1998, 72 (5): 4005-4014.
PubMed Central
CAS
PubMed
Google Scholar
Moalic Y, Blanchard Y, Félix H, Jestin A: Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. J Virol. 2006, 80 (22): 10980-10988. 10.1128/JVI.00904-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tang J, Wilson CM, Schaen M, Myracle A, Douglas SD, Kaslow RA, REACH Study Group: CCR2 and CCR5 genotypes in HIV type 1-infected adolescents: limited contributions to variability in plasma HIV type 1 RNA concentration in the absence of antiretroviral therapy. AIDS Res Hum Retroviruses. 2002, 18 (6): 403-412. 10.1089/088922202753614164.
Article
CAS
PubMed
Google Scholar
An P, Nelson GW, Wang L, Donfield S, Goedert JJ, Phair J, Vlahov D, Buchbinder S, Farrar WL, Modi W, O'Brien SJ, Winkler CA: Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci USA. 2002, 99 (15): 10002-10007. 10.1073/pnas.142313799.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin MP, Dean M, Smith MW, Winkler C, Gerrard B, Michael NL, Lee B, Doms RW, Margolick J, Buchbinder S, Goedert JJ, O'Brien TR, Hilgartner MW, Vlahov D, O'Brien SJ, Carrington M: Genetic acceleration of AIDS progression by a genetic variant of CCR5. Science. 1998, 282: 1907-1911. 10.1126/science.282.5395.1907.
Article
CAS
PubMed
Google Scholar
Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW, Carrington M, Winkler C, Huttley GA, Allikmets R, Schriml L, Gerrard B, Malasky M, Ramos MD, Morlot S, Tzetis M, Oddoux C, di Giovine FS, Nasioulas G, Chandler D, Aseev M, Hanson M, Kalaydjieva L, Glavac D, Gasparini P, Kanavakis E, Claustres M, Kambouris M, Ostrer H, Duff G, Baranov V, Sibul H, Metspalu A, Goldman D, Martin N, Duffy D, Schmidtke J, Estivill X, O'Brien SJ: Dating the origin of CCR5 delta 32 AIDS resistance gene by the coalescence of Haplotypes. Am J Hum Genet. 1998, 62: 1507-1515. 10.1086/301867.
Article
PubMed Central
CAS
PubMed
Google Scholar
Faure S, Meyer L, Costagliolia D, Vaneensberghe C, Genin E, Autran B, Delfraissy JF, McDermott DH, Murphy PM, Debré P, Théodorou I, Combadière C: Rapid Progression to AIDS in HIV+ve individuals with a structural variant of the chemokine receptor CXC3CR1. Science. 2000, 287: 2272-2277. 10.1126/science.287.5461.2274.
Article
Google Scholar
Gonzales E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O'Connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK: The influence of CCL3L1 gene containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005, 307: 1434-1440. 10.1126/science.1101160.
Article
Google Scholar
Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N: Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest. 2005, 115 (11): 3265-3275. 10.1172/JCI26032.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB: HIV Enters Cells via Endocytosis and Dynamin-Dependent Fusion with Endosomes. Cell. 2009, 137 (3): 433-444. 10.1016/j.cell.2009.02.046.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pelchen-Matthews A, Raposo G, Marsh M: Endosomes, exosomes and Trojan viruses. Trends in Microbiology. 2004, 4 (7): 310-316. 10.1016/j.tim.2004.05.004.
Article
Google Scholar
Einstein A: Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin. 1915, 844-847.
Google Scholar
Einstein A: Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik. 1916, 49-
Google Scholar
Einstein A: Kosmologische Betrachtungen zur allgemeinen. Sitzungsberichte der Preußischen Akademie der Wissenschaften. 1917, 142-
Google Scholar
Ricci T, Levi-Civita T: Méthodes de calcul différentiel absolu et leurs applications. Mathematische Annalen (Springer). 1900, 54 (1-2): 125-201. 10.1007/BF01454201.
Article
Google Scholar
Wayengera M: Slow Progression of paediatric HIV disease: Selective adaptation or chance phenomenon. Port Harcourt Medical Journal. 2007, 2: 83-87.
Article
Google Scholar
Smieszek T, Fiebig L, Scholz RW: Models of epidemics: when contact repetition and clustering should be included. Theor Biol Med Model. 2009, 6: 11-10.1186/1742-4682-6-11.
Article
PubMed Central
PubMed
Google Scholar
Keeling MJ, Eames KTD: Networks and epidemic models. J R Soc Interface. 2005, 2: 295-307. 10.1098/rsif.2005.0051.
Article
PubMed Central
PubMed
Google Scholar
Wearing HJ, Rohani P, Keeling MJ: Appropriate models for the management of infectious diseases. PLoS Med. 2005, 2: e174-10.1371/journal.pmed.0020174.
Article
PubMed Central
PubMed
Google Scholar
Read JM, Eames KTD, Edmunds WJ: Dynamic social networks and the implications for the spread of infectious disease. J R Soc Interface. 2008, 5: 1001-1007. 10.1098/rsif.2008.0013.
Article
PubMed Central
PubMed
Google Scholar
Eames KTD: Modelling disease spread through random and regular contacts in clustered populations. Theor Popul Biol. 2008, 73: 104-111. 10.1016/j.tpb.2007.09.007.
Article
CAS
PubMed
Google Scholar
Ferrari MJ, Bjornstad ON, Dobson AP: Estimation and inference of R0 of an infectious pathogen by a removal method. Math Biosci. 2005, 198: 14-26. 10.1016/j.mbs.2005.08.002.
Article
PubMed
Google Scholar
Feynman RP: The Space-Time Formulation of Nonrelativistic Quantum Mechanics. Reviews of Modern Physics. 1948, 20: 367-387. 10.1103/RevModPhys.20.367.
Article
Google Scholar
Wayengera M, Byarugaba W: Emphasizing the vitality of genomics related research in the area of infectious diseases. Sci Res Essay. 2008, 3 (4): 125-131.
Google Scholar
Wayengera M, Byarugaba W, Kajumbula H, Olobo J, Kaddu-Mulindwa D: A model for mapping of Ebola and Marburg RNA integration sites in rhesus Macaca mulatta genome in silico: Ebola virus acceptors sites located on chromosomes 4, 6, 7, 8, 9, 14 and 15. Afr J Biotechnol. 2009, 8 (10): 2125-2130.
Google Scholar
Wayengera M, Kajumbula H, Kaddu-Mulindwa D, Olobo J, Byarugaba W: Proteomics of Marburg and Ebola glycoproteins: Insights into their physicochemical similarities and irregularities. Afr J Biotechnol. 2009, 8 (17): 4025-4031.
CAS
Google Scholar
Biology of HIV. http://www.web-books.com/eLibrary/ON/B0/B22/05MHIV.htmlhttp://www.web-books.com/eLibrary/ON/B0/B22/05MHIV.html